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Abstract: Fuel moisture content (FMC) proved to be one of the most relevant parameters for
controlling fire behavior and risk, particularly at the wildland-urban interface (WUI). Data relating
FMC to spectral indexes for different species are an important requirement identified by the
wildfire safety community. In Valparaiso, the WUI is mainly composed of Eucalyptus Globulus
and Pinus Radiatai—commonly found in Mediterranean WUI areas—which represent the 97.51% of
the forests plantation inventory. In this work we study the spectral signature of these species under
different levels of FMC. In particular, we analyze the behavior of the spectral reflectance per each
species at five dehydration stages, obtaining eighteen spectral indexes related to water content and,
for Eucalyptus Globulus, the area of each leave—associated with the water content—is also computed.
As the main outcome of this research, we provide a validated linear regression model associated with
each spectral index and the fuel moisture content and moisture loss, per each species studied.

Keywords: fuel moisture content; wildland urban interface; leaves spectral signature

1. Introduction

The latest wildfire seasons in Chile have caused significant human, ecological and economic
losses in cities, in the forestry industry and in protected areas. Recently, the fires in early 2017 caused
11 fatalities, burned more than 550,000 ha and destroyed more than 1000 houses [1]. In particular,
Valparafso—a central region in Chile—has suffered the greatest losses from wildfires and represents
the most challenging scenario for wildfire prevention, detection, and response, due to its topographical
and urban social features [2]. According to Chile’s Forest Service (CONAF), from 2003 to 2018, 12,868
recorded wildfires burned 121,328.81 ha in Valparaiso [3]. The prone of Valparaiso to wildfires is given
by the introduction of flammable species—i.e., Eucalyptus Globulus, Pinus Radiata—][3,4], both species
represent the 97.51% of the forest plantation [5]. Moreover, approximately 90% of such wildfires
have been related to anthropogenic activities including transit of vehicles or aircraft, recreational
activities, power line failures and arson attacks [6]. The sequence of maps presented in Figure 1 is a
timeline of forest fire frequency in Valparaiso. Such figure offers a spatial visualization of areas majority
affected [7]. Thus, given the susceptibility of Valparaiso to wildfires, it becomes crucial to allocate the
areas with a higher risk for an adequate forest and wildland—urban interfaces (WUI) management.
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Risk-based tools for decision making to manage forests and the WUI are cost-effective solutions
to allocate resources in areas with higher risks [8,9]. However, their use requires an adequate wildfire
modeling [10]. Such modeling needs of a reliable knowledge of the processes occurring in the solid
and gaseous phases during the combustion of wildland fuels. Their ignition is an outstanding problem
in fire and combustion science, and is far from being solved [11]. Furthermore, the wind speed, the fuel
moisture content (FMC) and the weight of the fuel bed are some factors on which the wildfire modeling
propagation depends [12]. In particular, the fine FMC (live and dead fuels) showed acceptable evidence
of producing good results in the modeling of real-world fire-spread rate [13].

Fuel Moisture Content, which represents the amount of water contained relative to the amount
of vegetation dry mass, can be measured or estimated from field samplings, gravimetric methods,
and spectral measurements. The first two methods achieve high accuracy [14], but their results
are not extensible at local, regional, and global scales [15]; being the last one the most suitable to
larger extension, if the FMC is retrieved from satellite imagery as in [16]. The FMC estimation
from optical sensors data is primarily made by empirical (statistical) or physical techniques [16].
The former approach establishes a statistical connection between an objective parameter—obtained in
field measurements—and reflectance or vegetation indexes (VIs) [17]. Several VIs have been developed
to estimate water content from the regions of the electromagnetic spectrum (e.g., visible, near-infrared,
and shortwave infrared) [18-31]. On the other hand, the physical models—i.e., Radiative Transfer
Models (RTM)—are independent of the site or the species. Therefore, RTMs may be used to construct
“universal” VIs to retrieve vegetative parameters [32]. However, the spectra simulated from RTMs
might be unrealistic if some criteria are not included in its parametrization as mentioned in [33].
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Figure 1. Forest plantation and forest fire frequency in Valparaiso Region, Chile. The forest fire
frequency is obtained from CONAF database (free available at [7]); the forest plantation is adapted
from CONAMA and CONAF [35].

In this work, we analyze the water content of Eucalyptus Globulus and Pinus Radiata using their
spectral signature, motivated by the lack of information about these two species in the WUI of
Valparaiso. As expected, being dominant species in the forest plantation inventory, the area burned
in recent years is more representative in both species, as shown in Figure 2 [34]. For each species, a
total of 90 samples were used to measure the spectral reflectance and the mass at different stages of
dehydration and senescence. A novel aspect of this work is that we present an evolution of several
spectral indexes used in remote sensing for the estimation of biomass moisture content as a function
of drying time and residual moisture content. It is expected that the methodologies and the data we
present will be a contribution to the wildfire community working on remote sensing tools. Finally,
this work is part of the project Understanding Wildfire Hazards Posed by Ignition in Continuous and
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Discontinuous Configurations, funded by CONICYT (the Chilean National Science Foundation) in an
attempt to understand the wildfire risks of Valparaiso region in Chile.
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Figure 2. Hectares burned of Valparaiso’s forest plantation during 2009-2017 [34].
2. Materials and Methods

The field sampling was carried out from August 2018 to March 2019. Leaf samples were collected
from Valparaiso WUI, corresponding to Eucalyptus Globulus and Pinus Radiata. The samples were
collected on days without precipitation during the previous 24 h. To maintain the freshness of the
leaves, branches were cut and stored in plastic bags as recommended in [36]. Then, in less than one
hour, the leaves were separated individually from the branches [37-40]. In the case of eucalyptus,
the measurements were made for each leaf, while for pine, approximately 5 grams of pine needles
were used, due to the difficulty of registering the spectral signature of a single needle with the sensors
used in this study. A total of 90 samples were employed for each species. Once the fresh leaves were
cut, the mass was obtained with a 0.1 mg resolution Kern PFB 120-3 precision balance. Leaf spectral
reflectance was measured with a high-resolution ASD mineral spectrometer with a spectral range of
350-2500 nm. To record the spectral reflectance, the contact probe of the ASD spectrometer was placed
flush against the sample using a white background (white spectralon). The samples were illuminated
using the contact probe with a tungsten filament. The spectrometer calibration was performed every
20 readings to ensure the accuracy of the measurements. The reflectance of the white calibration
pattern (white spectralon) was used by the spectrometer to set the base line up and calibrate itself [41].

To estimate the area of the eucalyptus leaves, a reference object with a known area was used.
A camera (12 MP, £/1.7 aperture with a focal length of 26 mm) was placed twenty centimeters above
both samples, to photograph the entire area of the leaf and the reference object. Then, the estimation of
the leaf area is calculated as the ratio of the pixels belonging to the leaf and the pixels in the reference
object with a known area as shown in Figure 3a.
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Figure 3. Leaves disposition before dehydration process. (a) shows the reference object used to estimate

leaves’ area; (b,c) show the leaves on the tray as captured by the camera.

Next, the fresh leaves were placed in a Memmert UN30 drying oven at 65 °C for a fixed
time. Figure 3b,c show how the samples were placed in the tray before the dehydration process.
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Such dehydration temperature was chosen since when assessing the flammability of wildland fuels,
it must be ensured that the fuel being analyzed has not lost any flammable content (i.e., that it has not
pyrolyzed) so as not to affect the combustion behavior of the samples. The common practice of all
combustion scientists working on wildland fuel fire behavior is to dry the samples between 60 and 80 °C
[42-49]. In the case of eucalyptus, the time was set to 15 min, while for pines the time was 60 min (such
time intervals were chosen following the guidelines published in [50,51]). The dehydration process was
repeated three times. Then, the leaves were placed in the oven for 24 h at 65 °C to obtain constant mass
(dry mass) [37,40,52]. Finally, the dry leaves were weighed and the reflectance spectrum was recorded.
A detailed description of the instruments used and their specifications are shown in Table 1.

Table 1. Technical Specifications of the instruments used in the procedure.

Instrument Technical Specifications

Wavelength range: 350-2500 nm

Resolution: 3 nm at 700 nm and
6 nm at 1400/2100 nm

Reproducibility: 0.1 nm

TerraSpec 4 Hi-Res Mineral
spectrometer

Accuracy: 0.5 nm

Readability: 0.001 g

Balance Kern PFB 120-3

Maximum capacity: 120 g

Temperature: —5 °C and +300 °C
Universal Oven Memmert UN30 respect the environmental temperature

Temperature control: Digital PID

Water Content and Vegetation Indexes

Based on the mass of the leaves at different dehydration stages, the water content is expressed
as Fuel Moisture Content (FMC) with fresh——or dry basis—;—{[39,52-54] and Equivalent Water
Thickness (EWT) [52,53,55-58]. The former depends only on the leaf mass (Equations (1) and (2)),
while the latter also requires its area (Equation (3)):

o, Wf/t — Wd 0,
FMCs(%) = —-——% % 100% 1)
Wf,t
o, Wf’t B Wd O,
FMCq(%) = — 100% )
8\ _ W —Wa
EWT (cmz) o A @)

where Wy (g) is the leaf fresh weight, f is the time in the oven, W; (g) is the leaf dry weight (after
24 h at 65 °C) and A (cm?) is the leaf area. To avoid misinterpretations, we refer to FMCj just as
FMC. As just presented, the water content is obtained during an invasive and time-consuming process
of dehydration.

The water content estimation from the spectral signature has been widely studied for a broad
variety of vegetation species. Based on the review of the literature, we selected eighteen vegetation
indexes that appear frequently in studies related to the use of VIs for the water content estimation
(see Table 2 for VIs nomenclatures, references, and a brief description [59-70]). For example, in [59]
the MSI, NDWI, TM5/TM7, and WI were used to estimate the leaf FMC, and EWT from remotely
sensed reflectance. On the other hand, the leaf water status was estimated using the NDWI and the
leaf water content index (LWCI) to monitor the forest fire risk [60]. In [61] it is presented the estimation
of EWT in eucalyptus leaves using MSI, TM5/TM7, WI, NDWI, and Normalized Difference Vegetation
Index (NDVI). However, such eucalyptus species was not Eucalyptus Globulus, and the leaves were not
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dehydrated. Based on field spectroscopy data, the EWT was estimated using the following indexes
WI, SRWI, NDWI, fWBI, SIWSI, and NDII [62]. Also, the same indexes were compared against the use
of full-spectrum and continuum removal for leaf-level EWT retrieval in commercial vineyards [63].
In cotton leaves, the EWT and FMC were estimated employing NDII, NDWI1, NDWI2, WI, WBI, fWB]I,
SRWI, SRWI1, SRWI2, MSI1, MSI2, and SIWSI [64].

Table 2. Vegetation Indexes related with the foliar moisture content. The equation column is represented

by Ry, where R is the reflectance and  the wavelength.

Spectral Indexes Equations
Water Band Index (WBI) is a good indicator of water status when the Relative Roro/R
Water Content (RWC) is smaller than 80-85 percent [18]. 970/ 2900
Moisture Stress Index (MSI) is correlated with the liquid water and MSI should Rienn/R
be correlated with the Leaf Area Index (LAI) of a leaf [19]. 1600/ %820
Moisture Stress Index 1 (MSI1) were derived from the TMS bands simple ratio.
These indexes were used to estimate forest damage that can be attributed to Rig50/ R1230
moisture and anatomy of the vegetation [21].
Moisture Stress Index 2 (MSI2) Similar to the MSI1 index [21]. Rig50/ Rs30
Ratio of Thematic Mapper Band 5 to Band 7 (TM5/TM?7) were used to estimate Ricsn/R
the density of vegetation through the Leaf Water Content (LWC) [22]. 1650752220
Water Index (WI) is correlated with a wide range of plant water concentration Roon /R
(FMC) obtained through a severe dehydration [23]. 900/ 2970
Floating-position Water Band Index (fWBI) was obtained from the relation Rggg <
900

and the minimum value in the range Rg3g and Roggg. This index was correlated
with the area-weighted content of vegetation under stress conditions [71].

min (Rosp—Roso)

Leaf Water Index (LWI) exhibited a strong correlation with RWC in a laboratory

standpoint, but it is not suitable for field measurement due to the influence of R1300/ R1as0
the atmospheric effects [26].
Simple Ratio Water Index (SRWI) was studied as a linking between leaf and Reco /R
canopy models with LWC [24]. 860/ 71240
Simple Ratio Water Index 1(SRWI1) Simple Ratio Water Index 1 and 2 were
obtained after a study of the water status in vineyards. These indexes showed a R1350/ Rg7o
correlation with EWT and FMC (fresh and dry basis) [27].
Simple Ratio Water Index 2 (SRWI2) similar to SRWI1 [27]. Rgsgo/ R1265

Normalized Difference Infrared Index (NDII) is correlated with canopy water
status. NDII was developed using the wavelengths that match the bands 3, 4
and 5 of Landsat-D Thematic Mapper [29].

(Rg50—Rie50)
(Rsso+R1es0)

Normalized difference Water Index 1 (NDWI1) is based in two narrow channels
of the Landsat TM and it is sensitive to changes in the EWT [25].

(Res0—Ri240)
(Rss0+R1240)

Normalized difference Water Index 2 (NDWI2) is correlated with water content
indicators (specially with EWT) at leaf level [27].

(Rs70—R1260)
(Rs70+R1260)

Shortwave Infrared Water Stress (SIWSI) was developed as indicator of water
stress in a semiarid environment [30].

(Ri640—Rss8)
(Ris40+Rsgss)

Double Difference Index (DDI) was presented to estimate the chlorophyll in
leaves [72]. However, this index showed a strong correlation with EWT in a
large simulated database [28].

2R1530 — R1005 — R2os5

Visible Atmospheric Resistant Index (VARI) is a sensitive indicator of the
vegetation fraction (VF) from levels moderate to high [31]. Nonetheless, this
index has been used for FMC estimation [73-75].

(Rgmzn —Ryed )

(Rgreen +Rn’d*Rblw)

Enhanced Vegetation Index (EVI) is an index derived from MODIS bands, it
includes terms for atmosphere resistance and soil adjustment [76].

2.5

(Rmr 7RY(’d)

(K»lir+6Rn’d _7‘5Rhlu(’+l)
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3. Results

The evolution of the eighteen spectral indexes corresponding to moisture loss for Eucalyptus
Globulus and Pinus Radiata is shown in Figure 4. The moisture loss is normalized as the ratio of water
contained in each stage of dehydration over the total amount of water. That is, the 0 value means that
the leaves do not contain water (after 24 h of drying), meanwhile, the moisture loss 1 represents that
the leaves are fresh (recently collected). Figure 5 shows the evolution of the selected vegetation indexes
as a function of fuel moisture content (Equation (2)) for eucalyptus and pines. Values of FMC bigger
than 100% implies that more than 50% of the leaves’ mass is water. Specifically, the maximum FMC
contained in eucalyptus leaves is 129%, whereas the maximum FMC in pine needles is 153%. Finally,
the variation of the spectral indexes when the equivalent water thickness of eucalyptus changes is
presented in Figure 6. As can be seen in Figures 4-6, the dehydration process allows us to have a wide
range of values of moisture loss, FMC, and EWT. In addition, the behavior of the eighteen vegetation
indexes is proportional to the water indicators. The aforementioned behavior is modeled as a linear
regression in Appendix A (Figures A1-A5), where a individual linear model is presented with its
corresponding coefficient of determination R?.
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Figure 4. Relationship between moisture loss and the vegetation indexes. (a) shows the results for the

Eucalyptus Globulus case, and (b) for the Pinus Radiata case.
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Figure 5. Relationship between fuel moisture content (FMC) and the vegetation indexes. The FMC
with dry basis is calculated according to Equation (1). (a) shows the results for the Eucalyptus Globulus
case, whereas (b) shows the results for the Pinus Radiata case.

Spectral indexes

% o nliagiol 7

I I I I I
0 0.005 0.01 0.015 0.02 0.025 0.03

Equivalent water thickness (g/cmz)

Figure 6. Relationship between equivalent water thickness (EWT) and Eucalyptus Globulus vegetation
indexes. The EWT is calculated according to Equation (3).

4. Discussion

Figures 4-6 suggest that the relationship between the leaf water content (expressed in terms of:
moisture loss, FMC, and EWT) and spectral indexes, for both species, is linear. In particular Figures A1l
and A2 evidence that all spectral indexes appeared to behave linearly with a R? of 0.41 in the worst
case—VARI index for EWT estimation in eucalyptus—and of 0.96 in the best case—LWI index for
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moisture loss and EWT for eucalyptus—These values are similar to values founded in previous works
[22,24,26,27,29,75], yet these works assessed the water content of others species.

The indexes with the lowest R? values—VARI 0.41 for EWT and EVI 0.44 for FMC and moisture
loss—could advise that the index behavior is not linear. Nonetheless, the main reason can be associated
with the dispersion of index values; the fitted model does not consider their variance. Specifically,
the indexes derived from Pinus Radiata leaves present the biggest variations, as can be appreciated
in Figure A2 and Figure A4. The variance of the index values shows that the Pinus Radiata leaves
did not dry uniformly because of their initial water content and arrangement in the trail (sets of 5 g).
Nevertheless, despite these issues, the robustness of the indexes can be inferred based on the variance
and R? value. In particular, the indexes that showed the greater R? values are LWI and DDI, DDI
achieved the greater R? value. Therefore, the behavior of spectral indexes and linear regression advise
that the most suitable index to assess the water content in acicular leaves (Pinus Radiata leaves) is DDL

Regarding to Eucalyptus Globulus leaves, the linear relationship between water content (moisture
loss, FMC, and EWT)) and spectral indexes is more evident for this specie, reaching an R? value of
0.96, see Figure A1, A3 and A5. Moreover, the distribution of index values is narrower than the values
obtained for Pinus Radiata. This suggest that the samples arrangement (see Figure 3) and drying
process performed better than for non acicular leaves.

For both species (Eucalyptus Globulus, Pinus Radiata), the initial conditions of leaves can explain
the index values dispersion. When the leaves were taken, it was assumed that all leaves samples
had the same water status. Nevertheless, this is not always the case since the samples were taken
randomly from several branches on different locations and environmental conditions (the only
constraint considered was the absence of rain at least 24 h before taking the samples). Thus, the
initial water status for the samples was not all the same. Then, at each dehydration stage, the leaves
samples did not dry at the same level. On the other side, it is to be noted that we have not performed
yet a correlation between the geographical location of the samples, the climate conditions, water status
(FMC, EWT) and the eighteen vegetation indexes obtained.

In brief, despite the index values dispersion issue, results showed that water status in leaves can
be assessed in different dehydration stages by the reflectance of leaves.

5. Conclusions

This work has shown the results of analyzing the spectral signature (at different dehydration
levels) of the two most prevalent species in Valparaiso region, Chile, within the research project
Understanding Wildfire Hazards Posed by Ignition in Continuous and Discontinuous Configurations, funded
by CONICYT (the Chilean National Science Foundation), as an attempt to understand wildfire risks.
The two species studied were Eucalyptus Globulus and Pinus Radiata, which represent the 97.5% of the
vegetation. The samples were randomly collected from different locations and eighteen vegetation
indexes—namely: WBI, MSI, MSI1, MSI2, TM5/TM7, WI, fWBI, LWI, SRWI, SRWI1, SRWI2, NDII,
NDWI1, NDW1I2, SIWSI, DDI, VARI, and EVI—were determined. We found that such indexes behave
linearly under moisture loss and fuel moisture content estimation. In particular, LWI and DDI
index have performed the best linear behavior for each species (Eucalyptus Globulus, Pinus Radiata),
respectively. LWI reach an R? = 0.96 in all water status characterizations (moisture, FMC, and EWT),
and DDI achieved a R? = 0.90 for moisture loss and R? = 0.89 for FMC. Moreover, these indexes
showed the lowest dispersion. Therefore, the assessment of wildfire risk behavior can be further
enhanced by the behavior of each spectral index showed in the present work and can be extended to
other research fields, such as agriculture.
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Appendix A. Linear Regression Fitting of Indexes
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Figure A1. Linear regression of the moisture loss and the vegetation indexes for the Eucalyptus Globulus.
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