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The microbiota, the set of microorganisms associated with a particular environment or
host, has acquired a prominent role in the study of many physiological and developmental
processes. Among these, is the relationship between the microbiota and regenerative
processes in various organisms. Here we introduce the concept of the microbiota and its
involvement in regeneration-related cellular events. We then review the role of the
microbiota in regenerative models that extend from the repair of tissue layers to the
regeneration of complete organs or animals. We highlight the role of the microbiota in the
digestive tract, since it accounts for a significant percentage of an animal microbiota, and at
the same time provides an outstanding system to study microbiota effects on
regeneration. Lastly, while this review serves to highlight echinoderms, primarily
holothuroids, as models for regeneration studies, it also provides multiple examples of
microbiota-related interactions in other processes in different organisms.
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INTRODUCTION

Microorganisms evolved billions of years before animals (reviewed in Knoll, 2003). It is now
widely accepted that these microorganisms shaped the environment in which animals evolved
(Szathmáry and Smith, 1995; Narbonne, 2005; Knoll, 2011). As a result, animals have conserved
close associations with microorganisms, making the microbes an integral part of the animal’s
environment. In recent years our understanding of the relationship between animals and
microorganisms has advanced greatly, thanks in part to new technologies, such as sequencing
technologies and mass spectrometers. These advances have brought with them new or redefined
terms to describe the participants and/or relationships (Turnbaugh et al., 2007). Terms such as
“microbiota” to describe the microbial taxa composition that are found within a certain
environment, and “microbiome” to describe the collective genome of such symbionts
(Turnbaugh et al., 2007) are now commonly used, and will be part of the terminology used in
this review. Naturally, the impacts of the microorganisms have been, for many centuries,
associated with disease. However, during the last decades, many studies have shown hitherto
unrecognized roles, such as, protecting against pathogens (Iacob et al., 2019), modulating host
metabolism, digestion, and nutrition (Kellow et al., 2013; Vijay-Kumar et al., 2010; Turnbaugh
et al., 2006; O’Hara and Shanahan, 2006; Turnbaugh et al., 2009; Long et al., 2017), and immune
system response (Neish, 2009; Round andMazmanian, 2009; Bäckhed and Crawford, 2010; Fraune
and Bosch, 2010). For example, it is now well established that an altered gut microbial ecosystem
impairs gut homeostasis and health. Accordingly, an imbalance (dysbiosis) in the gut microbial
community has been associated to diseases such as obesity (Ley et al., 2006; Turnbaugh et al.,
2008), malnutrition (Kau et al., 2011), atherosclerosis (Karlsson et al., 2012), and diabetes type 2
(Qin et al., 2012) demonstrating the importance of the gut microbiota composition.
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Genomic and molecular approaches, and the characterization
of the microbiota role have allowed for new discoveries that
extend beyond host health/disease issues (Weinstock, 2012).
Recently, the microbiota has been associated with host
development, including processes that were thought to be
dependent on the host’s genetic program, such as
morphogenesis and organ development (Sommer and
Bäckhed, 2013). Moreover, it has been proposed that the
microbiota might play roles in behavior, reproduction, and
even in degenerative diseases, among others (Wang et al., 2017).

The present review focuses on the relationship between the
microbiota and the process of regeneration. This is a relatively
new area of research that explores how the associated microbial
taxa within a particular host might modulate the regeneration of a
particular tissue, organ or even the whole-body of the host
species. We include a summary of models that have been used
to study the role of the gut microbiota during intestinal
regeneration and associated processes (Table 1). Therefore, for
the writing of this review, we screened for articles relevant to our
topics in the search engine PubMed (pubmed.ncbi.nlm.nih.gov)

TABLE 1 | Model systems used to decipher the associations between the microbiota and the intestinal regeneration in biomedical research.

Model system Hallmarks
of the model

Microbial association Limitations
of the model

References

Planarian Display whole body regeneration Pro- and anti- regenerative
properties of Pseudomonas and
Aquitalea sp in whole body
regeneration. Apoptosis regulation

Intestinal regeneration cannot be
separated from whole body
regeneration

Arnold et al. (2016), Lee et al. (2018)

Fruit flies
(Drosophila
melanogaster)

Have the basic structure of the
digestive system with simpler
microbial communities. Ease of
studying roles of the microbiome in
the modulation of host signaling
pathways and physiology

Microbial community modulates
stress response and promotes
stem cell proliferation and epithelial
regeneration. Specifically, Erwinia
carotovora was shown to help
intestinal epithelial repair

Invertebrate/Protostome. Limited
to intestinal epithelial homeostasis
and renewal. It was suggested that
Drosophila gut structure allows
oxygen to circulate across the
tract, which differs from
vertebrates

Shin et al. (2011), Buchon et al.
(2009), Chandler et al. (2011),
Charroux and Royet (2012)

Zebrafish (Danio
rerio)

Vertebrate model to study roles of
the microbiome in the modulation
of host signaling pathways and
physiology

Aeromonas veronii and
Helicobacter pylori facilitate
epithelial cell proliferation.
Microbiota was also shown to
promote intestinal epithelial cell fate
determination

Only the regeneration of the
intestinal luminal epithelium has
been studied

Bates et al. (2007), Cheesman et al.
(2011), Neal et al. (2013), Rawls
et al. (2004)

Rodents Mammal models to study the gut
microbiota in the intestine

The microbial community
contributes to the modulation of
intestinal epithelial cell proliferation,
differentiation, and migration.
Microbiota promotes tissue
regeneration through induction of
the immune system

Only the regeneration of the
intestinal luminal epithelium has
been studied

Hou et al. (2017), Thomas (2016),
Sommer and Bäckhed (2013),
Pellegatta et al. (2016), Abrams et al.
(1963), Uribe et al. (1994)

Isolated cells/cell
lines (mammal
models)

Easy handling and maintenance The microbial community
contributes to the modulation of
intestinal epithelial cell proliferation,
differentiation, and migration.
Akkermansia muciniphila and
Lactobacillus rhamnosus are
associated with epithelial wound
healing

2D model of isolated cells, lacks
the composition and integrity of
the intestine

Alam and Neish (2018), Hooper
et al. (2001), Pull et al. (2005),
Rakoff-Nahoum et al. (2004), Lam
et al. (2007), Alam et al. (2016),
Swanson et al. (2011)

Organoids
(mammal models)

Non-invasive methods to study the
microbial community in mammals.
Share the cellular and structural
composition, as well as the self-
renewal dynamics, of the intestinal
epithelium

Lactobacillus reuteri protects the
morphology of intestinal organoids
and normal proliferation.
Proliferation and differentiation
occurred through a TLR4-
dependent pathway triggered by
bacterial-derived LPS

Reduced view of the digestive
system, limited to cells from
intestinal lineage

Lancaster and Knoblich (2014), Hou
et al. (2017), Hou et al. (2018), Naito
et al. (2017)

Sea cucumber
Holothuria
glaberrima

Deuterostome model. Has the
basic structure of the digestive
system with simpler microbial
communities. Can regenerate the
small and large intestine upon
evisceration. The cellular events
that control the regeneration have
been well characterized

Antibiotics delayed the intestinal
regeneration. Gram-positive
bacteria (Firmicutes and
Actinobacteria) may have a crucial
role in the progression of their
intestinal regeneration

Marine invertebrate ecosystem.
Few studies characterizing the
microbiota and their possible roles
during the regeneration process

García-Arrarás et al. (1998),
Quiñones et al. (2002), Mashanov
et al. (2005), Candelaria et al. (2006),
García-Arrarás et al. (2011),
Mashanov and García-Arrarás
(2011), García-Arrarás et al. (2018),
Quispe-Parra et al. (2021),
Pagán-Jiménez et al. 2019),
Díaz-Díaz et al. (2021)
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using keywords such as “microbiota”, “microbiome” and
“regeneration”, among others, and included information
considered pertinent. Specifically, we have highlighted research
done in animals that belong to the phylum Echinodermata, a
phylum known for extraordinary regeneration abilities such as
partial or total re-growth of different appendages or internal
organs (García-Arrarás and Dolmatov, 2010). In particular, many
of them are able to regenerate their digestive tract, thus providing
the venue to study the effect of the microbiota in one of the organs
best known for microbiota-host associations. This review serves
to present a group of echinoderms, the holothurians or sea
cucumbers, as excellent models to study microbiome-host
associations and their impact on regenerative processes.

Prior to delving into microbiome-regeneration studies, we
begin by reviewing some findings from three regeneration-
related fields where microbiome associations are important to
the host. These are the association of the microbiota with: 1) the
host metabolic/digestive processes, 2) embryonic developmental
processes, and 3) wound healing (Figure 1). These three
processes play important roles in regeneration and two of
them (wound healing and embryonic development), share key
mechanisms with regeneration, thus, the particular interest in
singling them out.

Microbiota is Essential for Host
Metabolism, Digestion, and Nutrition
From the roles ascribed to the microbiota, probably the best
understood is their importance on host metabolism, which
impacts their digestion and nutrition, by the assimilation of
the digested food for the host physiological process. Multiple
studies have shown the involvement of the mammalian gut
microbiota in metabolic processes and energy homeostasis of

host animals (O’Hara and Shanahan, 2006; Turnbaugh et al.,
2006; Turnbaugh et al., 2009; Vijay-Kumar et al., 2010; Long et al.,
2017). The gut microbiome was found to be crucial in processing
non-digestible substrates that are necessary for host health
maintenance and thus physiology (Gill et al., 2006). For
example, the fermentation of dietary fibers and endogenous
intestinal mucus, ensured by the intestinal microbiota, allows
the growth of microorganisms that produce short-chain fatty
acids (SCFAs) and gases (Wong et al., 2006). Acetate, the most
abundant SCFA, is used in cholesterol metabolism and
lipogenesis in the peripheral tissues (Frost et al., 2014).
Butyrate, another major SCFA, is the main energy source for
human luminal cells in the colon (De Vadder et al., 2014), and is
key for generating a hypoxia state in epithelial cells, oxygen
balance, and prevention of gut microbiota dysbiosis (Byndloss
et al., 2017). The butyrate producer Faecalibacterium prausnitzii,
one of the most represented bacteria in the intestine of healthy
human adults, has exhibited anti-inflammatory effects in a colitis-
mouse model (Miquel et al., 2013). Propionate, another dominant
SCFA, regulates gluconeogenesis and satiety signaling through
interaction with the gut fatty acid receptors in the liver (De
Vadder et al., 2014). Another example of bacteria metabolites that
can alter a host’s physiology is polyhydroxybutyrate (PHB),
which is a polyhydroxylkanoate that comprises the primary
product of carbon assimilation from glucose and starch.
Microorganisms retain PHB and metabolize it when other
common energy sources are not available, principally when
carbon concentration is higher than nitrogen’s (Madison and
Huisman, 1999; Jendrossek and Pfeiffer, 2014). Moreover, PHBs
are used for host development both in fish and crustacean
aquaculture (De Schryver et al., 2010; Nhan et al., 2010;
Najdegerami et al., 2012).

The data shown above, focusing on a minor subset of gut
bacterial products, clearly present the interdependence of the
microbiota with its host highlighting how bacterial metabolites
are not only essential for the host physiological processes but are
also needed for the growth of other bacteria.

Microbiota Role in Development: Focus on
Immune System and Organ Formation
Immune system development and activation- The actions of some
symbionts go well beyond localized functions and are crucial for
the overall development of the host. This provides a useful
background for our discussion of microbiota effects on
regeneration, specifically because of the links between
embryological development and regeneration. Multiple studies
from different organisms have demonstrated that the cellular and
molecular mechanisms used in regenerative processes are similar,
and in many cases identical, to those that take place during
development (Arvizu et al., 2006; Yokoyama et al., 2008; Petersen
and Reddien, 2009; Tu and Johnson, 2011; Tischer et al., 2013;
Bryant et al., 2017; Reddy et al., 2019).

Therefore, the role of the microbiota during an organism’s
developmental history can lead to important insights on a
possible role during regeneration processes in the same or
closely related organisms. A classic example of the effect of

FIGURE 1 | The influence of microbiota on host physiology. This figure
outlines the aim of this review where we describe the role of the microbial
composition associated with an animal host. In this review we focus on the
regeneration process. However, we incorporated studies that link the
microbiota to the metabolism, digestion and nutrition, health, and
development of animal hosts to point out the interconnection between all
these processes (dashed arrows).
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microbiota during embryonic or postnatal development is the
development of the immune system in vertebrates (Round and
Mazmanian, 2009; Bäckhed and Crawford, 2010; Fraune and
Bosch, 2010). Studies have revealed that mutualistic or
commensal microbe colonization are pivotal for the
development, maturation, and activation of the immune
system. Developmental effects of the microbiota in vertebrate
species have usually been studied using germ-free models. In
some of the key studies, germ-free reared animals presented
deficient development of the immune system, including
underdeveloped lymphatic organs (Falk et al., 1998;
Macpherson and Harris, 2004; Bouskra et al., 2008), and
defects in T cell regulation and B cells antibody production
(Round and Mazmanian, 2009). In addition to the direct
effects of these symbionts through the production of
antimicrobial substances, immune response in germ-free
animals lacked a priori instruction, induced by commensals
(Hansen et al., 2014). This was confirmed with the propensity
to infections when microbes were reintroduced to germ-free
animals.

The study of Toll-like receptor (TLR) signaling in host-
microbiome models has shown the mechanism by which the
microbiota interacts with immune system activation and
maturation (Akira and Takeda, 2004). This pathway is highly
conserved in metazoans (Khalturin et al., 2004; Iwanaga and Lee,
2005; Roach et al., 2005; Satake and Sekiguchi, 2012; Nie et al.,
2018), increasing the number of possible models in which to
examine the relationship between microbiota and host immunity.
The Toll pathway is activated by the binding of various microbe-
associated molecular patterns (MAMPs) to the Toll-like receptors
(TLRs) (Janssens and Beyaert, 2003; Kawai and Akira, 2010;
Narayanan and Park, 2015; Wang et al., 2020). In some
invertebrates, the pathway is activated indirectly, when the
cytokine-like endogenous molecule Spätzle detects the
microorganisms and activates the Toll receptors (Kawai and
Akira, 2010). The activation of Toll pathway provokes the
secretion of toxic molecules, such as antimicrobial peptides
and reactive oxygen species (ROS) (Tzou et al., 2000; Ha, EM,
et al., 2005).

Studies in mice have identified possible mediators of the
microbiota-host immune response. These studies revealed that
mice harbor specific Firmicutes, Candidatus arthromitus (Snel
et al., 1995), that influence the innate immune system maturation
(Suzuki et al., 2004; Gaboriau-Routhiau et al., 2009; Ivanov, II,
et al., 2009). This suggests that Fusobacteria and Firmicutes may
be important in the regulation of immune system development,
immune-inflammatory response, and gut homeostasis. However,
these filamentous bacteria have only been found in some infants
younger than 3 years old (Yin et al., 2013), and a similar role in
immune maturation in humans remains to be discovered.
Moreover, recent studies have evidenced that metabolite
generation, including SCFAs and adenosine triphosphate,
influences the host’s immunity (Atarashi et al., 2008; Furusawa
et al., 2013).

Organ morphogenesis- That the microbiota is involved in the
process of immune system development andmaturation might be
expected, since after all, one of the system’s main functions

involves the direct interaction of immune cells with the
environmental bacteria. Other findings that associate the
microbiota with an organism’s development are somewhat
more surprising. One such study is the symbiotic association
between the marine bobtail squid Euprymna scolopes and
bioluminescent Vibrio fischeri. This model has arguably played
a pivotal role in advancing the field of host-microbe associations
involved in developmental processes (Nyholm and McFall-Ngai,
2004). This model provides an interesting phenomenon where
the host-microbiome interaction is crucial to the formation of an
anatomical complex structure and at the same time is not
associated with health/disease issues, as are most other cases
involving the microbiota. In this system, during development, the
squid forms a structure named “the light organ” which helps in
the protection of the host from predators (Boettcher and Ruby,
1990; McFall-Ngai and Ruby, 1998; Jones and Nishiguchi, 2004).
This organ is colonized by bacteria during the day, the
photosynthetic bacterium camouflages the squid from
predators at night, and then at dawn, the squid ejects the light
organ bacteria into the ocean, a cycle that is repeated daily.

Researchers have described in detail the process of host
colonization and bacterial interactions (Nyholm and McFall-
Ngai, 2004). Newly hatched juveniles are born with fields of
ciliated epithelia on the nascent squid rudimentary light organ
(McFall-Ngai and Ruby EG, 1991). They acquire the bacteria
from the ocean environment (Ruby and Lee, 1998). When the
host is exposed to bacterial peptidoglycan, the epithelial cells
produce mucus that promotes the aggregation of bacteria
(Nyholm et al., 2000; Nyholm et al., 2002). The symbiont then
moves in the mucus to the crypt spaces of the light organ and
colonizes it. As a result, it triggers developmental changes of the
squid light organ (Doino and McFall-Ngai, 1995). Some of these
adaptations include constriction of the ducts that lead to the crypt
space delimitation, suspension of mucus secretion, and a
regression of the ciliated epithelium, which might prevent
further colonization of environmental symbionts. Other
changes include trafficking of hemocytes into the blood of the
ciliated epithelium (Nyholm and McFall-Ngai, 2004) facilitating
the retrogression of the ciliated epithelium (Koropatnick et al.,
2007), and increasing the density of microvilli in crypt cells
(Nyholm and McFall-Ngai, 2004) which increases the surface
area of interaction between the bacteria and the crypt cells
(Lamarcq and McFall-Ngai, 1998). In addition to
morphological and mechanical adaptations, chemical changes
also take place. For example, following colonization by V. fischeri
during crypt metamorphosis, a decrease in nitric oxide (NO)
production is observed (Davidson et al., 2004). All these events
favor the V. fischeri selection and proliferation to ensure mature
organ light formation and bioluminescence (Nyholm and
McFall-Ngai, 2004).

Antibiotic induced V. fischeri clearance from the crypts
produces some irreversible developmental changes, such as the
permanent loss of the surface ciliated epithelium and the
attenuation of NO in the ducts (Nyholm and McFall-Ngai,
2004). Mutant V. fischeri that are defective in producing
luminescence because of a mutation in the luxA gene (Visick
et al., 2000) or deletion of lux operon do not persist in the crypts
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(Bose et al., 2008). Apart from not producing the required
luminescence, these mutants cause developmental effects on the
host, which fail to appropriately induce swelling of the crypt
epithelial cells, hemocyte trafficking, and apoptosis of cells of
the epithelial fields (McFall-Ngai et al., 2012). The mutant
bacteria also have an altered expression of lipopolysaccharide
(LPS) lipid A and peptidoglycan (PGN) tracheal cytotoxin
(TCT) monomer. This correlates with observed changes in
squids exposed to mutant bacteria that have a different
expression of their LPS-binding proteins and peptidoglycan-
recognition proteins. Thus, V. fischeri’s luminescence is
somehow dependent on the expression of MAMPs and host
pattern-recognition receptors to induce the immune system to
cause the developmental changes in E. scolopes (McFall-Ngai et al.,
2012).

Another interesting aspect of this symbiosis is the fact that V.
fischeri that colonize the light organ are not eliminated by the
immune system of E. scolopes (McFall-Ngai et al., 2012). It is
thought that the recognition ofV. fischerimolecules play a pivotal
role in the selection of bacterial species by the immune system
and therefore, the morphogenesis of the light organ of the host
(Koropatnick et al., 2004; Troll et al., 2010).

Other developmental effects- Microbiota effects on embryonic
development have been studied in other invertebrates (these are
usually chosen because they generally have simpler microbial
communities). The Drosophila-Acetobacter system has been a
convenient model for understanding the genetic and functional
roles of the microbiome in the modulation of host signaling
pathways and physiology. Extensive studies in Drosophila and its
symbiont Acetobacter pomorum showed that this gut bacteria
impacts not only the metabolism of its hosts, but the growth, body
size gain, and stem cellular activity (Shin et al., 2011). An A.
pomorum mutant library has been used to decipher their
beneficial role on host’s developmental homeostasis. This has
led to the finding that the periplasmic pyrroloquinoline
quinone–dependent alcohol dehydrogenase (PQQ-
ADH)–dependent oxidative respiratory chain of the A.
pomorum interaction with the insulin/insulin-like growth
factor (IGF)-1 signaling (IIS) of the host is necessary for the
maintenance of the gut mutualism. However, the sole bacterial
PQQ-ADH is insufficient to promote the A. pomorum–mediated
effects on host physiology, suggesting that the host genetic
program and gut bacteria regulate each other. Additional
studies using multiple insect models have confirmed the role
of the hindgut bacteria in various aspects of digestion and host
development. These cases include digestive efficiency of soluble
plant polysaccharides and growth rate in crickets (Kaufman and
Klug, 1991), insect generation time, adult body weight gain, and
methane production in cockroaches (Gijzen and Barugahare,
1992), cellulose breakdown and nitrogen fixation in beetles
(Morales-Jiménez et al., 2009), and potential proteolytic
activity in aphids (Wang and Zhang, 2015).

Many studies performed in germ-free mammals have shown
that the intestinal microbiota influences the postnatal
development of the gastrointestinal tract in these organisms.
For example, in mice, successions in the microbiota
composition during development were shown to lead to

gastrointestinal maturation (Wagner et al., 2008; Reinhardt
et al., 2009). The intestine of an adult mouse accommodates a
sophisticated vascular network that originates from a system of
vessels that form postnatally in small intestinal villi. The
formation of this network occurs concurrent with the
assembly of the microbiota. Comparative studies of the
capillary networks of germ-free mice versus animals colonized
(ex-germ-free) during or after gut development demonstrated
abnormalities in the capillary network of adult germ-free mice
(Stappenbeck et al., 2002). However, colonization either with
conventionalized mice microbiota or with Bacteroides
thetaiotaomicron restarted and completed the developmental
program. Other studies, using germ-free transgenic mice
lacking Paneth cells (which secrete antibacterial peptides that
affect luminal microbial ecology) in the intestinal epithelium,
showed that this angiogenesis was regulated by B.
thetaiotaomicron colonization of the mucosal surface
(Stappenbeck et al., 2002). In addition, the associated
microbial community contributes to the modulation of
intestinal epithelial cell proliferation, as evidenced by the
scarcity of proliferating cells in the intestines of germ-free
rodents (Abrams et al., 1963; Uribe et al., 1994) and zebrafish
(Rawls et al., 2004).

Further information on the role of the microbiota on
vertebrate developmental processes has been obtained using
germ-free and gnotobiotic zebrafish (Milligan-Myhre et al.,
2011). Both zebrafish and murine germ-free models presented
significant differences in the intestinal morphology in
comparison with conventional controls, including reduced cell
division, decreased number of goblet cells and intestinal
associated immune cells, and perturbed expression of genes
involved in metabolism and innate immunity (Savage et al.,
1981; Kandori et al., 1996; Cebra et al., 1998; Hooper et al.,
2001; Rawls et al., 2004; Bates et al., 2007; Bouskra et al., 2008;
Cheesman et al., 2011; Kanther et al., 2011).

A New Role for Microbiota as Regulator of
Regenerative Processes
The role of the microbiota has been studied, quite extensively,
in processes associated with wound healing. These processes
are usually the initial steps in more complex regenerative
events, and will be briefly reviewed here, prior to discussing
the role of the microbiota in overall regeneration of tissues and
organs.

Wound healing following injury - The first response after a
trauma or injury to an organism is the wound healing cascade
which ensures the repair of the wound and avoids the
colonization or translocation of pathogens. This takes place
prior to the reorganization of the injured tissue (Guo and
Dipietro, 2010) and might involve the microbiota (Thomas,
2016; Maheswary et al., 2021) as shown by studies of human
skin microbiota during wound healing processes. Many of the
findings on the role of microbiota in wound healing were
facilitated by studies of chronic wounds, such as diabetic foot
ulcers and non-healing surgical wounds, which represent major
healthcare problems. These studies provided valuable data on
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how the microbiota can shape the process of wound healing and
perhaps other processes related to regeneration.

Chronic wounds are caused by a disruption of the cutaneous
wound healing process, preventing the restoration of the skin
barrier. The main bacterial phyla identified in acute and chronic
wounds are also found in healthy skin, however wounds are
characterized by skin dysbiosis where their relative abundance
differs significantly by wound type (Ammons et al., 2015; Loesche
et al., 2017). Pseudomonas and Staphylococcus dominate in all
types of chronic wounds (Dowd et al., 2008; James et al., 2008;
Gardner et al., 2013; Wolcott et al., 2016; Gardiner et al., 2017),
and usually are present in acute wounds created by blunt or
penetrating trauma (Hannigan et al., 2014; Bartow-McKenney
et al., 2018), burns (Hannigan et al., 2014; Liu et al., 2018), or
atopic dermatitis (Seite et al., 2014). However, higher levels of
anaerobic bacteria are present in chronic wounds and are
commonly associated with worse prognosis (Loesche et al., 2017).

Moreover, pathogenic microorganisms are suspected of playing
a substantial role in delayed wound healing. Hence, perturbations
of microbial communities that are not promoting cutaneous
wound healing may be beneficial. As shown by Loesche et al.
the use of antibiotics to destabilize pathogenic wound
microbiomes, resulted in faster wound healing (Loesche et al.,
2017). In other studies, when probiotic bacteria were applied to a
rodent wound, the bacterial load was decreased and tissue repair
was promoted (Rodrigues et al., 2005; Valdez et al., 2005; Huseini
et al., 2012). Similarly, wounded dermal tissues of mice showed
improved proliferation of epidermal cells, vascularization, and re-
epithelialization after inoculation with Pseudomonas aeruginosa
strain PAO1 (Kanno et al., 2011). Also, in humans, topical
application of probiotics exerted positive wound healing
properties for chronic venous ulcers infected with
Staphylococcus aureus and Pseudomonas aeruginosa (Peral et al.,
2009). Consequently, microbial communities may be useful for the
diagnosis of wound healing progresses (by predicting those wounds
that will experience infectious complications). Hence, studies in
skin microbiota provide an example of interactions between host
and microbiomes with biomedical relevance to health issues.

In addition, the gut microbiota has been implicated in
intestinal epithelial repair. This is highlighted by recent studies
on intestinal wounds where gut microbiota enhanced epithelial
wound repair (Alam and Neish, 2018). Specifically, intestinal
commensal bacteria have been found to regulate the proliferation,
migration, and survival of host epithelial cells, as well as promote
barrier function and resolution of epithelial wounds (Hooper
et al., 2001; Rakoff-Nahoum et al., 2004; Pull et al., 2005; Lam
et al., 2007). One of these commensals is Akkermansia
muciniphila, which is enriched in healing mucosal wounds
and dominates the wound-mucosa-associated microbiota
(Alam et al., 2016). When mice are treated with exogenous A.
muciniphila to treat colonic mucosal wounds enhanced mucosal
closure occurs. The bacterial treatment stimulates the mice
intestinal cellular proliferation and enterocyte migration from
the crypt apparently through the generation of ROS when the
bacteria colonize the wounded area. The possibility that ROS
might be the mediator in this phenomenon is strengthened by
experiments with another gut commensal, Lactobacillus

rhamnosus. This bacterium has also been associated with
intestinal epithelium repair by experiments showing that the
sole contact of intestinal epithelial cells (IECs) with L.
rhamnosus strain GG (LGG) induces ROS accumulation,
consequently stimulating cellular proliferation and migration
(Swanson et al., 2011).

Metazoans have different regeneration capabilities. Since
mammals are not well know for their regenerative potential,
the roles of microbiota in the regeneration of tissues or organs
have been focused on particular model organisms. Various
species, well known for their regenerative responses, such as
planarians, salamanders, and zebrafish have been used to study
whether the microbiome can regulate the regeneration potential
of their hosts or are directly involved in the regeneration process
(Figure 2). Some of these roles will be discussed below.

Whole body regeneration in planarians- Two studies in the
planaria Schmidtea mediterranea have shown that bacteria can
influence whole body regeneration. In the first study, the
microbiome of healthy planarians was characterized, revealing
a high Bacteroidetes to Proteobacteria ratio (Arnold et al., 2016).
Animal manipulations such as tissue amputations and changes in
culturing conditions (which elicits a relative increase of
Proteobacteria) and cultures with a strain of Pseudomonas,
produced ectopic lesions and progressive tissue degeneration.
Furthermore, infection with the Pseudomonas strain enhanced
apoptosis, in contrast to what occurs in the absence of infection
where regeneration represses apoptosis. To explain this
phenomenon, Arnold et al. suggested that activation of an
innate immunity signaling (TAK1/MKK/p38) pathway had an
opposite role in host immunity versus normal regeneration. In a
second study, a different group studied the impact of bacterial
metabolites on the regeneration of planarians (Lee et al., 2018).
They described the microbial community of Dugesia japonica, a
close relative to S. mediterranea, and inoculated tail and head-
amputated antibiotic-treated organisms with representative
bacteria species. Lee and colleagues found that regeneration
was compromised in animals inoculated with an indole
producing bacteria, Aquitalea sp., and tail and head formation
was delayed. To test whether the production of indole (which is
formed from tryptophan by bacterial enzymatic action) was the
causative agent, amputated trunks were incubated with Aquitalea
sp. in tryptophan supplemented media. Animals exposed to both
tryptophan and indole producing bacteria presented a delayed
regeneration in comparison to controls. These experiments
demonstrated a direct effect of an indole-producing bacteria
on the regenerative properties of planarians.

Limb regeneration in salamanders- A possible association
between bacteria and regeneration has also been observed in
one of the best studied vertebrate regeneration models, the
Mexican axolotl Ambystoma mexicanum (Demircan et al.,
2019). This amphibian is capable of regenerating internal
organs such as heart, brain, and lungs and external organs
such as limbs, gills, and tail (Vieira et al., 2020). In Demircan
and colleagues work, a 16S rRNA amplicon dataset was obtained
from limbs at different days post amputation (dpa) and correlated
with axolotl limb regeneration stages; the stages (0-, 1-, 4-, 7-, 30-,
and 60- dpa) (Demircan et al., 2019). Although the study was
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purely correlative, it showed changes in the microbiota during
regeneration, suggesting that certain bacterial groups might be
associated with the regenerating tissues. At the phylum level, the
bacterial communities in normal animals were dominated by
Bacteroidetes, Firmicutes, Proteobacteria, Actinobacteria, and
Verrucomicrobia. In regenerating limbs, a temporal shift in
bacterial composition was observed, which included
differential phylum abundances at certain limb regeneration
stages. Post-amputated groups had different microbial
communities compared to aquarium control groups, since
there was a shift from Firmicutes-enriched (controls) to
Proteobacteria-enriched (regenerating) relative abundance. The
significant differences observed between the water and the
regenerating limb microbiotas suggested selective colonization
of axolotl limb tissues and that substantial restructuring of
bacterial communities occur in regenerating tissues. Moreover,
a comparison of the microbial community demonstrated less
variation in the relative abundance of bacterial communities
between samples at the same stage of regeneration, and higher
variation between groups at different stages. Also, they found
differences between limb microbial communities among the
regeneration phases: the 0- and 1- dpa samples, 4- and 7- dpa
samples, and 30- and 60- dpa samples all differed between them
in the measures of beta-diversity. That different bacterial
communities were found at specific limb regeneration stages,
such as wound healing, dedifferentiation, and re-development,
could indicate that specific bacterial groups have specific roles in
these processes.

Tissue layer (luminal epithelium regeneration) in vertebrates-
Many investigators have studied the regeneration of the luminal
epithelial layer (Figure 3A) of the vertebrate digestive tract (see
Santos et al., 2018 for review). This tissue layer is continuously
being formed as the cells undergo damage by the exposure to the

digestive lumen content and the digestive process itself (Barker
et al., 2007; Sailaja et al., 2016; Santos et al., 2018). In addition to
the ongoing epithelial turnover to achieve gut homeostasis, this
tissue can undergo regeneration if injured by exposure to factors
such as toxins, radiation or others (Metcalfe et al., 2014; Beumer
and Clevers, 2016). Homeostatic maintenance of the luminal
epithelium is well understood and has been well described
particularly in the mammalian intestine (Barker et al., 2007).
The renovation of the layer is dependent on the intestinal stem
cells (ISC) and their associated environment (ISC niche). These
cells are found within the luminal crypts and give rise to the
different cell types in the epithelium. The stem cells divide within
the crypts and their progeny continue this division as they transit
to the intestinal villi where they differentiate into the intestinal
luminal epithelial phenotypes. As cells reach the tip of the
intestinal villi, they are shed into the lumen, maintaining a
continuous migration of cells from the crypts to the villi.

As response to injury, the ISC niche adapts to ensure epithelial
regeneration beyond the homeostatic state (Beumer and Clevers,
2016). The epithelial restitution is achieved either by proliferation of
active ISCs (Lgr5+ ISCs) or by mature cells dedifferentiated to ISC.
This regeneration of mucosal epithelia has been found to be
modulated by the microbiota (Thomas, 2016; Hou et al., 2017).
Also, the microbiota has been suggested to promote gut healing
regeneration through induction of immune responses (Sommer and
Bäckhed, 2013; Pellegatta et al., 2016; Thomas, 2016;Hou et al., 2017).

Various experiments demonstrate a similar role of microbiota
on luminal epithelium regeneration in zebrafish. For one, in the
developing zebrafish intestine, epithelial cell proliferation was
shown to be facilitated by their symbiont bacteria, Aeromonas
veronii (Cheesman et al., 2011). In other studies, the virulence
factor CagA fromHelicobacter pylori also promoted intestinal cell
proliferation through Wnt pathway signaling (Neal et al., 2013).

FIGURE 2 | Models of regeneration. This figure portrays organisms that are used as regeneration models: planaria (A), zebrafish (B), axolotl (C), and two
holothurian species, Apostichopus japonicus (D) and Holothuria glaberrima (E).
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Lastly, microbiota was also shown to promote intestinal epithelial
cell fate determination via the Notch-MyD88 signaling (Bates
et al., 2007; Cheesman et al., 2011).

Additional model systems, mainly in vitro models comprising
cell cultures, tissue explants, and organoids, have been developed
to decipher the microbiota’s influence on the homeostasis and
regeneration of mammalian intestines. Among these, organoids
have been used to understand the effects that the commensal
microbiota, or a particular microorganism, might have on
intestinal epithelium homeostasis (Peck et al., 2017; Blutt
et al., 2019). Organoids are three-dimensional tissue structures
obtained from stem cells in culture, that are differentiated into
multiple organ-specific cell types. Thus, cells in these structures
acquire some of the organ or tissue organization and functions

(Lancaster and Knoblich, 2014). Small intestinal organoids share
the cell and structural composition of the small intestinal
epithelium, as well as the self-renewal dynamics. (Sato et al.,
2009; Sato et al., 2011). Using organoids, it was shown that live
Lactobacillus reuteri protected the morphology of intestinal
organoids and normal proliferation (Hou et al., 2017; Hou
et al., 2018). The protection of the intestinal barrier and
activation of intestinal epithelial proliferation seemed to
control intestinal inflammation.

A possible mechanism for the bacterial effect was described in
a recent work showing that the ISC expresses nucleotide binding
oligomerization domain-containing protein 2 (NOD2). This
protein interacts with a peptidoglycan motif expressed on
most bacterial organisms, suggesting a putative pathway for

FIGURE 3 | Comparison of mammalian and holothurian intestinal epithelium anatomy and renewal. Representative organization of the luminal epithelium of
mammal intestine (A) and the mucosal epithelium in the digestive tube of sea cucumbers (B), highlighting the difference in cell renewal mechanisms. (A) In mammals,
Lgr5-positive intestinal stem cells are localized at the bottom of the crypt, which self-renew and produce dividing transit-amplifying progenitors (arrows), which gradually
migrate apically and form the villus (dashed arrow), where are localized the specialized cells. Paneth cells (which appear to be unique in mammals) are the only
differentiated cell type that remains in the stem cell niche. (B) In the digestive epithelium of echinoderms, the spatial organization of mammals is not present, instead Lgr5-
positive cells are interspersed among Lgr5-negative or differentiated cells, but the lineage of these cells is not well understood. (A9,B9) were retrieved from Mashanov
et al., 2014 and modified by LD-D, (A,B) are drawings by the authors of this article (AR-V and LD-D, respectively) for the purposes of this comparison.
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communication between the microbiome and the ISC niche
(Nigro et al., 2014). Treatment of organoids with ligands for
NOD2 resulted in an increase in their number and size, indicating
that these ligands induce epithelial proliferation. Additional
support that bacterial species have a role in the ISC niche
comes from studies in mice, where a crypt-specific
microbiome has been associated with homeostatic
proliferation. This finding led to organoid studies showing that
modulation of the colonic epithelial balance between
proliferation and differentiation occurred through a TLR4-
dependent pathway triggered by bacterial-derived LPS (Naito
et al., 2017). Other work showed that colonic crypts from mice
devoid of microbiota lose their regenerative capacity, as assessed
by the ability to form organoids (Zaborin et al., 2017). There, the
regenerative capacity was recovered by fecal microbiota
transplantation that restored the crypt microbial communities.
Furthermore, in recent studies, lactate derived from bacteria was
shown to mediate small intestinal epithelial proliferation through
stimulation of the stem cells in murine organoid cultures (Lee
et al., 2018), suggesting there may be specific bacteria-derived
factors that interact with the host cells to modulate the ISC
response. These findings provide strong evidence for a
microbiome role in homeostasis of the ISC niche.

Although the day-to-day regeneration of the luminal
epithelium has been well studied and has provided important
information, as described above, there is a “catch” to these studies
that must be addressed. This regeneration is considered to be
homeostatic, meaning that it is an ongoing replacement of the lost
cells and whose mechanism is deeply embedded within the
physiology of the organ in order to maintain its function.
Many researchers differentiate this type of regeneration from
the one that takes place following injury to the organ or tissue.
Available data support the notion that the mechanisms by which
homeostatic regeneration takes place differ from the regeneration
that follows injury (Beumer and Clevers, 2016). In this respect,
the data shown above relates to the microbiota role in
homeostatic regeneration and might not apply to the
regeneration of the luminal epithelium under injury or to
massive loss due to other manipulations.

In an attempt to understand the ongoing interactions within
the digestive tract, invertebrates have been used as simplified
organisms. The understanding of the impact of gut microbiota on
host physiology has been limited, due to restricted in-depth
integrated genetic analysis of both the microbes and the host.
In this respect, the study of insect non-binary, yet simpler
bacterial communities than mammals, is noteworthy. Intestinal
bacterial communities of insects have been widely studied, and
the amenability of Drosophila melanogaster, allowed its
implementation to study animal symbioses. Numerous studies
have shown that Drosophila’s bacterial communities are simpler
than mammals; hundreds of species are present in humans (Qin,
et al., 2010), while the adult Drosophila midgut symbiotic
commensal community is composed of 5–20 different
microbial species (Corby-Harris et al., 2007; Cox and Gilmore,
2007; Ren et al., 2007; Ryu et al., 2008; Chandler et al., 2011;
Wong et al., 2011). Among them, the families of
Acetobacteraceae, Lactobacillales, and Enterobacteriaceae are

the most prevalent microbes identified in the Drosophila gut
microbiota (Ryu et al., 2008; Roh et al., 2008; Chandler, et al.,
2011). The simplicity of their microbial communities have made
them attractive models for host-microbe studies. Thus, the
microbiota effect on intestinal epithelial renewal was studied
in Drosophila. A crosstalk between the gut and its microbial
community was demonstrated to modulate stress response and
promote stem cell proliferation and epithelial regeneration
(Buchon et al., 2009). Specifically, the pathogenic bacterium
Erwinia carotovora was shown to be important to undergo
intestinal epithelial repairs. This result supports the influence
of gut microbiota in epithelial healing, as seen in mammal
models. However, unlike vertebrate gut, in Drosophila, the
intestinal microbiota is composed of either aerotolerant or
obligate aerobes, suggesting that oxygen is able to circulate
across the Drosophila gut (Chandler et al., 2011; Charroux and
Royet, 2012). This provides a limitation when comparing the
essential compartmentalization that drives the complex
ecosystem in humans and non-human vertebrate bodies.

Leading Studies in Echinoderm Microbial
Community
Microbiota has also been associated in echinoderms with other
processes important for regeneration such as metabolism and
growth. In an early study focused on another echinoderm
group, brittle stars, it was suggested that subcuticular and
intestinal bacteria could metabolize dissolved organic matter
and use it as a significant carbon source (Fielman et al., 1991;
Hoskins et al., 2003). These products frommicroorganisms such as
Pseudoalteromonas atlantica are proposed to be important for
echinoderm physiology, including regeneration processes. The
link between microbiota and nutrient availability has also been
studied in sea stars, where the need for symbionts’ assistance to
ingest structurally complex polysaccharides or require
detoxification of dietary products has been suggested (Douglas,
2009). These organic compounds produced by symbionts are
potentially used as energy to promote growth and regeneration
(Kelly et al., 1995). In another echinoderm species, the purple sea
urchin Strongylocentrotus purpuratus, studies have also suggested
that fasting reduces bacteremia in the coelomic fluid and increases
spine regeneration (Scholnick and Winslow, 2020).

Organ regeneration in echinoderms- While regeneration of the
digestive tract luminal layer has been studied in several model
systems, regeneration of the complete intestinal organ has been
the focus of work in an understudied group of animals: the
Holothuroidea (Echinodermata) (Figure 3B). Several factors
make holothurians or sea cucumbers the ideal model system
to study the role of the microbiota on regenerative processes. The
main one is their ability to eject their digestive tract in a process
named evisceration, and to regenerate the entire organ in a period
of about a month (Hyman, 1955; Byrne, 2001; Wilkie, 2001;
Carnevali, 2006; García-Arrarás et al., 2018). This autotomy, with
the subsequent regeneration, provides a unique “natural” model
system where the process is part of the animal biology. Moreover,
the cellular events that take place during the regeneration of the
intestine in these animals have been well studied (García-Arrarás
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et al., 1998; Quiñones et al., 2002; Mashanov et al., 2005;
Candelaria et al., 2006; García-Arrarás et a., 2011; Mashanov
and García-Arrarás, 2011; García-Arrarás et al., 2018) and the
molecular basis for the regeneration is being actively investigated
(Mashanov and García-Arrarás, 2011; García-Arrarás et al., 2018;
Quispe-Parra et al., 2021). Echinoderms, being basal
deuterostomes, occupy a key branch together with the
chordate evolutionary tree, while at the same time are close to
most other invertebrates. Moreover, the digestive tube is one of
the best conserved organs, common to most metazoans. Thus,
these animals can provide useful evolutionary insights into
microbiome-host associations. Probably unknown to many, sea
cucumbers also have a huge economic value, as part of an
aquaculture industry centered in Asia. Thus, the microbiota-
host relationships of these animals extend beyond the
regenerative process and are studied in terms of health,
growth, and other issues related to their nutritional value.

Comparison ofMicrobiota Structure Among
Sea Cucumber Species
To study the role of the microbiota in intestinal regeneration,
we need to first determine the components of the microbiota of
our model organisms. Holothurians, as documented in all
echinoderms studied to date, have a microbial diversity that
is both relatively low and dominated by Proteobacteria. This
has been shown in the sub-cuticle of the brittle stars Ophiactis
balli and Amphipholis squamate (Burnett and McKenzie, 1997;
Morrow et al., 2018), in the body wall, gonads, pyloric caeca,

and coelomic fluid of multiple sea star species (Jackson et al.,
2018), in the coelomic fluid, intestines, pharynx, and gut
digesta of the sea urchin Lytechinus variegatus (Hakim
et al., 2015; Hakim et al., 2016; Brothers et al., 2018) and in
the intestine of the sea cucumbers Apostichopus japonicus and
Holothuria glaberrima (Gao et al., 2014a; Gao et al., 2014b;
Pagán-Jiménez et al., 2019).

The gut commensal microbes of sea cucumbers have been a
focus of study during the last decade. The intestinal microbiota
of three sea cucumber species: A. japonicus, H. glaberrima, and
Sclerodactyla briareus have been described using 16S rRNA gene
amplicon sequencing (Gao et al., 2014a; Gao et al., 2014b; Wang
et al., 2018; Pagán-Jiménez et al., 2019; Weigel, 2020). Though
the Proteobacteria and Bacteroidetes are among the most
abundant phyla in all sea cucumber species (Figure 4), a
difference in relative representation is seen among
different species. Proteobacteria was the predominant phylum
within the gut of the holothurian A. japonicus, while
Gammaproteobacteria was the predominant bacterial class
(Gao et al., 2014a; Gao et al., 2014b). A recent study in S.
briareus supported these findings (Weigel, 2020). In the latter
work, the taxonomic representation in the stomach and
intestine from animals that were collected from different
ponds or aquaria were evaluated and found that the mature
intestine microbiota was composed primarily of Proteobacteria.
In contrast, our group found that in the intestine of H.
glaberrima, Firmicutes was the dominant phylum followed by
Bacteroidetes, and then Proteobacteria (Pagán-Jiménez et al.,
2019). The higher abundance of Firmicutes in H. glaberrima

FIGURE 4 | Bacterial composition associated with animal hosts. This scheme presents the most representative taxa among the microbiota of E. scolopes, D.
melanogaster, H. glaberrima, D. rerio,M. musculus, and H. sapiens; however, relative representation of these taxa may vary per individual. Top phyla among the animal
kingdom includes Proteobacteria (blue), Firmicutes (white), Bacteroidetes (green), Actinobacteria (lilac), and Fusobacteria (yellow). The font size represents the relative
abundance of the lower taxonomic levels. This figure is an adaptation of Kostic et al. (2013), and contains information from the following studies: Arumugam et al.
(2011), Brinkman et al. (2011), Chandler et al. (2011), Roeselers et al. (2011), and Pagán-Jiménez et al. (2019). Images are original drawings by LD-D and AR-V.
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TABLE 2 | Summary of current findings on sea cucumbers intestinal microbial communities.

Study Sea
cucumber
model

Feeding
behavior

Methods
used

for library
preparation
and analysis

Samples
collected

Environmental
samples

Control
groups

Intestinal
dominant
bacteria

Regeneration
stages

Temporal
shifts

associated
to regeneration

process

Gao et al.
(2014a)

A. japonicus
(posterior
evisceration)

deposit
feeders

16S rRNA gene
(V1-V3), 454
sequencing,
grouped in OTUs

foregut and hindgut
contents, and
sediment

sediment sediment mostly Proteobacteria not applicable not applicable

Wang et al.
(2018)

A. japonicus deposit
feeders

16S rRNA gene
(V3-V4), Illumina
HiSeq, grouped in
OTUs

foregut, midgut, and
hindgut with cloaca

none 1) non-eviscerated
animals at the initial
stage of experiment
(plus 4days in
“template culture”)
and 2) non-
eviscerated animals
at the final stage
(55days)

Proteobacteria,
Bacteroidetes,
Euryarchaeota, and
Firmicutes

1-, 5-, 15-, 25-, 35-,
45-, 55- dpe

Earlier regeneration stage
(1–25- dpe):
Proteobacteria in all
samples, yet the sub-
dominant phyla were
different between samples.
Later regeneration stage:
(35–55- dpe)
Proteobacteria and
Bacteroidetes and the
relative abundance of both
reached above 95%

Zhang et al.
(2020)

A. japonicus deposit
feeders

16S rRNA gene
(V4–V5), Illumina
HiSeq, grouped in
OTUs

whole intestines of
regenerating
animals

not applicable intestines of non-
eviscerated sea
cucumbers

Proteobacteria,
Bacteroidetes, and
Firmicutes

10-, 14-, 18-, and
21- dpe

Bacteroidetes’ relative
abundance increased on
day 14 and day 18

Yamazaki
et al. (2016)

A. japonicus deposit
feeders

16S rRNA gene
(V1–V2) grouped
in OTUs and ASVs

feces of eviscerated
animals at different
time points

not applicable 1) feces of non-
eviscerated sea
cucumbers at
different time points
and 2) feces from all
animals at time
point 0 (pre-
evisceration)

families were explored: in
most samples
Rhodobacteraceae is
dominant followed by
Alteromonadaceae

samples collected at
different time points,
mainly 15-, 16-, 17-,
20-, 24-, and
28- dpe

The pre-evisceration fecal
microbiota is significantly
different from that of the
feces post-evisceration
One animal had a high
abundance of the family
Colwelliaceae in the feces
collected pre-evisceration,
yet the abundance
drastically decreased after
gut regeneration (around
17- dpe). Same thing
happened with
Flavobacteriaceae and
Rhodobacteraceae with
other two samples,
respectively

Pagán-
Jiménez
et al. (2019)

H. glaberrima
(posterior
evisceration)

suspension
feeders

16S rRNA gene
(V4-V5), 454
sequencing,
grouped in OTUs

anterior, medial,
posterior, and
seawater

seawater 1) seawater and 2)
tissues from
animals dissected
in situ

Proteobacteria,
Bacteroidetes,
Fusobacteria, and
Firmicutes

not applicable not applicable
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may be a key difference with other holothurians, however
microbiota differences among holothurians are probably
determined by the differences in habitat and/or feeding
behaviors (Table 2).

Apart from differences among the gut microbiota of various
species, discrepancies in the microbiota between areas of the gut
have been observed. Some of these differences are seen in the relative
abundances of the microbial community in various segments of the
digestive tract. InH. glaberrima dissected in situ (as soon as collected
from the intertidal space), both areas of the small intestine (comprised
of anterior and the medial) showed a similar microbiota, composed
mostly by members of the phylum Proteobacteria (Pagán-Jiménez
et al., 2019). However, the large (posterior) intestine containedmostly
Firmicutes. Beta analysis supported these results, revealing that the
anterior, medial, and posterior intestine samples had significantly
different microbial communities. In addition, differences between
environmental microbiota and gut microbiota were documented.
Both seawater microbial communities (collected in situ and the
aquarium water) were more similar to the communities of the
anterior and medial intestine, than that of the posterior intestine.
These data suggested a distinctive microbiota in the large intestine. In
species where the digestive tract includes a stomach, different
bacterial communities were found between the stomach and the
intestine (Weigel, 2020). Similarly, different microbiotas were found
between the water and the internal organs. Thus, all published studies
of sea cucumbersmicrobiota show significant differences between the
seawater and the intestinal communities, and differences among the
digestive tract structures themselves (Gao et al., 2014a; Gao et al.,
2014b; León-Palmero et al., 2018; Pagan-Jimenez et al., 2019; Weigel,
2020). This contrast between marine animal organs and seawater
microbial communities was found in other organisms including
corals, sea urchins, sea stars and sea anemones (Ainsworth et al.,
2015; Brothers et al., 2018; Jackson et al., 2018; León-Palmero et al.,
2018).

It is imperative to mention that the experimental design for
studies of the microbial communities in holothurians, including
the dissections and tissue collections varied among the different
studies. In some, the viscera were processed individually, while in
others the intestine was not separated from the cloaca. Thus, in
Table 2 we summarized the similarities and contrast of
holothurian microbiota studies.

Examining the Microbe-Echinoderm
Associations
In A. japonicus, the link between microbial diversity and animal
growth has been examined (Yamazaki et al., 2016). Themetagenomes
of feces of large and small sea cucumbers were sequenced, showing
that larger and smaller animals had different microbiota, and that
while the alpha diversity was similar, the relative abundance differed.
The orders Rhodobacterales, Oceanospirillales, andDesulfobacterales
were more abundant in larger animals. The long-term effects, in
terms of growth and disease resistance, of disrupting the bacterial
community of A. japonicus sea cucumbers by using antibiotics was
also explored (Zhao et al., 2019). Interestingly, after administering
different antibiotics (tetracycline, erythromycin, or norfloxacin), it
was observed that some antibiotics increased the growth of theT
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animals yet weakened their immunological system. In a different
study, Yamazaki and colleagues found that Rhodobacterales are the
third most abundant order in the fecal microbiota of A. japonicus,
and the relative abundances were significantly higher in larger
animals than in smaller individuals (Yamazaki, et al., 2016).
However, the subsequent article by Zhao and colleagues reported
a decreased relative abundance of Rhodobacteraceae in A. japonicus
juveniles when treated with either tetracycline or erythromycin, but
an increase in sea cucumber survival and body weight (Zhao et al.,
2019). The above summarized studies demonstrate how bacteria
metabolic activity might play a key role in providing the energy
source to hosts to facilitate or activate their cellular and molecular
process.

Is the Echinoderm’s Regenerative Capacity
Influenced by the Microbiota?
Two types of studies explore if the microbiome influences the
intestinal regeneration of holothurians. The first group of studies
focuses on correlating changes in the microbiome with different
stages of intestinal regeneration. The regenerating gutmicrobiome of
A. japonicus was characterized, showing that Proteobacteria (Wang
et al., 2018) or Actinobacteria (Zhang et al., 2020) were the dominant
phyla from wound healing stage to lumen formation (early in their
regeneration process), and at later stages of regeneration,
Proteobacteria and Bacteroidetes became the dominant phyla
(Wang et al., 2018; Zhang et al., 2020). This change suggested
that during early stages of the regeneration process, the gut was
populated mostly by the bacteria from the sediments and water, and
then was gradually replaced by digestive-associated microbiota.

An expanded analysis of regenerating intestine microbiota in a
different holothurian species, S. briareus, documented higher
richness (on day 20 after evisceration) and evenness (on day
13–20 after evisceration), when compared to mature intestines
(Weigel 2020). Moreover, an Alphaproteobacteria species
abundant in mature intestine samples was not found in
regenerating intestines. Regenerating stomachs were found to
be more diverse in comparison to mature ones. Interestingly,
beta-analysis plots showed that regenerating stomach and
regenerating intestine were similar. Taxonomic representation
and alpha diversity analysis revealed that the regeneration process
was associated with a change in microbial community that
recovered at the end of the regeneration process. In addition,
tank residence, but not collection site, were suggested to affect gut
microbial community, however changes in the regenerating
microbes were not simply due to tank effects.

It is important to highlight these studies because they propose a
correlation between the gut microbiota and the regeneration
process. However, as mentioned before, these findings were
shown mainly by using functional inferences from genomic data
which do not strongly establish that the microbial community
causes a particular effect ruling the intestinal regeneration
associated events. For example, genomic data cannot distinguish
if the organisms found in this community were even alive or if they
were transient (ingested debris or indiscriminate colonization).
Thus, the future of this field is beyond correlative analysis, and it
requires experimentation that delves directly into the microbial

community influence and if its modulation alters the effects on
host’s regeneration.

The second type of study, which precisely examined the role of the
microbiome in holothurian gut regeneration, was recently published
by our group (Díaz-Díaz, et al., 2021). Here, different antibiotic
cocktails were used to cause dysbiosis and study the influence of the
commensal community in the intestinal regeneration process. We
observed that antibiotic treatments altered cellular processes
associated with regeneration such as cellular dedifferentiation,
extracellular matrix remodeling, and cell proliferation. To rule out
that the antibiotics were exerting a direct effect on the holothurian
tissues, we performed MTT assays on dissociated cells and explant
cultures. Ex vivo experiments suggested that the antibiotics used did
not directly alter the holothurian tissuemetabolic activity, while being
capable of inhibiting gut bacterial populations in vitro. Therefore, we
proposed that the antibiotics are influencing H. glaberrima
regeneration via the dysbiosis of the gut microbiota. Moreover,
because H. glaberrima microbiota is mainly composed of
Firmicutes (mostly Gram-positive bacteria) and Proteobacteria
(mostly Gram-negative bacteria) (Pagán-Jiménez et al., 2019), and
the cocktails targeting mostly the Gram-positive bacteria had the
most detrimental effects over the intestinal regeneration, we suggest
that Firmicutes may have a crucial role in the progression of the
intestinal regeneration. Antibiotics have also been shown to have
long-term effects on holothurian growth and disease resistance. In an
experiment where antibiotics (tetracycline, erythromycin, or
norfloxacin) were administered to disrupt the bacterial
community, some antibiotics increased the growth of sea
cucumbers, yet appear to inhibit the animal immune system
(Zhao et al., 2019).

Furthermore, the role of the microbiota during regeneration
could be addressed using other echinoderms. The crinoids, which
are well known for their potential to regenerate their arms, can also
lose and renew their entire digestive system (Dendy, 1886; Meyer,
1985; Meyer, 1988; Mozzi et al., 2006; Bobrovskaya and Dolmatov,
2014; Kalacheva et al., 2017). These studies describe the fast visceral
regeneration potential in crinoids, such as Antedon mediterranea,
Antedon rosaceus, Himerometra robustipinna and Lamprometra
palmata, through histological and cytological analysis but were
neglected for many years. We propose that echinoderms are
promising models to elucidate if, and how, the regeneration
events in the digestive system are influenced by the gut
microbiota. Moreover, these organisms provide models whose
findings on the whole organ regrowth are not limited solely to
the study of the repair of the luminal epithelium layer of the intestine.

Nevertheless, we acknowledge that these models have some
disadvantages. First, one deficiency for many of the echinoderms
members is the lack of genomic and metagenomic data available.
Second, as they aremarine invertebrates, the structure and function of
their microbiota might be very distinctive, in comparison to humans;
colonized by species that are not observed in terrestrial vertebrates.

CONCLUSION

Microbiota effects on regenerating tissues are just beginning to be
investigated. The initial findings strongly suggest that, indeed,
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bacterial species composition is an important factor in the timing
and effectiveness of the regenerative process. However, most of the
available data is correlative and needs to be backed by functional
studies. These correlative studies on microbial successions and the
regeneration process do not demonstrate a causal effect on the
intestinal regeneration exerted by the gut microbiota. Nonetheless
they do provide some evidence that supports the hypothesis that the
microbiota may be influencing regenerative events.

The challenge for future investigations is to identify the specific
roles of the microbiota and the signaling pathways or physiological
processes by which theymight modulate regeneration. Central to this
issue is the use of appropriatemodel systems in which to decipher the
specifics of the microbe associations. We consider that in vivo
examinations where the use of agents that modulate the
microbiota, such as prebiotic, probiotic or antibiotics, will be
crucial to understand the role of these microorganisms during gut
repair mechanisms. Here, we have described various promising
echinoderm models to decipher the role of the microbiota during
intestinal regeneration, that encompasses the whole organ formation
beyond the luminal epithelium repair and homeostasis. We propose
that this need may be fulfilled in part by the sea cucumber intestinal
regenerationmodel. The fact that the regenerating organ is a structure
present in most metazoans and is the one organ where most
microbiome studies have been made, makes this model
particularly attractive to study host-microbiome interactions. Thus,
we expect that studies with holothurians will provide groundbreaking
knowledge on the field of microbiome-host associations and their
impact on regenerative processes. However, this model also has some
limitations. Among them, the need to improve the molecular tools
available to study the specific functions of certain genes as well as the
present limitations on identifying and characterizing many bacteria
(and other components of the microbiota) that are difficult or
impossible to grow in the laboratory. Nonetheless, we believe that
comparative studies using the sea cucumber, as well as other models,
will be transformative in defining the interactions of host-
microbiome in regenerative processes.
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