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Nowadays, diabetes and obesity are two main health-threatening metabolic disorders in
the world, which increase the risk for many chronic diseases. Apelin, a peptide hormone,
exerts its effect by binding with angiotensin II protein J receptor (APJ) and is considered to
be linked with diabetes and obesity. Apelin and its receptor are widely present in the body
and are involved in many physiological processes, such as glucose and lipid metabolism,
homeostasis, endocrine response to stress, and angiogenesis. In this review, we
summarize the literatures on the role of the Apelin–APJ system in diabetes and obesity
for a better understanding of the mechanism and function of apelin and its receptor in the
pathophysiology of diseases that may contribute to the development of new therapies.
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1 INTRODUCTION

The prevalence of metabolic disorders is increasing worldwide in recent years. Diabetes and obesity
are two of the most common health-threatening metabolic disorders. It is reported that there are 3.7
million and 2.5 million people who die every year globally due to type 2 diabetes mellitus and
obesity, respectively. Metabolic disorders contribute to the development of insulin resistance,
obesity, cardiovascular complications, and, eventually, multi-organ dysfunction (1). Diabetes is a
state of hyperglycemia and is characterized by insulin resistance and/or insulin secretion
dysfunction. Sustained hyperglycemia and insulin hyposensitivity lead to the dysfunction of
various tissues and organs. Obesity is an important risk factor that contributes to the
development of type 2 diabetes by dysregulating several metabolic and adipose tissue-derived
factors. Adipose tissues secrete adipokines, which are involved in glucose and lipid metabolism,
neuroendocrine function, insulin sensitivity, and other physiological processes. Therefore, an
effective and novel therapeutic recommendation is needed to curb the incidence, morbidity, and
mortality caused by metabolic diseases.

Apelin is a regulatory peptide as well as a ligand for G-protein-coupled receptor (APJ). It is
widely present in the body, including in peripheral tissues and the central nervous system. There is a
growing interest on the apelin–APJ system during the past decade due to its potential role in several
physiological processes, such as homeostasis, body fluid management, cell proliferation, and energy
metabolism (2–4). Apelin is produced and secreted by adipocytes; hence, it is called adipokine.
Several studies have reported that the increased plasma apelin is related to metabolic pathologies.
Evidences are in favor of the regulatory role of the apelin–APJ system in glucose and lipid
n.org March 2022 | Volume 13 | Article 8200021
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metabolism. The present review summarizes the current
knowledge and literatures on the regulatory role of apelin, with
emphasis on the regulation of glucose and lipid metabolism, that
may provide novel therapeutic targets.
2 APELIN–APJ RECEPTOR SYSTEM
DISCOVERY AND DEVELOPMENT

2.1 Apelin and Its Receptor APJ
In 1993, O’Dowd et al. isolated a special human G protein-
coupled receptor and named it “APJ”. It contains 380 amino
acids and shares 54% sequence with the human angiotensin II
receptor type 1 in the transmembrane (5). Subsequently, APJ
receptor was also isolated in amphibians and rodents (6, 7). The
APJ gene is located on chromosome 11 (11q12) without any
intron in the coding region. However, angiotensin II does not
interact with APJ receptor, and there was no APJ ligand
identified until 1998, when apelin, a APJ endogenous ligand,
was isolated by Tatemoto et al. from the bovine stomach (8). The
apelin gene is located on Xq25-q26.3 chromosome. It encodes a
77-amino-acid prepropeptide that contains a secretory signal
sequence and can be cleaved into different active forms such as
apelin-36, apelin-17, apelin-13, and apelin-12 (8) (Figure 1A).
Apelin-36 is the most widely expressed form, while apelin-13 is
more potent and more abundant in the circulation (9). It has
been demonstrated that there is a high sequence homology
among human, bovine, and rodent preproapelin, particularly
the last 22 C-terminal amino acids (8, 10). All isoforms of apelin
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could bind to APJ, but they have a different biological potency.
Different organs have different apelin isoforms.

Apelin and APJ are widely expressed in many tissues and
organs, including the brain, heart, lung, liver, kidney,
gastrointestinal tract, endothelium and adipose tissues (11).
Apelin-12 possesses a high affinity for APJ receptor, with
cardioprotective properties of increasing the myocardial
contractility and reducing the mean arterial pressure (12).
Apelin-13 is the main neuroprotective peptide, with the
highest abundancy in the plasma (13, 14). Previous research
reported that apelin-13 participates in vasculopathy, energy
metabolism, and humoral homeostasis (13, 15, 16). There was
also a study that discovered the downregulation of apelin-13 in
aging. The knockout of apelin-13 and APJ gene could accelerate
aging in a mouse model, while the upregulation of apelin-13
restores vitality, a response to the stimuli and circadian rhythm
(17). Glutamine cyclase can catalyze the translated N-terminal
glutamine residues of apelin-13 to modify pyroglutamidation
and produce the pyroglutamide form of apelin-13, called [pyr1]-
apelin-13. It can prevent apelin-13 from degradation by
exopeptidase and exert long-term biological effects (4).
Therefore, [pyr1]-apelin-13 is considered a physiological ligand
for APJ due to its higher anti-degradation properties (18).
Apelin-17 was found to be the most potent inducer of APJ
internalization, and the removal of a single amino acid at the
C-terminus can abolish this process (19). Apelin-36 is mainly
expressed in the lung, testis, and uterus (20). Apelin-13 and
apelin-36 have been considered the most active isoforms with the
greatest effect on the cardiovascular system (21). Apelin-13 and
apelin-36 have different intracellular trafficking of APJ due to
A B

FIGURE 1 | (A) Different forms of apelin. The proteolysis of preproapelin at specific cleavage sites (double-headed arrows, black) leads to three fragments of 36, 17,
and 13 amino acids named apelin-36, apelin-17, and apelin-13, respectively. The N-terminal glutamine residue of apelin-13 is pyroglutamylated, which produces the
pyroglutamyl form of apelin-13 ([Pyr1]-apelin-13). (B) The proteolysis of proelabela at specific cleavage sites (double-headed arrows, black) leads to four fragments of
32, 22, 21, and 11 amino acids named elabela-32, elabela-22, elabela-21, and elabela-11, respectively.
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different receptor binding affinities. In addition, the shorter
apelin isoform seems to be the more potent activator of APJ
than apelin-36 (22). It is worth noting that APJ knockout mice
showed a disrupted cardiac development with rudimentary to
absent heart resulting in prenatal mortality (23). On the contrary,
apelin knockout mice had normal heart development (24). It
indicates that there may be other ligands for APJ.

2.2 Novel APJ Ligand—Elabela/Toddler
Apelin was considered to be the only APJ ligand until 2013, when
two different research groups discovered a second endogenous
ligand for the apelin receptor in zebrafish (Danio rerio) during
embryonic development, and it was named Elabela (“epiboly late
because endoderm late”) byChnget al. andToddler (referring to the
loss ofmotogenpropertieswhendeleted) andbyPauli et al. (25, 26).
Subsequently, the cDNA encoding Elabela was discovered in
vertebrates and mammals (27). Recently, Elabela was found to be
restrictedly expressed in human pluripotent stem cells and renal
tissues. Elabela is a peptide of 54 amino acids with a secretory signal
containing 32 amino acids (25) (Figure 1B). This precursor is
cleaved to shorter sequences of 32, 21, and 11 amino acids (28)
(Figure1B), and all these short sequences can activateAPJ aswell as
can be blocked by apelin receptor antagonists.

The discovery of this new ligand created several exciting
possibilities. Evidences revealed the role of Elabela in
homeostasis, cell signaling, energy metabolism, and cell aging.
Serum Elabela is associated with several diseases, such as diabetes
(29), myocardial infarction (30), hypertension (31), and kidney
disease (32). Notably, Elabela level is also related to the prognosis
of these diseases. It is reported that Elabela can ameliorate
apoptosis via regulating the mitochondrial function (33).
Recently, Elabela has been demonstrated to decrease kidney
injury (34), and serum Elabela level in type 2 diabetes patients
is closely related to the severity of renal injury (35). In addition,
Elabela has been reported to improve endothelial cell function
via the PI3K/Akt signaling pathway (36). Some literatures also
showed that Elabela is a potent regulator of adipose cell
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metabolism. However, the effect of Elabela is still unclear, and
further studies are required to clarify its role and significance.
3 EFFECT OF APELIN–APJ SYSTEM
ON DIABETES

Nowadays, apelin is believed to assist in regulating glucose
metabolism, and the apelin–APJ system has been demonstrated
to be related with diabetes mellitus and diabetic complications.
Apelin stimulates glucose uptake, increases insulin sensitivity, and
regulates lipolysis and fatty acid oxidation (Figure 2). Diabetes-
related diseases can be improved by apelin administration.
Therefore, the apelin–APJ system is a potential therapeutic target
in diabetes and its complications.

3.1 Apelin and Glucose Metabolism
Apelin is predominantly expressed in the beta and alpha cells of
pancreatic islets, and APJ receptor is expressed in acinar cells and
pancreatic ductal cells (37). Insulin is considered the prime regulator
of apelin that stimulates its synthesis and release. Apelin is also
affected by hypoxia and adiposity. In normal and insulin-resistant
mice, apelin was noted to promote peripheral glucose uptake (38).
Exogenous apelin administration was found to enhance glucose
metabolism (39). Moreover, apelin-induced glucose uptake was
also detected in isolated normal adipocytes and type 2 diabetic
adipocytes (39, 40). These results indicate that apelin might act as
an exogenous insulin sensitizer under high insulinemia.

However, in the beta cells of type 2 diabetes (T2D) db/db
mice, the apelin level was detected to be upregulated. The
administration of apelin-36 can inhibit glucose-stimulated
insulin secretion (41). It is reported that apelin inhibits insulin
secretion via stimulating the degradation of cAMP due to the
activation of phosphodiesterase 3B activity, which subsequently
results in the impairment of glucose elimination (42). Sorhede et al.
found that insulin binds its receptor on adipocytes and promotes
the expression of apelin. It provides negative feedback for insulin
FIGURE 2 | Metabolic effects of apelin in diabetes and obesity.
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secretion (41). On the contrary, Gao Z et al. reported that the
administration of apelin-13 significantly reduces blood glucose
and increases serum insulin level (43). Besides these, long-term
apelin administration significantly improves pancreatic islet
mass and insulin level in diabetes (44). These effects were
related to the upregulation of PERK-IRE1a-CHOP signaling
and the deactivation of AKT, ERK, and AMPK in the pancreas
of diabetic mice (44, 45).

3.2 Apelin–APJ System and
Diabetic Complications
Apelin has a significant role in regulating insulin secretion,
oxidative stress, apoptosis, and angiogenesis; hence, it is
involved in the pathogenesis of diabetic complications (Figure 3).

3.2.1 Cardiovascular Diseases
Both cardiomyocytes and microvascular dysfunction are critical
in inducing diabetic cardiomyopathy. Apelin peptides are
considered the most potent endogenous positive inotropic
agent in the myocardium, and apelin-13, as the predominant
apelin isoform in human myocardium, has been reported to play
a crucial role in myocardial contraction, vascular relaxation,
blood pressure regulation, and insulin sensitivity (46–48).
Long-term apelin-13 administration can prevent pancreatic
beta cell loss or dysfunction in type 2 diabetic rat models and
reduce myocardial fatty acid uptake and oxidation through
Frontiers in Endocrinology | www.frontiersin.org 4
inhibiting the PPAR-a receptor (49). In addition, the
upregulation of apelin inhibits apoptosis and oxidative stress
via the PI3K and p38-MAPK pathways, resulting in protection
from ischemia–reperfusion injury in diabetic myocardium (50).

SIRT3, a member of sirtuins family, is considered an essential
transcription factor in the apelin-induced protection of diabetic
cardiomyopathy. Previous studies showed that apelin increases
SIRT3 expression, improves cardiac function, and ameliorates
diabetic cardiomyopathy. Treatment with apelin increases the
myocardial vascular density via upregulating SIRT3 (51) and
VEGF/VEGFR2 expression (52), which also ameliorates diabetic
cardiomyopathy and improves the echocardiography parameters
of cardiac function. In post-myocardial infarction diabetic mice,
the overexpression of apelin markedly upregulates SIRT3 and
angiogenic growth factor expression (51, 53). Apelin gene
therapy increases the expression of angiogenic growth factors
and angiogenesis in endothelial progenitor cells, but these effects
do not occur in SIRT3-knockout endothelial progenitor cells
(51). Moreover, apelin treatment dramatically increases
autophagy via upregulating SIRT3 and downregulating NF-kB-
p65 expression in the myocardium of STZ-induced mice (53).
Icariin has a cardioprotective effect in high-glucose-treated
cardiomyocytes via upregulating apelin and SIRT3 expression,
which can reverse diabetes-induced mitochondrial dysfunction;
however, it did not affect the activity of SIRT3 in apelin silence
samples (54). In addition, our previous research showed that
Elabela can regulate the SIRT3-mediated inhibition of oxidative
stress through Foxo3a deacetylation and prevent diabetic-
induced myocardial injury (55). These results suggest that the
apelin/SIRT3 signal pathway may be used as a novel therapeutic
strategy for diabetes-related cardiovascular diseases.

Macrovascular injury is another important aspect of diabetes-
related complications. Impairment of vascular contraction
and dilatation is the hallmark of endothelial dysfunction, which is
responsible for diabetic vascular pathophysiology. A previous
research reported that the apelin–APJ system reduces
vasodilatation and increases vasoconstriction in insulin
resistance-related disorders, such as diabetes and cardiovascular
dysfunction (56, 57). Zhong and his colleagues found that apelin
plays a crucial role in vascular tonemaintenance in diabeticmice by
counteracting the vasoconstricting action of Ang II and
potentiating the release of NO through the activation of the Akt-
eNOS phosphorylation pathway (57). There is a high expression of
apelin in the aorta of type 2 diabetes ratmodels (58). In vitro, apelin-
13 can inhibit high-glucose-induced cell proliferation, migration,
and invasion of aortic smooth muscle cells. Apelin-13 can also
effectively attenuate high-glucose-induced calcification and
dramatically suppress high-glucose-induced DNA injury through
inhibiting reactive oxygen species (59).

In children with type 1 diabetes mellitus, the serum apelin level
has a positive correlation with the carotid intima–media thickness,
which indicates that serum apelin might be used as a predicting
factor for atherosclerosis (60). However, in patients with type 2
diabetes mellitus, although the apelin level was lower in patients
with diabetic complications than in patientswithout complications,
there was no significant difference (61). In another clinical study,
FIGURE 3 | Mechanism of the apelin–APJ system in diabetes and its
complications. Apelin activates its receptor (APJ) and triggers various
signaling pathways that have a protective effect on different organs from
metabolic diseases. AMPK, AMP-mediated protein kinase; eNOS, endothelial
nitric oxide synthase; ERK1/2, extracellular-regulated kinases 1/2; FFA, free
fatty acid; Foxo3a, forkhead box protein O 3a; HSL, hormone sensitive lipase;
PI3K, phosphoinositide 3-kinase; PKC, protein kinase C; ROS, reactive
oxygen species; SIRT3, sirtuin 3.
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patients with hypertension and/or type 2 diabetes have a lower
serum apelin level, along with cardiac remodeling, and primarily
concentric left ventricle hypertrophy; moreover, there is a negative
correlation of apelin with cardiac structural parameters such as left
ventricle remodeling and left atrial size (62). Another clinical
research showed that physical training increases the apelin level,
with a reduction of low-density lipoprotein cholesterol (LDL-C)
and hsCRP levels, and insulin resistance, resulting in the decreased
progression of the carotid intima–media thickness in patients with
type 2 diabetes (63).

3.2.2 Diabetic Nephropathy
Diabetic nephropathy (DN) is characterized by glomerular,
tubular, and tubulointerstitial injury caused by hyperglycemic
status. The early stage of DN presents as glomerular hypertrophy
and thickening of glomerular basement membrane. With the
development of this disease, high glomerular filtration leads to
proteinuria, eventually resulting in end-stage renal disease (64).
APJ is expressed in the glomeruli and blood vessels of kidney,
while apelin is expressed in renal vascular endothelial cells and is
highly expressed in the inner stripe of the outer medulla (65). A
previous study showed that serum apelin and its receptor APJ
level were increased in DN patients, and a higher apelin and APJ
level promoted the formation of blood vessels and induced the
proliferation of glomerular capillaries, thus accelerating the
development of DN (66). However, there are conflicting
reports about the apelin level in diabetes. It was increased in
some research (67, 68), while it was decreased in other research
(69). It is speculated that a lower apelin level may be caused by
apelin-regulated insulin sensitivity, which stimulates glucose
utilization and enhances brown adipogenesis (70). In high-
glucose-medium-cultured podocytes, APJ mRNA is
upregulated when compared to the normal condition (71). It is
reported that renal APJ expression is decreased in diabetic mice,
but after apelin treatment, it is increased (72). Recent studies also
found that apelin can control the reduction of podocyte
proteasome activity via inducing endoplasmic reticulum stress
and podocyte dysfunction through the regulation of the ERK,
Akt, and mTOR-related pathways. These all contributed to the
development of DN (73, 74).

Since Elabela is predominantly expressed in the kidney, the
relationship between serum Elabela level and DN is also
reported. Zhang et al. reported that the serum Elabela level was
lower in T2D patients with albuminuria. Particularly, the serum
Elabela level decreased progressively with the progression of DN;
moreover, the serum Elabela level has a negative correlation with
blood pressure, retinopathy, serum creatinine, and urinary
albumin/creatinine ratio and has a positive correlation with the
estimated glomerular filtration rate (29). A similar result was also
confirmed by Erhan et al. They found that the Elabela level was
higher in healthy individuals when compared with diabetic
patients without microalbuminuria and even higher in diabetic
patients without microalbuminuria when compared to patients
with advanced albuminuria (35). These results suggest that
Elabela may be an important clinical prognostic marker.

However, exogenous apelin and Elabela have been
demonstrated to slow down the progression of DN. Apelin-13,
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the most active subtype of apelin, was paid more attention in DN.
It was reported that Apelin-13 administration can reduce
proteinuria, glomerular hypertrophy, mesangial expansion, and
renal inflammation in type 1 and type 2 diabetic models (71, 75,
76). Hong et al. reported that apelin-13 treatment inhibits the
hyperglycemia-induced elevation of inflammatory factors and
histone hyperacetylation by upregulating histone deacetylase 1
(76). It was also reported that apelin-13 administration regresses
DN by promoting the production of nitric oxide and alleviating
renal fibrosis (73). Besides these, exogenous apelin inhibits the
epithelial–mesenchymal transition of podocytes in diabetic mice
via decreasing the expression of the immunoproteasome subunit
b5i (77). Zhang Y et al. reported that the protective effect of
Elabela in type 1 diabetes-induced podocyte injury might be
related to the activation of the PI3K/Akt/mTOR pathway (78).
However, further research is required to understand the
mechanism of the apelin–APJ system in DN progression.

3.2.3 Vascular Effects, Endothelial Dysfunction,
and Angiogenesis
Apelin has both vasodilation and vasoconstriction effects because
the apelin–APJ system in the endothelium and smoothmuscle cells
exert an opposite action in regulating the vascular tone (2, 79).
When apelin binds to endothelial APJ, it promotes the secretion of
endothelium-derived relaxing factors, suchasnitric oxide (NO)and
prostacyclin, resulting in vasodilation (80–82). When apelin binds
to smooth muscle APJ, it causes vasocontraction (83, 84). In a
diabetic animal model, APJ expression was lower in the aorta and
renal arteries, and Ang II-induced contractile responses were
enhanced, but apelin administration reversed the abnormal
vascular response to Ang II (57, 85).

The vascular endothelium behaves as an autocrine as well as
paracrine organ in regulating vascular homeostasis. When it is
impaired by hyperglycemia, vasoconstriction may occur and be
accompanied with leukocyte adherence, platelet activation,
oxidative stress, inflammation, thrombosis, and atherosclerosis
(86). The apelin–APJ system is involved in diabetes-induced
endothelial dysfunction and angiogenesis (Figure 3). It is
reported that apelin might decrease apoptosis and the
expression of adhesion molecules and increase proliferation
and angiogenesis via APJ-activated NF-kB pathways, finally
resulting in the protection of diabetes-induced endothelial
dysfunction (87). In high-glucose-treated microvascular
endothelial cells, apelin-12 suppressed apoptosis, inflammation,
and oxidative stress via regulating the p-JNK and p-p38
pathways (88). Methylglyoxal, as a glycolytic metabolite, has
been demonstrated to have a greater potential to stimulate
endothelial dysfunction than glucose itself (89, 90). Previous
studies have shown the impairment of endothelium-dependent
vasorelaxation by methylglyoxal, mostly mediated by oxidative
stress (90). Kim Sujin et al. demonstrated that apelin-13 can
inhibit methylglyoxal-induced endothelial apoptosis and
endoplasmic reticulum stress through the AMPK pathway
(91). In diabetic Leprdb/db mice, apelin-36 restores the altered
aortic vascular responsiveness to acetylcholine and Ang II by
potentiating the phosphorylation of Akt and eNOS (57). In high-
fat-diet-treated Apoe-/- mice, the loss of apelin results in
March 2022 | Volume 13 | Article 820002
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exacerbation of atherosclerosis, while apelin administration leads
to a significant regression of atherosclerosis, which may be
related to the activation of the nitric oxide pathway and
inhibition of Ang II signaling (92).

In addition, apelin is confirmed as a potent angiogenic factor,
especially in retinal endothelium. It is reported that the serum
apelin-13 level has a positive correlation with proliferative diabetic
retinopathy, which is unrelated with VEGF (93). Research by Yasir
et al. andWu et al. concluded similar results (94, 95). Li Yang et al.
found that apelin can induce the proliferation, migration, and
expression of the cytoskeleton and tight junction protein through
the PI3K/Akt andMAPK/ERKpathways in human retinal pigment
epithelial cells (96). Furthermore, in post-myocardial infarction
diabetic mice, the overexpression of apelin mobilizes endothelial
progenitor cells to ischemic regions and contributes to angiogenesis
(51). Therefore, apelin may be a promising therapeutic target for
diabetic angiogenesis-related diseases.
3.2.4 Central Nervous System
As mentioned above, apelin and APJ are widely expressed in the
human central nervous system, more in the oligodendrocytes
and neurons and less in astrocytes (97). The apelin–APJ system is
also observed in the pituitary gland, indicating a role in the
control of the hypothalamic–pituitary–adrenal axis (HPA). A
study shows that APJ acts as a neuromodulator in modifying the
HPA axis activity after acute stress stimuli (98). It was also
reported that APJ-deficient mice, under hypoglycemic stress, had
decreased ACTH release, confirming the role of central apelin in
neuroendocrine functions. Recent studies have suggested that
central apelin is involved in the transition from normal to
diabetic state (99). These findings indicated that central apelin
may control glucose release and glucose metabolism. Anne et al.
found that the intracerebroventricular injection of apelin
increases fasting blood sugar (99), which was related with the
over-activation of the sympathetic nervous system, followed by
liver glycogenolysis and gluconeogenesis (100). The over-
expression of hypothalamic apelin was observed in obesity and
diabetes (101). These results indicate that the apelin–APJ system
in the central nervous system may be a new target for controlling
glucose metabolism.
4 EFFECT OF THE APELIN–APJ SYSTEM
ON OBESITY

Adipose tissue plays a central role in lipid and glucose metabolism
(Figure 2) and is now considered a major endocrine organ. Apelin
and its ligand are expressed in adipose tissue. Apelin is secreted by
adipose tissue; thus, it is also called adipokine (102).

4.1 Apelin and Lipid Metabolism
Apelin, as an adipokine, is considered a crucial modulator of
lipid metabolism. The plasma apelin level is lower in patients
with elevated LDL-C when compared with the healthy controls
(103). LDL-C reduction by statins is accompanied with an
increase in serum apelin level in dyslipidemic patients (104).
Frontiers in Endocrinology | www.frontiersin.org 6
Apelin deficiency mice display increased adiposity and elevated
circulating free fatty acids (105), whereas transgenic mice with
over-expressed apelin is resistant to obesity (106). On the
contrary, it was reported that cardiac apelin and APJ
expression and serum apelin level were increased in obese rats,
and downregulation of apelin and APJ expression alleviated
insulin resistance and inflammation (107).

Chronic apelin treatment reduces fatmass and increasesmuscle
oxidative capacity as well as mitochondrial biogenesis (108).
Chronic apelin treatment showed a decrease of hepatic steatosis
by reducing de novo lipogenesis in insulin-resistant mice (109).
Apelin-13 can improve glucose and lipid metabolism and reduce
the damage caused by oxidative stress and inflammation via the
PI3K/Akt pathway in gestational diabetes mellitus mouse (110).
Another animal experiment also showed that apelin-13 regulates
the expression of PPARgto inhibit adipogenic differentiation and
regulates the expression of perilipin to promote lipolysis, thereby
reducing obesity (110). In a ratmodel of type 2 diabeteswith a high-
fat diet, apelin-13 reduces serum total cholesterol, triglyceride, and
LDL-Cand increaseshigh-density lipoprotein cholesterol (HDL-C)
(111). Moreover, apelin-13 promotes cholesterol efflux and
decreases foam cell formation, which indicates its potential anti-
atherogenic effect (112, 113). Besides these, Chun et al. found that
apelin-13 administration abrogates angiotensin II-induced
atherosclerosis in ApoE-/- mice through promoting NO
production and inhibiting the angiotensin II intracellular pathway
(92). Moreover, apelin-13 greatly ameliorates plaque stability via
increasing the intraplaque collagencontent and reducing theMMP-
9 expression (114). In addition, apelin administration effectively
diminishes the LDL-C/HDL-C ratio and the atherogenic index in
Wistar rats with hypothyroidism (115).Hashimoto et al. found that
the apelin–APJ system is the mediator of oxidative stress-linked
atherosclerosis in blood vessels (116).
4.2 Apelin, Insulin Resistance, and Obesity
In obesity, adipocytes release more free fatty acids, which
contribute to the development of insulin resistance. It is
observed that insulin resistant individuals have a higher level
of circulating free fatty acids (117). Apelin, as an adipokine, is
upregulated in obesity. In clinical and experimental studies,
serum apelin level or its adipose tissue expression is increased
in obesity and insulin resistance status (68, 118). Patrick Yue et
al. reported that apelin knockout significantly increases the
serum concentration of glycerol, leptin, and free fatty acids,
while exogenous apelin administration decreases these
compounds (105). It is reported that supplementary apelin
improves in vitro insulinotropic activity, glucose uptake by
adipocyte, glucose elimination, and insulin release in obese
mice (119). Bolus intravenous apelin administration improves
glucose tolerance and insul in sensit iv i ty during a
hyperinsulinemic–euglycemic clamp in obese and insulin-
resistant mice (38), which indicates that exogenous apelin is
efficient despite an elevated plasma apelin level. After 28 days of
apelin therapy, a marked improvement in insulin sensitivity and
decrease in body fat have been observed in obese and insulin-
resistant mice (108). However, administration for 4 weeks of Fc-
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apelin-13 (apelin-13 fused with IgG Fc fragment) in obese mice
significantly improves glucose tolerance, stroke volume, and
cardiac output, while it decreases cardiac and hepatic fibrosis;
but it does not affect food intake and body weight (120). When a
chow diet was fed to 8-week-old apelin-/- mice, insulin level was
significantly increased, and plasma adiponectin concentration
and glucose intolerance were decreased. In addition, these mice
also showed increased abdominal and epididymal fat without a
difference in body weight (105). The apelin-/- mice were more
glucose and insulin intolerant when they were fed with a high-fat
diet and high-sucrose drinking water (121). Stable apelin-13
peptide analogues have shown promising short-term antidiabetic
effects in mice with diet-induced obesity and diabetes (122).

Human studies revealed that Pyr1-apelin-13 injection in
obese patients improves insulin sensitivity (123). However, a
6.5-year follow-up in overweight or obese children showed that
the apelin level decreased significantly during pubertal
development (124). In addition, Cavallo MG et al. reported
that obese patients with T2D had a significantly higher apelin
level than non-diabetic obese patients (125). Dayem et al. found
that the apelin level has no influence on body mass index in
diabetic patients (126). These results indicate that increased
apelin level is directly associated with accompanying diabetes
rather than obesity itself.
5 DRUGS TARGETING THE
APELIN–APJ SYSTEM

The three-dimensional structure of APJ receptor is first reported by
Langelaan and his colleagues (127). They presented a structure of
the N-terminus and the first transmembrane segment of APJ
(residues 1–55, AR55) that was comprised of residues essential
for apelin binding in dodecyl phosphocholine micelles, which
provided a new insight into the development of drugs. In recent
years, some agonists and antagonists of APJ receptor have been
discovered and synthesized, which have presented obvious
therapeutic effects in animal models and patients. There are two
natural endogenous ligands for APJ receptor, namely, apelin and
Elabela. As mentioned above, apelin can be cleaved into different
active forms such as apelin-36, apelin-17, apelin-13, apelin-12, and
Pyr-apelin-13. Elabela, another APJ endogenous ligand, is also a
strong agonist for APJ. In addition, there are some biosynthetic
compounds targeting APJ receptor. E339-3D6 is the first
nonpeptide APJ receptor agonist which was synthesized by
Iturrioz et al. in 2010 (128). Then, other APJ receptor agonists
were also synthesized, such asMM07,ML233, andCMF-019 (129–
131). Meanwhile, several research on APJ antagonists were also
conducted. Lee et al. generated an analog of apelin-13, called apelin-
13F13A,and found that it canblock thehypotensive effectof apelin-
13 (132). In addition, ALX40-4C is the first peptide antagonist for
APJ receptor, which is a polypeptide comprised of nine arginine
residues (133). ML221 is identified as the first non-peptide
antagonist isoform of APJ, which blocks apelin-13-mediated
cAMP production and b-arrestin recruitment for APJ (134).
Further studies should focus on the beneficial effect of the
Frontiers in Endocrinology | www.frontiersin.org 7
compounds that target APJ and explain the therapeutic effect of
novel synthetic ligands for APJ receptor in diabetes and obesity.
6 CONCLUSION

The apelin–APJ system is considered an emerging target with
potential therapeutic properties in diabetes and obesity. Current
literatures have suggested that apelin administration has effective
protection in diabetic and/or obese mice. Current studies have
shown a difference in serum apelin level between diabetic and/or
obese patients and the control group, which supports the role of
apelin in diabetes and obesity development and emphasizes the
use of apelin as a clinical marker in diabetes and obesity. Despite
numerous clinical and experimental studies clearly supporting
the physiological and pathophysiological roles of the apelin–APJ
system in glucose and lipid metabolism, the role of apelin in this
complicated system is not yet fully elucidated, including relevant
signaling pathways and biological adverse effects, especially
in human. In the future, it will be important to identify the
mechanism of action of apelin, such as the role of new receptors
or regulating ligands or specific Elabela/apelin isoforms.

The apelin–APJ signaling system has emerged as an
important biomarker and a novel therapeutic target against the
development of metabolic diseases, especially diabetes and
obesity. In this review, we summarized the literatures on the
role of the apelin–APJ system in diabetes and obesity, and we
hope for further research that will establish their role as a new
diagnostic marker or therapeutic agent in diabetes and obesity.
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