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Differential gene expression profiles for detecting disease genes have been studied intensively in systems
biology. However, it is known that various biological functions achieved by proteins follow from the ability
of the protein to form complexes by physically binding to each other. In other words, the functional units are
often protein complexes rather than individual proteins. Thus, we seek to replace the perspective of
disease-related genes by disease-related complexes, exemplifying with data on 39 human solid tissue cancers
and their original normal tissues. To obtain the differential abundance levels of protein complexes, we apply
an optimization algorithm to genome-wide differential expression data. From the differential abundance of
complexes, we extract tissue- and cancer-selective complexes, and investigate their relevance to cancer. The
method is supported by a clustering tendency of bipartite cancer-complex relationships, as well as a more
concrete and realistic approach to disease-related proteomics.

G
enome sequencing can, at least in an idealized world, list the repertoire of what a cell could possibly do;
expression profiling, on the other hand, reflects what the cell actually is doing. Selective or differential
gene expression profiles in specific cells, therefore, add valuable contextual information. It is quite natural

to connect the differential gene expression profiles to disease states, whether they are genetic diseases or not. An
overwhelming number of studies in this vein have been published: e.g., Refs. 1–6 to name just a few. Essentially all
of these approaches make the assumption that genes are the units of biological functionality.

Even if the assumption cannot be denied, it has recently been pointed out that the relationships among
proteins, not just properties of individual proteins, are essential ingredients in characterizing the entity of
biological functions. The relationships can be binary protein-protein interactions (PPIs)7–10 or formation of stable
structural and functional units called protein complexes11–15. Proteins tend to function as members of complexes,
and dysfunctions of different proteins in the same complex generally lead to similar disorders. Research has been
conducted trying to identify disease-associated protein-protein interactions, signaling pathways and protein
complexes by the integrated computational analysis of heterogeneous data sources16–22.

Human diseases usually occur in one or more specific tissues and organs, while different types of organs and
tissues make use of selective sets of expressed genes, protein-protein interactions and protein complexes23. Genes
predominantly expressed in one or a few biologically similar tissue types are defined as tissue-selective genes24.
Similarly, protein complexes showing significantly higher abundance levels in one or limited tissues are con-
sidered as tissue-selective complexes. Tissue-selective genes and complexes could be disease markers and poten-
tial drug targets. Although many approaches have been developed to identify tissue-selective genes and their
relationships to diseases24–29, the identification of tissue- and disease-selective complexes is still in its infancy due
to the lack of adequate coverage on experimental proteomic data, so that gene expression levels have been used
instead of protein abundance20,30,31.

In this paper, by using the optimization algorithm for estimating differential abundance levels of protein
complexes introduced in Ref. 15, we attempt to define the human tissue- and cancer-selective protein complexes.
More specifically, we use the recently released E-MTAB-62 gene expression profile dataset32 and focus on 39 solid
tissue cancers and 25 different normal tissues from some of which the cancers are originated (Table 1). From the
abundance profiles of complexes, we classify the complexes associated with cancers and tissues into four different
categories called Patterns 1–4, where the complexes over-expressed in cancers but under-expressed in originated
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normal tissues are considered as most relevant and analyzed in terms
of the bipartite relation between cancers and complexes. Finally, we
show that the correlation structures of different cancers and tissues
are preserved in our complex-based study, in comparison to the
results from individual gene expression levels.

Results
Differentially expressed protein complexes in normal tissues.
First, we present our results of the differentially expressed protein
complexes in normal tissues. For each of 25 solid tissues under study,
using the average abundance levels over all the other tissues as the
control set, we extracted over (under)-expressed complexes with a
change more than a factor two, or less than a factor 1/2 (Table S1 and
S2). A total of 106 and 209 distinct protein complexes were found
over- and under-expressed in normal tissues, respectively. See Table
S3 for the number of complexes differentially expressed in each tis-
sue. The distributions of the number of different tissues in which
complexes are over- or under-expressed are shown in Fig. 1. It can be
seen that most complexes are over- and under-expressed only in a
small number of tissues, suggesting that a large fraction of complexes

predicted by our method exhibits a high extent of tissue selectivity.
Note that the tissues are (of course) not completely independent
from one another, which may be responsible for some multiple
numbers of tissues in which complexes are differentially expressed.

In the CORUM (Comprehensive Resource of Mammalian protein
complexes33) database, which we use for our complex list, functions
of protein complexes are annotated by the Functional Catalogue
(FunCat) scheme, whose hierarchical structure allows browsing for
protein complexes with particular cellular functions or localiza-
tions33,34. However, among all the 2837 mammalian protein com-
plexes in the CORUM database, only 148 have information con-
cerning specific animal tissue of the complex. Because of this lack
of tissue-specific annotation, only 5 of the 106 over-expressed com-
plexes predicted by our method have tissue annotation. As shown in
Table 2, among the 5 complexes, 4 complexes are consistent with the
annotation, suggesting the validity of our result. For instance, ‘‘thy-
mus’’ (our predicted tissue) and ‘‘bone marrow’’ (CORUM) are com-
patible, as both of those are hot spots of T cell production and matur-
ation35. They are both considered (the only) ‘‘primary lymphoid
organs’’35.

Table 1 | List of solid cancers and their originated normal tissues. Cancers were selected from the file ‘‘E-MTAB-62.sdrf.txt’’ whose columns
‘‘Characteristics [4 meta-groups]’’ and ‘‘Characteristics [Blood/NonBlood meta-groups]’’ are ‘‘neoplasm’’ and ‘‘non blood’’, respectively.
Cancer name and its originated normal tissue are taken from ‘‘Characteristics [DiseaseState]’’ and ‘‘Characteristics [OrganismPart]’’ of the
file, respectively

Cancers Originated normal tissue

Liposarcoma, Myxoid liposarcoma adipose tissue
Bladder cancer bladder
Chondroblastoma, Chordoma, Ewings sarcoma, Osteosarcoma, Spindle cell tumor bone
Brain tumor, Ganglioneuroblastoma, Ganglioneuroma, Glioblastoma, Malignant peripheral

nerve sheath tumor, Neuroblastoma, Neurofibroma, Schwannoma
brain

Chondromyxoid fibroma, Chondrosarcoma, Dedifferentiated chondrosarcoma, Fibromatosis,
Monophasic synovial sarcoma, Sarcoma

connective tissue

Esophageal adenocarcinoma esophagus
Oral squamous cell carcinoma hypopharynx
Kidney carcinoma, Renal cell carcinoma kidney
Hepatocellular carcinoma liver
Lung cancer lung
Uterine tumor myometrium
Head and neck squamous cell carcinoma hypopharynx
Ovarian tumor ovary
Prostate cancer prostate
Acute quadriplegic myopathy skeletal muscle
Kaposi sarcoma skin
Alveolar rhabdomyo sarcoma, Embryonal rhabdomyo sarcoma, Leiomyosarcoma smooth muscle
Germ cell tumor testis
Thyroid adenocarcinoma thyroid

Figure 1 | Distributions of number of overlapped tissues for over-expressed (a) and under-expressed (b) complexes, in normal tissues. For each

over- or under-expressed complex in normal tissues, we count the number of tissues where it is over- or under-expressed and define the number as the

number of overlapped tissues.
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Differentially expressed protein complexes in solid cancers. As in
the normal tissue case, for each of 39 solid tissue cancers, using the
abundance levels in the originated normal tissue as the control set, we
extract over(under)-expressed complexes with more (less) than 2-
fold (1/2-fold) changes, respectively (Tables S4 and S5). A total
of 283 and 294 distinct complexes were identified over- and under-
expressed in the cancers, respectively. We call these complexes
cancer-associated complexes. Again, from the distributions of the
number of different cancers in which complexes are over- or
under-expressed, shown in Fig. 2, we can observe the high degree
of cancer selectivity of the complexes. The fact that several cancers
are derived from the same normal tissues seems to be responsible for
the larger number of overlapped cancers compared to the number of
overlapped normal tissues in Fig. 1, and in fact, such cancer-cancer
correlations will be presented later.

The most fundamental assumption of our approach is to treat the
complexes as a functional unit, instead of individual component
proteins. In other words, differential abundance profiles for com-
plexes are more relevant than the ones for individual genes, since
each gene may play different functional roles in different complexes,
resulting in the situation that expression levels over different contexts
are effectively ‘‘averaged out.’’ In Table 3, we compare over-expressed
protein complexes of brain tumor with their up-regulated compon-
ent genes which were shown associated with nerve system cancers in

GeneCards36. We use the t-test to test if a gene is differentially
expressed in the brain tumor and control samples. For such a large
number of genes being simultaneously tested, the FDR37 corrected p-
values are used for screening differentially expressed genes. We con-
sider genes with at least 2-fold change of log ratio for average express-
ion level and FDR at most 0.05 as up-regulated in brain tumor. It can
be seen that in complexes identified over-expressed in brain tumor
by our algorithm, only a small fraction of component genes assoc-
iated with nerve system cancers was up-regulated. Such a large dif-
ference is strong evidence supporting the fundamental assumption of
complexes’ relevance to biological functions and dysfunctions com-
pared to individual genes.

Considering that the database E-MTAB-62 we used is an integ-
ration of data generated in different laboratories, we conducted a
within-laboratory comparison on over-expressed complexes in brain
tumor to see to what extent our result is replicated across studies. The
samples of brain tumor and normal brain tissue came from 2 and 6
different laboratories, respectively. By combining brain tumor sam-
ples from one lab with normal brain samples from another lab, we got
12 different sample sets. We ran our algorithm on each sample set
and identified complexes over-expressed in brain tumor. As shown
in Figure 3, most complexes identified by our algorithm are also
identified by at least half of the sample sets. Then we ran our algo-
rithm on each of the brain tumor and normal brain tissue samples,

Table 2 | Comparison of our results with tissue information of complexes in CORUM. Boldface marks consistent results

complex name tissue information in CORUM over-expressed predicted tissue

KCNQ1 macromolecular complex muscle and heart muscle adipose tissue
bone
brain
heart
liver
smooth muscle
testis

RICH1-PAR3-aPKC polarity complex epithelium adipose tissue
hypopharynx
lymph node
skeletal muscle
skin

SMAD3-SMAD4-FOXO3-FOXG1 complex epithelium connective tissue
eye
skin
thymus
thyroid
ovary

PKC-alpha-PLD1-PLC-gamma-2 signaling complex, lacritin
stimulated

epithelium tonsil

YY1-Notch1 complex bone marrow thymus

Figure 2 | Distributions of number of overlapped cancers for over-expressed (a) and under-expressed (b) complexes, in cancers. For each over- or

under-expressed complex in cancers, we count the number of tissues where it is over- or under-expressed and define the number as the number of

overlapped cancers.
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respectively. By t-test and multiple testing corrections on the result-
ing complex abundance matrix of large samples, we identify com-
plexes statistically over-expressed in brain tumor with FDR , 0.05. A
total of 29 complexes identified over-expressed by this sample rep-
lication method are also identified by our method which used the
average of samples as input (See Figure 3). These comparisons sug-
gest the robustness of our algorithm on different data resources.

We also compare our algorithm to a gene set testing approach, the
Gene Set Enrichment Analysis (GSEA)38. Using the CORUM com-
plexes as gene sets, we conducted GSEA analysis on expression data
of brain tumor and normal brain tissue. This method identifies 227
complexes that were significantly enriched in brain tumor tissue
(FDR , 25%). As shown in Figure 3 and Table 3, 9 of the 34 com-
plexes over-expressed in brain tumor identified by our method are
also identified by GSEA. From Table 3 we see that relatively more up-
regulated genes appeared in the overlapped complexes, which is the
principle of identifying enriched gene sets by GSEA. Complexes
identified over-expressed only by our algorithm include genes
reported associated with nerve system cancers, suggesting they
may related with brain tumor. However, these complexes are not
detected by GSEA because few genes were up-regulated. This com-
parison suggests that our algorithm, which considers stoichiometry
of complexes from global point of view, could add some new
information in complex prediction.

From Figure 3 we can see that several complexes, such as Anti-
HDAC2 complex, SMN complex, EIF3 complex, CDC2-CCNA2

complex, are well identified over-expressed in brain tumor by all
the four methods, suggesting strong expression signals of these com-
plexes in brain tumor. Complexes such as CDC2-CCNA2 complex,
Anti-HDAC2 complex and WINAC complex are more obviously
associated with brain tumor due to their high fraction of component
proteins related with nerve system cancer (see Table 3). However,
from GeneCards and GoPubmed database, all the five component
proteins of SMN complex (small nuclear ribonucleoprotein B, D, E,
F, G) are not associated with nerve system cancer although they are
highly associated with neurologic manifestations and neurodegen-
erative diseases. Our computations found this complex and its five
component proteins are significantly over-expressed in brain tumor,
indicating its relationship with brain tumor. More research deserves
to be undertaken to validate such results.

Expression patterns of cancer-associated complexes in normal
tissues. For complexes differentially expressed in a cancer, we com-
pare their abundance levels in the cancer tissue with those in the
originated normal tissue, and in the other normal tissues. Speci-
fically, we mapped the differentially expressed complexes in each
cancer to each normal tissue and classified differential expressions
of these complexes according to the following four patterns:

Pattern 1: over-expressed in the cancer tissue but under-expressed in
the normal tissue

Pattern 2: over-expressed in the cancer tissue as well as in the normal
tissue

Table 3 | Comparison of protein complexes over-expressed in brain tumor and their up-regulated component genes

Complex name

Also
identified
by GSEA

Number
of genes

in complex

Percentage of
up-regulated

genes in complex

Number of genes
associated with nerve

system cancers

Percentage of up-regulated
genes in subset of genes
associated with nerve

system cancers

SMN complex, U7 snRNA specific Y 5 100% 0 -
CDC2-CCNA2 complex Y 2 50% 2 50%
VEGF transcriptional complex Y 5 40% 1 100%
Cell cycle kinase complex CDK5 Y 5 40% 5 40%
Anti-HDAC2 complex Y 17 17.65% 7 42.86%
Emerin complex 52 Y 23 17.39% 8 25%
RC complex during S-phase of cell cycle Y 13 7.69% 7 0
WINAC complex Y 14 7.14% 6 16.67%
EIF3 complex (EIF3B, EIF3G, EIF3I) Y 3 0 0 -
CAV1-VDAC1-ESR1 complex N 3 33.33% 3 33.33%
SMURF2-SMAD3-SnoN complex, TGF(beta)-dependent N 3 33.33% 2 0
VHL-TBP1-HIF1A complex N 3 33.33% 2 50%
RAF1-RAS complex, EGF induced N 4 25% 4 25%
P2X7 receptor signalling complex N 11 9.09% 5 20%
RNA polymerase II complex, chromatin structure

modifying
N 18 0 5 0

MRN-TRRAP complex (MRE11A-RAD50-NBN-TRRAP
complex)

N 4 0 2 0

PLC-gamma-1-SLP-76-SOS1-LAT complex N 4 0 2 0
PlexinA1-NRP1-SEMA3A complex N 3 0 2 0
SMARCA2/BRM-BAF57-MECP2 complex N 3 0 2 0
TRAP complex N 15 0 2 0
APP-TIMM23 complex N 2 0 1 0
BCL6-HDAC7 complex N 2 0 1 0
DNA polymerase alpha-primase complex N 4 0 1 0
MCM8-ORC2-CDC6 complex N 2 0 1 0
RICH1-PAR3-aPKC polarity complex N 3 0 1 0
APLG1-Rababtin5 complex N 3 0 0 0
BLM-TOP3A complex N 2 0 0 -
CTF18-CTF8-DCC1-RFC3 complex N 2 0 0 -
FEN1-9-1-1 complex N 4 0 0 -
Kinase-scaffold-phosphatase complex, PKA-AKAP79-CaN N 3 0 0 -
PPP4C-PPP4R2-Gemin3-Gemin4 complex N 3 0 0 -
Retrotranslocation complex N 2 0 0 -
RFC2-RIalpha complex N 2 0 0 -
TRAP-SMCC mediator complex N 7 0 0 -

www.nature.com/scientificreports
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Pattern 3: under-expressed in the cancer tissue but over-expressed in
the normal tissue

Pattern 4: under-expressed in the cancer tissue as well as in the
normal tissue

For each cancer, we count the number of complexes in each tissue
of different Patterns (see Table S6). Then for each cancer, we list the
number of complexes in the tissue from which it originated, along
with the largest number of complexes among the other tissue other
than its originated tissue, classified as the different Patterns (see

Table S7). Figure 4 shows the distribution of the four differential
expression patterns of cancer-associated complexes in their origi-
nated normal tissues. It can be seen that the dominant expression
patterns are Patterns 1 (57.2%) and 3 (27.1%), whereas Patterns 2 and
4 complexes in originated normal tissues (1.15% and 3.87%) are
minorities. In Table S7, we list the comparison of the four patterns
in cancers’ originated normal tissues with those in the other normal
tissue with the maximum number of cancer-associated complexes.
Table S7 shows that, compared with those in the other normal tis-
sues, Pattern 1 complexes in originated normal tissues are much
more numerous (57.2% vs. 22.6%); Pattern 2 and 4 complexes in
originated normal tissues are much fewer (1.15% vs. 17.5% for
Pattern 2; and 3.87% vs. 22.94% for Pattern 4); and Pattern 3 com-
plexes has no significant difference (27.1% vs. 26.9%). Moreover, by
the t-test, the expressions of Pattern 3 complexes in originated nor-
mal tissues have no significant difference from those in other normal
tissues; whereas the expressions of Pattern 1, 2 and 4 complexes
are significantly different from those in the other normal tissues,
respectively.

From these observations, we can conclude that solid cancers tend
to over-express complexes that are under-expressed in the normal
tissues of the cancers’ origin (Pattern 1). In other words, complexes
that are not supposed to be expressed in a specific tissue but are over-
expressed in this tissue can be related to cancers. Furthermore, solid
cancers could over-express (or under-express) part of complexes that
are over-expressed (or under-expressed) in normal tissues other than
the cancer’s tissue of origin (Patterns 2 and 4). These patterns could
complement earlier findings on single gene expression pattern in
cancers. For example, it was reported that genes over-expressed in
human leukemias were rarely over-expressed in hematopoietic tis-
sues39. Generally, cancers over-express only a fairly small part of
genes that are selectively expressed in their originated tissues25. On
the other hand, under-expressed complexes in cancers do not have
statistically significant tendency to be over-expressed in the origi-
nated normal tissues (Pattern 3), which can be interpreted to mean

Figure 3 | Cross-validation of complexes over-expressed in brain tumor identified by our method by within-laboratory comparison, sample replication
method and GSEA.

Figure 4 | Differentially expressed complexes in cancers and originated
normal tissues. Log-ratio of abundance in cancers (vertical axis) are

defined with respect to the originated normal tissues, and that in normal

tissues (horizontal axis) are defined with respect to all the other normal

tissues. The log-ratio values in the ‘‘normal’’ range (–1, 1) are excluded for

both cancers and normal tissues. Four different patterns are noted

according to their differential abundance levels in cancers and their

originated tissues.

www.nature.com/scientificreports
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that the lack of necessary complexes does not tend to cause cancers, in
contrast to the existence of unnecessary complexes in Pattern 1.

It is known that one form of cancer can affect many tissues, not
only the tissue from which it originated. The expression patterns of
cancer-associated complexes may indicate the cancer-tissue rela-
tions. One interesting way to verify the cancer-tissue relations from
an external source is to use the Web search engine40. Our basic
assumption is that the more Web pages Google finds from the search
query with ‘[cancer name][tissue name] ’, the more probably the
tissue is related to the cancer. We measure cancer-tissue ‘‘Google
correlation’’ (‘Google page’ column in Table S6). For a specific cancer
A, most Google correlation values for ‘[cancer A][originated tissue of
cancer A]’ pair are ranked on the top among all the ‘[cancer A][tissue
name].’ More precisely, 14 of the 39 cancers have the largest number
of Google correlation value with their originated tissues. This result
validates our assumption. In addition, from Table S6, for each cancer,
we calculated the Pearson correlation coefficient between columns
‘Google pages’ and column ‘Patterns 1–4,’ as shown in Table S8.

The statistical significance test suggested that cancer-associated
complexes are expressed according to Patterns 1, 2 or 4. Thus, we
took the maximum values of Pearson correlation coefficient for
Patterns 1, 2, and 4, and show them in the last column of Table S8.
Most (about 3/4) of the Pearson correlation coefficients in the last
column are positive, suggesting a positive correlation between can-
cer-tissues relations from Google correlation and those from the
number of cancer-associated complexes with differential abundance
levels.

Bipartite complex-cancer relations and common complexes
associated with the same cluster of cancers. The previous subsec-
tion suggests that most cancer-associated complexes are Pattern 1
complexes in the originated normal tissues, i.e., over-expressed in the
cancer tissue but under-expressed in the originated normal tissue.
Thus we focus on these Pattern 1 complexes, and investigate the
bipartite network between cancers and Pattern 1 complexes in

cancer tissues. We constructed a bipartite network between cancers
and Pattern 1 complexes, in which a cancer node is connected to a
complex node if and only if this complex is a Pattern 1 complex of
this cancer. In the bipartite network, we measured the topological
similarity of the vertices according to the following Jaccard similarity
index:

J(u,v)~
Nu\Nvj j
Nu|Nvj j ,

where Nu is the set of neighbors of node u. Then Ward’s clustering, a
hierarchically agglomerative clustering method, was used to cluster
the nodes in the network41. The hierarchical clustering starts off with
each node being its own cluster and the distance between nodes u and
v is defined as d(u, v) 5 1 2 J(u, v). At each step, pair of clusters (u, v)
with the smallest distance d(u, v) is selected to be merged as a single
cluster and distance measures between clusters are updated as the
weighted sum of distances according to the Lance-Williams algori-
thm42, and the process is repeated until all nodes have been combined
into one cluster, represented as a dendrogram with a hierarchical
structure. In our case, d(u, v) 5 2 is used as the threshold for cut-
ting the hierarchical tree to yield the clustering structure. Figure 5
shows that some cancers are clustered because of their common over-
expressed complexes, and also some complexes are clustered together.

We classify the 39 cancers under study into six categories accord-
ing to Medical Subject Headings (MeSH43) annotation of their origi-
nated tissue categories: nerve tissue neoplasm, connective and soft
tissue neoplasm, head and neck neoplasm, urogenital tissue neo-
plasm, digestive system neoplasm, and respiratory tract neoplasm.
Biologically, cancers originated from same tissue should be corre-
lated to some extent. In Table 4, we list the cluster indexes of the
cancers in Figure 5 and their originated tissues. It can be seen that
cancers originated from the same tissue category are clustered
together. Figure 5 shows that cancers in the clusters 4, 5, 6 tend to
link with complexes in clusters 10, 20 and 18 respectively, suggesting

Figure 5 | Bipartite network of cancers and protein complexes of Pattern 1. Triangles (circles) represent cancers (complexes), respectively. The numbers

(and corresponding colors) on vertices show the clustering structure defined with the Jaccard similarity index (see the text).

www.nature.com/scientificreports
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the association of these complex groups with nerve tissue cancers
(cluster 4) and connective tissue cancers (cluster 5 and 6) respect-
ively. To verify the correlation of the complexes in cluster 10 with
nerve tissue cancers (cluster 4), we searched GoPubMed44 with com-
plex names or gene names of the complex component proteins (in
January of 2012) and listed the results in Table 5. A total of 13 of the
17 complexes show rank 1 association with cancers compared with
all diseases, implying the important functions of these complexes in
the occurrence or development of cancers. The associations of most
complexes with nerve system diseases and nerve system cancers rank
on the top of ‘‘All of Diseases’’ (more than 20 disease items) and
‘‘Neoplasms by Site’’ (more than 10 cancer tissue items) lists, respect-
ively, demonstrating a high degree of correlation of complexes in
cluster 10 with nerve system cancers. Moreover, proteins in some
complexes such as cell cycle kinase complex CDK5, SMARCA2/
BRM-BAF57-MECP2 complex and SMARCA2/BRM-BAF57-MEC-
P2 complex have been extensively reported to be associated with eye
cancer retinoblastoma, specifically implying the functions of these
complexes in nerve systems cancers. In addition, 5 complexes in
Table 5, CDC2-CCNA2 complex, Cell cycle kinase complex CDK5,
Anti-HDAC2 complex, Emerin complex 52 and WINAC complex,
are also identified over-expressed in brain tumor by GSEA (see
Table 3), which cross-validates the correlation of these complexes
with nerve system cancer. Similarly, the associations of complexes in
cluster 20 with connective tissue cancers were shown in Table S9.

Cancer-cancer correlations deduced from gene expression and
complex abundance profiles. From our results, we see that many
complexes predicted by our algorithm are important biological
modules involved in the occurrence and development of solid
cancers, and these modules suggest correlations of cancers to some
extent. To verify if the predicted complexes could reflect the
relationships between different cancers as the original gene
expression data do, we hierarchically clustered the gene expression
profile and complex abundance profile of all cancers and normal
tissues under study, respectively. Similarity between groups is
defined as the mean Pearson correlation coefficient between the
sample profiles (hierarchical clustering trees in Figs. S1 and S2).
Three large tissue categories include more cancers—soft tissue,
nerve tissue and urogenital tissue are clustered together in both
cases; i.e. both clustering results show the correlations of cancers
and normal tissues of similar tissue categories.

Similarly, according to the relative gene expression level and com-
plex abundance of the cancers against their originated normal tissues
by log-ratio values, we hierarchically clustered the cancers, respect-
ively (Figs. 6 and 7). Figure 7 shows the heatmap of hierarchical
clustering of the 39 cancers compared to each other, according to
relative complex abundance of cancer against its originated normal
tissue. Similar to the heatmap in Fig. 6, the clusters of cancers in Fig. 7
are mostly consistent with their tissue categories. We partitioned the
cancers into 4 clusters according to the hierarchical trees in Figs. 6

Table 4 | Cancers classified by categories of their originated tissues and topology of the cancer-complex association network in Fig. 4

cluster index cancer originated tissue

1 acute quadriplegic myopathy connective and soft tissue
thyroid adenocarcinoma head and neck
germ cell tumor urogenital tissue
uterine tumor urogenital tissue

2 alveolar rhabdomyo sarcoma connective and soft tissue
embryonal rhabdomyo sarcoma connective and soft tissue
leiomyosarcoma connective and soft tissue

3 Hepatocellular carcinoma digestive system
esophageal adenocarcinoma head and neck
lung cancer respiratory tract
bladder cancer urogenital tissue
ovarian tumor urogenital tissue

4 brain tumor nerve tissue
ganglioneuroblastoma nerve tissue
ganglioneuroma nerve tissue
glioblastoma nerve tissue
malignant peripheral nerve sheath tumor nerve tissue
neuroblastoma nerve tissue
neurofibroma nerve tissue
schwannoma nerve tissue

5 chondroblastoma connective and soft tissue
chordoma connective and soft tissue
ewings sarcoma connective and soft tissue
osteosarcoma connective and soft tissue
spindle cell tumor connective and soft tissue

6 chondromyxoid fibroma connective and soft tissue
chondrosarcoma connective and soft tissue
dedifferentiated chondrosarcoma connective and soft tissue
fibromatosis connective and soft tissue
monophasic synovial sarcoma connective and soft tissue
sarcoma connective and soft tissue

7 liposarcoma connective and soft tissue
myxoidliposarcoma connective and soft tissue
head and neck squamous cell carcinoma head and neck
oral squamous cell carcinoma head and neck

8 Kaposi sarcoma connective and soft tissue
kidney carcinoma urogenital tissue
renal cell carcinoma urogenital tissue
prostate cancer urogenital tissue
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and 7, respectively. Then we applied overlap score to quantity the
similarity between the two partitions of cancers respectively gener-
ated from gene expression and protein complex profiles45,46 and got
the value of overlap score as 0.72. We then generated 200 pairs of
random clusters of the cancers, in which the cluster sizes are the same
as in the real data. The average overlap score of the random ensemble
was calculated as 0.24, while the z-score46 for the overlap score of the
two real partitions was 8.15, suggesting a fairly high extent of overlap
between the two partitions of cancers with statistical significance.
These results suggest that our predictions of complexes extract can-
cer modules from the expression data while not changing the inherent
correlations of the data. Therefore, we can see that they reflect the
intrinsic relationships among different cancers.

Discussion
Studies on the differential gene expression levels have added signifi-
cant values to the genome-wide analyses having focused on genome

sequencing, due to their condition-dependent dynamic nature. In
other words, they indicate how the biological functions are phenom-
enologically realized for given ‘‘blueprints’’ of genome sequences and
different environments. Our method can successfully identify can-
cer-associated complexes. We believe that it, from the assumption
that protein complexes are real biological functional units, leads us to
one step closer to biological reality.

Our optimization procedure is based on linear programming
(polynomial in computational time), implying that our method is
feasible for future, larger studies. The method, as we apply it in this
paper, rests on the assumption that expression levels are strongly
correlated to protein abundance. Although signals from Affymetrix
arrays used in our data sets can differ from the absolute protein
abundance, considering the dataset’s broad coverage in terms of both
cancers and various tissues, this study provides a novel approach that
can be adopted by other researchers who are possibly in possession of
better datasets currently or in the future, we believe. Moreover, the

Table 5 | GoPubMed search results for the associations of complexes in cluster 10 with nerve tissue cancer. (Complexes with higher
specificity are shown in the boldface.) Disease hits: number of PubMed papers indicating the association of searched item with diseases;
neoplasms hits/rank: number of PubMed papers indicating the association of searched item with cancers and the rank of paper numbers in
‘‘All of Diseases’’ item of GoPubMed results. Association with nerve tissue cancer: number of PubMed papers indicating the association of
searched item with nerve system diseases (box in the first row) and nerve system cancers (box in the second row) and the rank of paper
numbers in ‘‘All of Diseases’’ and ‘‘Neoplasms by Site,’’ respectively

complex name item searched disease hits
neoplasms
hits/rank

association with Nerve tissue cancer

disease hits/rank

Cell cycle kinase complex CDK5 CCND1 10111 8862/1 Retinoblastoma 983/3
Nervous system neoplasms 204/9

RICH1-PAR3-aPKC polarity complex PARD3 49 20/1 Nervous system diseases 12/2
Nervous system neoplasms 1/4

Emerin complex 52 Emerin 305 25/9 Nervous system diseases 250/2
Nervous system neoplasms 1/7

BCL6-HDAC7 complex BCL6 758 684/1 Nervous system diseases 30/13
Nervous sys neoplasms 15/5

Anti-HDAC2 complex HDACs 1047 641/1 Nervous system diseases 126/5
Nervous sys neoplasms 7/9

RNA polymerase II complex, chro structure modifying RNA polymerase
II complex

1529 568/2 Nervous system diseases 193/7
Nervous sys neoplasms 13/7

SMARCA2/BRM-BAF57-MECP2 complex SMARCA2 112 81/1 Retinoblastoma 13/2
Eye neoplasm 13/1

CDC2-CCNA2 complex CDC2 3777 2581/1 Eye diseases 464/4
Eye neoplasm 444/1

CCNA2 270 207/1 Eye diseases 25/4
Eye neoplasm 22/4

CAV1-VDAC1-ESR1 complex VDAC1 99 45/1 Nervous sys diseases 31/2
Neuroblastoma 5/2

CAV1 880 382/1 Nervous sys diseases 143/3
Nervous system neoplasms 12/7

TGF-beta receptor II-TGF-beta3 complex TGFB3 874 259/1 Nervous system diseases 89/11
Nervous system neoplasms 9/8

Retrotranslocation complex GEMIN4 26 9/2 Nervous sys diseases 15/1
SYVN1 36 8/5 Nervous sys diseases 9/5

TRAP complex Mediator
complex

2518 805/1 Nervous system diseases 397/4
Nervous system neoplasms 20/6

RAF1-RAS complex, EGF induced RAF1 271 174/1 Nervous system diseases 44/6
Nervous system neoplasms 8/5

Ras 31223 22723 Nervous system diseases 2166/12
Nervous system neoplasms 881/8

APLG1-Rababtin5 complex Rab effec protein 141 38/1 Nervous sys diseases 19/5
WINAC complex SMARCA2 112 81/1 Nervous system diseases 11/8

Retinoblastoma 13/1
SMARCA4 219 155/1 Eye diseases 20/7

Retinoblastoma 17/2
SMARCB1 291 282/1 Nervous system diseases 121/2

Nervous system neoplasms 116/1
SNARE complex (STX11, VAMP2, SNAP23) VAMP2 204 29/4 Nervous system diseases 41/3
MCM8-ORC2-CDC6 complex CDC6 208 104/1 Eye diseases 13/8

Retinoblastoma 12/2
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advantage of protein-complex-based approaches, other than the
identification of cancer-specific complexes, could be investigated
further in the future.

Methods
Gene expression dataset. For gene expression data, we use recently released E-MTAB-
62 in the Array Express repository32. It is an integration of 206 different experiments
and 5372 samples generated in 163 different laboratories, including 369 different cell
and normal tissue types, diseases, and cell lines. The most important aspect of this
dataset is that all the data are from the same platform, pass data quality checks and get
normalized so that we can compare the expression levels across different cancers/tissues.
CEL files of samples that did not pass quality checks were removed. The retaining 5372
CEL files were normalized by Robust Multi-array Average (RMA) method, i.e., the raw
intensity values were background corrected, log2 transformed and then quantile
normalized47. In this work, we studied 39 solid tissue cancers (708 samples) and 25
normal solid tissue types (440 samples), in which 18 normal tissue types were where
these cancers originated and thus were used as control sets (see Table 1).

Protein complex dataset. For the list of human protein complexes, we use the
Comprehensive Resource of Mammalian protein complexes (CORUM) database33,

where 1343 complexes and 2315 component proteins (the expression profiles of 2064
of these 2315 proteins are listed in E-MTAB-62 data) are listed in total as a core data.
Among the core data, 1338 complexes, at least one of component proteins of which is
assigned with the expression profile in E-MTAB-62 data, are used in our analysis.

Estimation of abundance levels of complexes based on optimization. The detailed
background and procedure of our optimization algorithm is described in Ref. 15.
Assume that the copy number of protein i (i~1,:::,N ; N is the number of proteins)
and the number of complex j (j~1,:::,M; where M is the number of complexes) are
given by Pi and cj, respectively. Also, suppose that we denote the number of protein i
in the complex jas Sij, where Sij 5 0 if the complex j does not include the protein i as its
component. In the ideal situation where all the proteins in a cell are of the exact
amount to be used in forming a complex, the variable sets fpig andfcjg satisfy

pi~
XM

j~1

Sijcj ð1Þ

The question is how to determine fcjg (variables) with known values of fpig
andfSijg (constants). However, since the number of proteins N is usually larger than
the number of complexes M, the set of linear equations above is over-determined, so in
general it is not possible to satisfy all the equations in Eq. (1). In reality, therefore, the

Figure 6 | Heat map and hierarchical clustering of 39 cancers. Similarity between cancers is defined as the Pearson correlation coefficient between the

log-ratio expression profiles of genes that cancers contain.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 3 : 1583 | DOI: 10.1038/srep01583 9



number of proteins in a cell should be greater than or equal to that necessary to form

complexes, i.e., pi§
XM

j~1

Sijcj , which is the basic constraint of our optimization

scheme. Instead of finding an exact solution satisfying Eq. (1), we try to minimize the
deviation from the ideal situation in Eq. (1), given by the object function

DA~
XN

i~1

1{
XM

j~1

Sijcj
� �

=pi

" #
ð2Þ

where the summation is only for indices i where Pi . 0. Now, for the given values of Pi

and fSijg, our basic strategy is to determine cj values that minimize DA in Eq. (2), and
this problem is numerically solved by the linear programming (LP) technique.
Moreover, after the determination of cj values, if some values of Pi are unknown, we
can assign those values of Pi using Eq. (1) for the ideal situation. This optimization is
based on an assumption that organisms have been evolved in a way that increases
efficiency by reducing wasted resources.

In this work, the average expression level of gene encoding protein i is used as the
Pi-value33 and the composition matrix Sij is approximated by the binary value (5 1 if
protein i is included in complex j, 0 otherwise). Ideally, it is more realistic to estimate
protein complex levels from protein abundance as mRNA expression level cannot

completely represent the true protein abundance. However, although several large
proteomics data sets are available48,49, currently there are no equally rich genome-wide
protein abundance data sets for tumor versus normal tissue samples. Several studies
have found mRNA and protein expression levels to be well correlated50,51. It is
reported that approximately 40% of the variation in mammalian protein abundance is
explained by mRNA levels51. It is known that signals from Affymetrix arrays used in
our data sets can differ from the absolute protein abundance. However, our method
does not, strictly speaking, need to use absolute abundances - it is sufficient that the
relative abundances are accurately measured, since all the objective functions and
constraints in our linear programming (LP) optimization are strictly linear by def-
inition. Therefore, the direct usage of gene expression levels as protein abundance is
not free from errors, but it could yield reasonable results.

Identification of differentially expressed complexes in cancers and normal tissues.
For each cancer or tissue case, individual genes’ expression profiles are averaged over
different samples in the E-MTAB-62 dataset, and the set is used as the input data of
fpig set. Our optimization procedure minimizing Eq. (2) will yield the fcjg set, i.e.,
complexes’ abundance levels for the cancer or tissue. Then the abundance levels of all
complexes in different cancers are compared with the abundance levels in the
corresponding normal tissue in which these cancers originated; while the abundance

Figure 7 | Heat map and hierarchical clustering of 39 cancers. Similarity between cancers is defined as the Pearson correlation coefficient between the

log-ratio abundance profiles of complexes that cancers contain.
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levels of all complexes in different normal tissues are compared with the average
abundance levels in all the other normal tissues. Over-expression(under-expression)
of a complex is defined as at least 2-fold (at most 1/2-fold) change of abundance level.

Overlap score. We use overlap score to measure the overlap extent of cancer clusters
respectively generated from gene expression and protein complex profiles45,46.
Consider two different categories A and B (for example, two partitions of cancers got
by different clustering methods) and assume each cancer is associated with a subset
(cluster) of the partitions of A and B. Let wA(i) and wB(j) denote the fraction of cancers
in cluster igA and jgB (i 5 1,2,…, m; j 5 1,2,…, n), respectively. Let wAB(i,j) denote
the joint frequency of i and j, i.e., the fraction of cancers that are partitioned in both
cluster i g A and j g B. In a random distribution of clusters the expectation value of
wAB(i, j)is wA(i)wB(j). If the clusters of differ partitions are overlapping, some wAB(i,j),
the ones that overlap, will be larger than wA(i)wB(j), while for the others, wAB(i,j) will
be smaller than wA(i)wB(j). Thus, the overlapping of clusters in partitions A and B can
be quantitatively measured by:

mAB~
Xm

i~1

Xn

j~1

wAB i,jð Þ{wA ið ÞwB jð Þj j ð3Þ

Since the value of m is affected by finite sizes, it is hard to judge if a m-value indicates a
good or bad overlap. Therefore, we normalize the m-value against those of the perfect
overlaps and define overlap score of partitions A and B as follows:

nAB~
mAB

max mAA, mBB

� � ð4Þ

The value of v is between 0 and 1, and it is 1 for perfect matches.
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