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Changing readiness to mitigate 
SARS‑CoV‑2 steered long‑term 
epidemic and social trajectories
Kai Wirtz

Societal responses crucially shape the course of a pandemic, but are difficult to predict. Mitigation 
measures such as social distancing are here assumed to minimize a utility function that consists of 
two conflicting sub-targets, the disease related mortality and the multifaceted consequences of 
mitigation. The relative weight of the two sub-targets defines the mitigation readiness H, which 
entails the political, social, and psychological aspects of decision making. The dynamics of social 
and behavioral mitigation thus follows an adaptive rule, which in turn is mediated by a non-adaptive 
dynamics of H. This framework for social dynamics is integrated into an epidemiological model and 
applied to the ongoing SARS-CoV-2 pandemic. Unperturbed simulations accurately reproduce diverse 
epidemic and mitigation trajectories from 2020 to 2021, reported from 11 European countries, Iran, 
and 8 US states. High regional variability in the severity and duration of the spring lockdown and in 
peak mortality rates of the first SARS-CoV-2 wave can be explained by differences in the reconstructed 
readiness H. A ubiquitous temporal decrease of H has greatly intensified second and third waves and 
slowed down their decay. The unprecedented skill of the model suggests that the combination of an 
adaptive and a non-adaptive rule may constitute a more fundamental mode in social dynamics. Its 
implementation in an epidemic context can produce realistic long-term scenarios relevant for strategic 
planning, such as on the feasibility of a zero-infection target or on the evolutionary arms race between 
mutations of SARS-CoV-2 and social responses.

Societies struck by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemics in early 2020, 
mostly in Western industrialized countries, managed to reduce infection rates through non-pharmaceutical 
mitigation such as social distancing1,2. After these societies started to lift lockdowns in May 20203,4, some reached 
very low case numbers, while others faced continuously high mortality caused by the coronavirus disease 2019 
(COVID-19). Later in autumn and winter 2020/2021, all these regions were hit by massive second and third 
waves, despite the experiences gained during the first lockdown5. By then, societies revealed considerable regional 
and temporal variation in their decision-making and application of mitigation rules6,7. One major problem when 
guiding the defense against SARS-CoV-2 was the lack of reliable mid-term scenarios8,9, which stimulated the 
development of predictive tools. The greatest challenge in this development was the incorporation of human 
agency into conventional epidemiological models7,10–12, which could refer to few conceptual approaches13,14. 
Despite the high number of arising models based on, e.g., rule-based, fitted, extrapolated, or pre-defined scenario 
settings9,15–20 or immediate solution of an objective function21–23, none could so far reproduce the observed re-
adjustments in social distancing across different countries.

Here, it is assumed that societal responses are more predictable than one commonly thought. Societal deci-
sion-making is in particular suggested to be rooted in rationality, which is expressed by a composite utility func-
tion that in turn becomes subject to non-adaptive changes. This means that variations of the response during a 
pandemic should reflect a region-specific balancing of mitigation costs and benefits with the weight of mitigation 
costs gaining priority over time, which increases societal avoidance and reduces mitigation readiness. The concept 
is integrated into a susceptible-infected-recovered (SIR) model for developing a generic because region-inde-
pendent tool for mid-term epidemic predictions, which will here be used to run a number of numerical hindcast 
experiments. These experiments should test the plausibility of the concept insofar it is able to reconstruct regional 
variability in actual viral spread dynamics and in social distancing. The analysis of the experiments should then 
elucidate possible drivers and constraints of the social dynamics behind regional mitigation trajectories.

The model resolves seven age groups, and is the first to feature (age-specific) contact rates as prognostic and 
adaptive variables. Adaptive changes in social mixing underlying the SARS-CoV-2 transmission are assumed to 
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be driven by three pressures describing the benefits and costs of social distancing: (1) individual avoidance of 
one’s own infection and mortality, (2) social coherence in reducing the overall infection levels, and (3) costs of 
social distancing such as financial and mental health losses (see derivation in “Material and methods” section). 
Changes in contact rates are then determined by the balance of pressures (1)–(2) representing the benefit of less 
mixing and of the pressure (3) induced by the costs of less mixing. The pressures are associated with COVID-19 
mortality M in cases (1)–(2) and with the multifaceted socio-economic consequences C in case (3). They induced 
transmission shifts that minimize integral social and mortality costs ( M + C ): during a pandemic, optimal con-
tact rates are greatly reduced compared to business-as-usual (BAU) social mixing (Fig. 1a). When integrating M 
and C in the same metric, the model introduces a social trait that quantifies the relevance of avoiding deaths ver-
sus keeping BAU contact rates, thus representing a “human value”. This trait describes a full suite of aspects and 
dimensions in societal decision-making: the priority of governments to safeguard the economy, their facilitation 
of partisan polarization24, capacity of elites and people to extrapolate in time (see Sec. S2), presence of misinfor-
mation and scepticism versus effective science communication12,25, group (in-)coherence and (non-)conformity 
to norms25, individualistic versus community oriented norms25, psychological resilience versus fatigue25,26, or 
other individual attitudes such as patience, altruism, and trust in institutions12,25,27. These aspects can be mutually 
dependent, such as norm adherence of individuals being linked to socio-economic inequalities26. In summary, the 
aspects determine the mitigation readiness of a society during a pandemic as quantified by the “human value” H. 
Societies characterized by a low mitigation readiness H tolerate a higher death toll before restricting mixing and 
mobility compared to those with a higher H. At low H, elevated social costs C curtail social distancing to small 
deviations from the BAU baseline (Fig. 1b). The mitigation readiness H is the only adjustable parameter of the 

Figure 1.   COVID-19 associated losses depending on contact rate. (a) Social costs C (red line) including, 
e.g., economic downturn, cultural loss, political instability, and psychological pressure, in crease with social 
distancing and less mixing. The specific increase is high at low readiness H, thus a low value of human lives 
versus social contacts. C is assumed to have a minimum at “business-as-usual” (BAU) contact rates and to 
increase non-linearly with growing distance from those BAU contact rates; mortality M (violet line) linearly 
increases with contact rate. The minimum of the sum loss M + C (brown line) is in the model approached by 
an adaptive adjustment in social mixing. (b) Younger societies will often feature a lower H due to lacking buffer 
mechanisms and lower fraction of people at risk compared to older societies. The resulting high social costs of 
social distancing keep the contact rate close to the BAU value. (c) In contrast, aged societies will have on average 
a higher infection fatality ratio and, concomitantly, mortality rate, which motivates stricter lockdowns.
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model to address regional differences in response to SARS-CoV-2 throughout the entire simulation period. It is 
treated differently within two model variants: either H is kept constant at a base value H0 , or it steadily declines 
after the first lockdown from H0 at the disintegration rate rH.

In addition to the adaptive contact regulation, driven by utility, and to the non-adaptive disintegration of 
readiness, the model resolves adaptive changes in individual behavior. These behavioral changes also depend on 
environmental factors. For example, moving everyday life outdoors during summertime or the wearing of face 
masks can effectively reduce exposure to viral infection (see “Material and methods” section).

This study considers the COVID-19 associated mortality rate not only as part of the utility function but also 
as a major variable used for validation. Mortality data make a more reliable indicator for the infection state 
than the number of confirmed cases9,28,29. Selected by their high mortality rates in spring 2020, 20 regions were 
examined in this study, comprising 11 European countries, Iran, and 8 US states (see Tab. S1 and “Material and 
methods” section).

Model skill
Across the 20 regions, simulated COVID-19 associated death counts were consistent with the data (Fig. 2). 
Simulated and reported mortality accurately match for the period from February to September 2020, and also 
the subsequent wave was reproduced by the model with only moderate deviations and time lags, including the 
occurrence of third waves for Louisiana, Georgia, and Iran. Fitting of the second and third waves can be further 

Figure 2.   Daily mortality rate simulated either in a variant with constant H=H0 (olive line, rH = 0 in Eq. (4)) 
or one with decreasing H ( rH > 0) after the first lockdown (red line). Uncertainty in model trajectories (shaded 
areas) arises from simulations with close-to-optimal H0 values as well as a range in external input ( γ ). From the 
reported and corrected mortality data (see “Material and methods” section, blue line) only the first 180 entries 
were used for calibration of H0 (dark blue line), while the second half of the time-series is shown for comparison 
(light blue line). Note the different scaling of the y-axis as also visualized by the grey line at M=10−5d−1 , which 
roughly corresponds to the mortality rate at starting capacity limitation of ICU hospitalization. European 
countries are labelled in blue, US states in red. The ordering of regions from left to right reflects increasing base 
H0 (defined in Eq. (5); grey numbers to the right top, relative to 104 ), and from top to bottom the decreasing 
product of the initial spread rate β ′

0
 Sec. S5 and the awareness �t (Sec. S2).
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improved by calibrating three instead of one parameter (Fig. S2). The overall agreement is remarkable because 
mortality trajectories differed greatly among regions9,28 and model runs represent true hindcasts: apart from a 
superimposed synchronous initiation of the first lockdown (see “Material and methods” section) simulations 
were not corrected or tuned. This indicates a high predictive capability even in the mid to long term.

Lockdown severity and mitigation readiness
The high skill of the model largely relied on the account of human agency as visible from the stark differences 
between the reference run and a variant neglecting mitigation and behavior (Fig. S1). The ratio between the 
reported intensity of social distancing and mortality during the first wave constrains regional values of the base 
mitigation readiness H0 (see Eq. (5) in “Material and methods” section). These reconstructed differences in H0 
already account for regional variations in the age structure. For example, the typically high median age of Euro-
pean populations (Tab. S1) infers a high infection fatality ratio (IFR) and therefore also severe social distancing 
at otherwise equal specific mitigation costs as given by H0 (Fig. 1c). Notwithstanding, high H0 were calibrated for 
many European countries that had faced a strong and enduring spring lockdown (Fig. 3) independent of their 
peak mortality rate (Fig. 2). To the contrary, inverse modeling attributed a relatively low H0 for most US states 
with their often milder lockdowns despite elevated mortality (Fig. 2, S3, Tab. S1). Values for US states, apart for 
Washington, lay in a narrow range (1.3–4.2 104 ), which may point to a small variability of this aggregate social 
trait within countries (see also Fig. 4). Regional differences especially in the trajectories during spring–summer 
were not only determined by calibrated H0 , but also by the variable age and household structure. For example, 
minimal contacts already found earlier to shape the first wave21 are here formulated in terms of the household 
structure (Sec. S6). In regions with small H0 and lacking intense first lockdowns, mortality either decayed much 
slower compared to the average of all regions such as in Sweden, or a second wave built up already in summer 
2020 such as in Louisiana (Fig. 2). The simulations well captured not only regional differences in lockdown sever-
ity, comprising a lockdown mobility above 50% of pre-pandemic levels (e.g., in Sweden or Georgia) or below 
20% (e.g., UK or Italy), but also the different rates of recovery in mobility such as a fast return to BAU mobility 

Figure 3.   Mobility in 2020–2021 measured based on routing requests from mobile Apple devices (blue line), 
compared with the summed contact rate (Eq. (S8) in Sec. S6) in the reference simulation with constant H=H0 
(olive line) and the simulation with decreasing H (red line, see Fig. 2). Severity of the spring lockdown is 
displayed as blue area below a mobility of 50% of the base level in February 2020.
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in New Jersey versus a slower one in Washington (Fig. 3). The single calibration parameter H0 hence appeared 
to infer a realistic mutual interdependency of mobility and mortality patterns across regions so that mobility 
trajectories were overall in high quantitative agreement with the data.

Decreasing readiness promoted the second wave
For the second or third waves, the agreement between reported and simulated trajectories deteriorates if mitiga-
tion readiness stays constant in the model. Peak mortality rates in autumn 2020 found by hindcasting were on 
average a factor of three lower than the reported ones. Peak death tolls were instead quantitatively reproduced 
by the model variant including a catch-up mechanism generated by a steady post-lockdown decline in H (dis-
integration rate rH > 0 , Fig. S3); reproduced peaks in part had a temporal shift of up to 10 weeks, such as for 
Ireland where data of late January (not shown) agree with the forecasted peak height (Fig. 2). The second wave 
was better fitted by the first model variant in France and the Netherlands, however at the cost of overestimating 
mobility in winter 2020/2021 (Fig. 3). After extending the regional calibration to more parameters, the COVID-
19 mortality rates of these countries were best reconstructed using non-zero disintegration rates (Fig. S2). The 
model variant with rH > 0 in general reproduces the strong social mixing, happening during late 2020, in the 
data more accurately than the variant without disintegration (Fig. 3). Better performance of the variant with 
rH > 0 is also found in the third waves in Louisiana and Georgia (Fig. 2).

In Louisiana and Georgia—and a few others—peak mortalities were underestimated by an extensive US-wide 
modeling study20. There, simulations were well constrained also in terms of mitigation measures until autumn 
2020 and run freely thereafter. This, together with the much better fit of the model presented here in its extended 
calibration (allowing for later disintegration start, Fig. 2, S2), point to a rather delayed decline of mitigation 
readiness in some regions (e.g., Louisiana and Georgia). The simple scheme proposed here (Fig. S3) thus requires 
refinements such as a dependency of the disintegration on social or psychological factors.

Alternative pathways for industrialized countries
The moderate autumn/winter death toll in the model variant with constant H=H0 raises the question as to 
whether different mitigation strategies in the study regions could have led to a “zero Covid” situation, as achieved 
by few Asian countries, and also proposed as best-case scenario elsewhere30. More rigid strategies were here 
emulated by upwards shifts H after the first lockdown (and then keeping H constant) in consecutive numerical 
experiments. After raising readiness H by about one order of magnitude from the regional base value, viral infec-
tion was eradicated across regions (Figs. S4, 4). One may argue that Western societies may not have tolerated 
deeper and longer cuts into individual rights of privacy and movement or into economic operations at nearly 
invisible infection density in summer-autumn 2020. However, magnitudes of the upwards shifts in H required 
for a practical extinction of the pathogen correspond well to the magnitudes of (dynamic) downward shifts 
reconstructed for the same period (Fig. S3). The corresponding high “human value” ( H > 106 , Fig. 4), hence, 
does not entirely appear out-of-reach and may reflect not only higher appreciation of each individual life but 
also greater awareness of the exponentially growing number of cases following each infection.

Figure 4.   The death toll after the first lockdown for increased base mitigation readiness (with constant H=H0 ). 
The grey area marks the range of H0 corresponding to mitigation efforts that are required to eradicate the virus 
(“zero Covid”). Reference H0 s are highlighted as circles. Travel input and disintegration were switched off ( γ ′=0, 
rH=0). For better visibility, only half of the regions are shown; their abbreviations are given in Tab. S1.
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Along these lines, an otherwise non-preventative strategy or a full travel ban cannot improve the situation by 
very much. To the contrary, without imported cases, γ =0 in Eq. (1), simulated peak mortality rates of the second 
wave even increased in regions with low case numbers during summer (Fig. S5). When viral infection strikes 
from very low non-zero levels achieved at γ=0, spreading rates can develop faster compared to the reference sce-
nario ( γ > 0 ). Yet, faster spreading rates are harder to defend against, which evokes higher peak mortality rates.

Role of young people
Social distancing similarly affected all age groups. Simulated age distributions of cases were rather flat (Fig. S6), 
in qualitative agreement with first seroprevalence studies31,32. The imposed decline of BAU contact rates from 
the younger and the elderly is counterbalanced by the model setting of lower attack rates of the younger. As a 
result, young and medium aged cohorts can maintain finite contact rates during the lockdown, especially in low 
H regions such as the US (Fig. S7 and Fig. S6). Contagion within younger adults during summer 2020 fueled 
the hindcasted epidemic rebound in all study regions (Fig. S8). The low IFR of young adults also explains why 
according to reported data the ubiquitously higher case numbers of the second wave (Fig. S8) coincided with 
lower mortality in most regions33.

The shift toward younger ages during summer is confirmed by US and German monitoring data34,35; although, 
the cohort from age 15 to 30 (year) was the most prominent, whereas simulated infection levels were highest 
among adults older than 30 (Fig. S6). This discrepancy may indicate a lower conformity with mitigation meas-
ures within young cohorts than assumed by the optimal transmission regulation of the model, which is cor-
roborated by studies revealing stronger non-conformist attitudes among adolescents and young adults during 
the pandemic36–39.

Behavior and seasonality matter
During the course of the spring lockdowns, decreasing behavioral exposure eb significantly helped to combat the 
first wave in the simulations (see also Fig. S10), a finding that underlines the relevance of using face masks40,41. 
Readiness to improve behavioral protection appeared to increase under high peak mortality and/or high H value 
since both conditions cause intense (model) lockdowns that are here linked to behavioral shifts.

Even in regions displaying relatively inert behavioral adaptation, effective exposure e (= eb · eE ) markedly 
decreased in late spring 2020, which in the model follows from the transition to spread-reducing environmental 
conditions ( eE ). The decreases in eE condense multiple bio-physical and behavioral processes driven by higher 
temperature and intensity of solar radiation, such as the effects on viral viability, or on shifting activities from 
indoor to outdoor. Conversely, as also anticipated by virologists42,43, returning autumn/winter conditions contrib-
uted to the arrival of the second wave (Fig. S10), which is also visible from the synchronized dynamics of e and 
I (Fig. S9 and S8). Seasonality effects are, against expectation, most evident for regions at relatively low latitude 
such as Louisiana and Iran, where the increase in eE already started during summer (Fig. S9) due to supra-optimal 
temperatures, and was furthermore accompanied by high values of behavioral exposure eb (see also Fig. S10). eb 
relaxes to higher values in all regions (Fig. S9) during summer, which seems to contradict the constant or later 
even increasing overall willingness to wear face masks as suggested by polls44 (redrawn in Fig. S9). This relaxa-
tion is in part a model artifact linked to the simplistic coupling of changes in behavior with social distancing. It 
may however also emulate a real mechanism of declining protection due to higher behavioral exposure of young 
people36–39. Given their increasing dominance of the case distribution, this has likely induced a net shift in aver-
aged eb towards less protective behavior despite the overall trend towards higher protection.

In total, higher behavioral as well as environmental exposure together with softer social distancing in winter 
2020/2021 considerably slowed down the decay of the second wave in comparison to the first wave (Fig. 2).

Increasing the forecast horizon
In all simulations, infection waves were dampened or halted by transmission reduction and not by depletion 
of those susceptible, as forecasted by many state-of-the-art models. SIR models cannot seamlessly produce flat 
infection curves if they do not account for human agency (see also Fig. S1). This in part explains why—similar 
to similar statistical models–SIR models typically have a forecast horizon of only few weeks8,45,46.

First attempts to extend epidemiological dynamics by macroeconomic factors27,47–49 use a utility function 
similar to the approach presented here; they also distinguish between different types of agents such as “private 
individual” (cf. here the selfish pressure) or “social planner” (community pressure). However, economic models 
rely on equilibrium assumptions and on strictly quantifiable (monetary) units and, thus neglect potentially 
important non-economic aspects of societal decision-making such as learning under uncertainty, psychological 
fatigue, or political partisanism12,24,25. The negligence of sensible and dynamic control processes may be respon-
sible for why the regular outcome of economic approaches remained within the herd immunization scenario of 
SIR models. Much related to these economic models, optimal control21–23,50 or game theoretical approaches51 
use an objective function similar to the one used here but assume instantaneous optimization. By contrast, the 
adaptive dynamics approach taken here resolves finite flexibility and (delayed) learning of societies. At higher 
responsiveness, thus approaching an idealistic “optimal control” scenario, secondary and third waves would have 
been much more suppressed (see Louisiana at higher δ in Fig. S10). Another important difference to previous 
models accounting for behaviour is the integration of age-structure, which however necessitated to combine 
altruistic and self-interested aspects in the objective function. The results shown here overall suggest the high 
relevance of models to resolve societal responses dynamically.

Other than social dynamics, recent approaches emphasize social actions; they are based on semi-heuristic 
rules of social distancing such as piecewise re-fitting of transmission19,52, imposing pre-defined or rule-based-
shifts17,18,20, relaxing transmission28, and relaxation cycles9,15. These approaches may be a supportive tools for 
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short-term decision problems, but often lack a testable description of (changing) mitigation as well as a valida-
tion of a monthly or longer time scale. More validation effort is also required for the model presented here; This 
could include application of the model to a broader range of regions, in particular non-Western countries. As 
for any model, there are caveats, which are briefly summarized in Sec. S9. Yet, the ability to hindcast rich vari-
ability in mitigation and mortality trajectories across regions can be exploited for supporting planning against 
forthcoming epidemic waves. While some regional characteristics such as age structure or seasonality cannot 
be shifted, behavior can change, however at multiple costs with mid- to long-term repercussions. Policy makers 
and the public could be informed on consequences of staying at or relaxing from a certain readiness level. This 
study should in particular increase their awareness about the relevance of ongoing social dynamics. Given that 
the decline in readiness has been suggested here as the primordial driver for the evolution of mitigation and 
viral spread in western countries from autumn 2020 to spring 2021, mitigation efforts should be planned at a 
longer time horizon, which is here defined by the availability of pharmaceutical measures such as vaccines. In 
the face of a pandemics, societies can either sprint to a “zero Covid” target—or run at a pace they can hold over 
an enduring battle.

Blueprint for adaptation problems
This study highlights adaptive social responses, individual behavior and their possible deterioration as critical 
controls of the SARS-CoV-2 pandemic. The unprecedented flexibility of the model to fit epidemic and aggre-
gated contact curves across many regions may indicate that the model captured the governing principles of viral 
and social dynamics during a pandemic to a reasonable degree and that adaptive capacity makes an important 
component of human agency.

However, adaptive capacity is also an attribute of viruses. Mutations in SARS-CoV-2 started to impact spread 
trajectories53–56. These mutational drifts in parameters of SARS-CoV-2 virulence and incubation behavior can be 
resolved analogue to the adaptive dynamics implemented in the social model (Eq. (7) in “Material and methods” 
section). This extended framework would facilitate modeling studies on the evolutionary arms races between 
human societies and SARS-CoV-2 or other viruses. The framework can further be used as a blueprint for related 
problems, such as Climate Change assessments, which share, e.g., the balancing of environmental pressures 
with costly adaptation and mitigation efforts, or the need for extrapolating aspects of the utility function into 
the future. During the pandemic and Climate Change, human agency is not an external boundary setting but 
an integral part of system dynamics.

Material and methods
The societal‑epidemiological model.  The epidemiological section of the model resembles a SIR model 
as it distinguishes between susceptible and recovered people, and those infected by SARS-CoV-2. For seven age 
classes i = 1 . . . 7 , it resolves the fraction of infected individuals Ii of age group i relative to the total population 
size. Ii increases when susceptible people in that age class ( Si ) contract the virus and decreases at specific recov-
ery rate r (Tab. S2):

A global external input rate γ into a region (e.g., from travelers) is parametrized in Sec. S7. At simulation start, 
the fraction of susceptible individuals Si equals the population fraction ϕi of the age cohort and thereafter declines 
due to infection and subsequent immunization or fatality, Si = ϕi e

−
∫

βidt . Group transmission rates βi comprise 
(1) variations in the effective exposure e = eb · eE by behavioral changes eb and environmental factors eE (see 
below and Sec. S8) and (2) changes in contacts between age cohort i and all age groups ( 

∑

j βjiIj ). The specific 
transmission rate βji describes the probability per individual of potentially contagious encounter, and has to be 
distinguished from the contact rate mij , which is the probability per age group of physical encounter,

with specific attack rates αi (Sec. S1). Infection described by Eq. (1) leads to a (lagged) mortality rate M caused 
by COVID-19 given by

with age-specific IFR ωi (Sec. S1).
Reductions in mixing and transmission by social distancing or other related restrictive measures induce a 

multi-facetted “social cost” (C)57. This quantity aggregates over various damages of social distancing on eco-
nomic and psychological well-being, political stability, or cultural diversity1,16,57–59. Social cost C of mitigation is 
assumed to rise with increasing social distance ( SD ), which is the sum over all differences of contact rates mij to 
the associated values mij,0 before the epidemic, weighed by mij,0 and sizes of interacting age classes.

The quadratic dependency on contact rate ratios (being linearly related to M) resembles the relationship between 
GDP loss and mortality at varying social distancing parameters formulated in few economic models48or the one 

(1)
dIi

dt
= βi Si − r Ii + γi with βi = e

∑

j

βjiIj

(2)ϕiβij = αiαjmij

(3)M =
∑

i

ωi βi Si

(4)C = H−1 · SD with SD =
∑

i

∑

j≤i

ϕi ϕj mij,0 ·
(

1−
mij(βij)

mij,0

)2
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between reduction in transmission rate and the objective function in an optimal control model23,50. The quadratic 
relationship encompasses tolerance against small deviations and the strong effects of downturning contacts to 
their minimum. Similar functions were recently shown to induce only moderate differences in the model results, 
unless they would be linear in mij(βij)

23. The proportionality coefficient H−1 determines how mitigation costs at 
a given level of SD are perceived and prioritised by a society in units of the mortality rate so that its inverse, H, 
is here denoted as mitigation readiness since a low specific weight of costs is connected to high willingness to 
mitigate. The specific burden or weight H−1 may grow over time because of delayed and accumulating impacts 
of mitigation on societal, economic, and psychological well-being58–61. Inspired by classic models for smooth 
transitions between two socio-technological states62,63, the time evolution of H−1 is assumed to follow a logistic 
growth equation

with “disintegration” rate rH , lower boundary H−1
0  ensuring finite social costs, and upper boundary (“capacity”) 

H−1
0 + cH . In the model, the disintegrative increase of H−1 is activated at day treset when the net infection at low 

case numbers returns from a negative to a positive rate after the first lockdown. The analytical solution of Eq. (5) 
is a sigmoid function, H = H0 · (1+ cH/2) · (1+ e−x)(1+ cH + e−x)−1 with x = rH (t − treset).

A zero or non-zero disintegration rate rH distinguishes the two model variants used in this study. Mitigation 
readiness H links the socio-economic part of the model with the epidemiological one because it converts the 
loss function C to the same units as the loss function M. This enables the definition of the total loss L function,

Avoidance of pathogenic transmission (by lowering βji ) and, as a consequence, reduced COVID-19-associated 
death toll has to be traded off with associated social costs. Societal transmission regulations are suggested to be 
rational, in terms of minimizing the combined loss L. The existence of the utility function L(βij) describes the 
social regulations as the adaptive dynamics of specific transmission rates βij . Following the adaptive trait dynam-
ics approach64, also applied to societal dynamics65, transmission regulation is formulated as an evolution equation 
for βij , as a result emerging from decisions of individuals up to the “central planner”. Direction and finite speed 
of this multi-level regulation entails a “responsiveness” δ times the marginal dependence of L on changes in βij.

In a physical analogue, responsiveness δ describes the conductivity of how fast emerging threats induce new 
societal rules. The bracketed derivative terms then express a pressure acting on social traits, which is divided 
into three parts (see also Sec. S2): the first term in Eq. (7) can be directly calculated from Eq. (4) to be propor-
tional to βij,0 − βij and hence seeks to relax societal life to the pre-pandemic state. The second term in Eq. (7) 
quantifies the demand of life protection and simply follows from the mortality dependence on infection rates 
in Eqs. (1)–(3). This term is proportional to the IFR ωj of the target age group, which strongly decreases in 
younger cohorts (Sec. S1). As a consequence, only interactions with and among senior groups would experi-
ence high reduction pressure; however, these contacts among or with the elderly cannot be shut down entirely 
(see Sec. S6), so that virulence among young people can persistently contaminate the elderly. This side effect of 
isolated regulation in individual age-groups necessitates the extension of an adaptive dynamic framework by the 
third, “community-oriented” derivative term in Eq. (7), which is based on averaged target variables (I instead of 
Ii ). This term represents the responsibility of governments and the population as a whole, and requires sociality 
of young, non-risk groups (Sec. S2).

In addition to the adaptive shifts in contact rates, the model includes variations in the behavioral reduction 
of exposure eb . For example, wearing face masks or keeping sufficient interpersonal spatial distance up to self-
isolation further lowers the infection risk at a given frequency of physical contact. The difficulty in formulating 
a reasonable cost function for behavior changes leads to a heuristic dynamics linked to social distancing ( SD , 
defined in Eq. (4)): people are assumed to be more prone to adopt new behavioral rules at higher reductions 
in mobility and livelihood. This is expressed by a relaxation where eb seeks to approach a target value e∗ that 
decreases from its pre-pandemic value e∗ =1 with increasing SD

with specific adoption rate rb and specific behavioral sensitivity ǫ . The square root dependency reverts the squar-
ing in Eq. (4) in order to create sensitivity to small variations in SD.

Data integration and region selection
Fatality data were downloaded on Jan, 16, 2021 from the Johns Hopkins CSSE COVID-19 Dataset33 and smoothed 
by 7-day averaging. A regional correction factor was then applied to the data. The factor averages the temporal 
means of the CSSE data and the estimated excess deaths for US states66 and for European countries67. Regions 
were selected if they had >700 death cases by April 25, 2020, and a relative mortality above the threshold Mcrit 
= 7 ·10−7d−1 by Mar, 25, 2020. China was excluded due to data irregularities and to its pioneering role in han-
dling the epidemic. For Ireland, old cases from retirement homes reported on April 24 were re-distributed to 
the preceding time series. Iranian mortality data were multiplied by a higher and initially dynamic correction 

(5)
d iH

dt
= rH · iH ·

(

1−
iH

cH

)

with iH = H−1 −H−1
0

(6)L = C +M

(7)
dβij

dt
= −δ ·

dL

dβij
= −δ ·

[

∂C

∂βij
+

∂M

∂βij
+

dM

dI

dI

dβij

]

(8)
deb

dt
= rb ·

(

e∗ − eb
)

with e∗ = 1− ǫ ·
√
SD



9

Vol.:(0123456789)

Scientific Reports |        (2021) 11:13919  | https://doi.org/10.1038/s41598-021-93248-y

www.nature.com/scientificreports/

factor to comply with media reports68. Tab. S1 provides a full list of countries and states, correction factors, and 
demographic or regional characteristics.

For all study regions except for Iran, mobility has been reported from routing requests of Apple mobiles69, 
which is taken as a measure for the intensity of social distancing70,71. For 7 of the selected European countries 
and USA at the country level, survey data on the willingness to wear face masks in the public44 were used as a 
qualitative proxy to compare with simulated changes in behavioral exposure.

Numerical experiments
This study is based on two systematic model calibrations (A, C) and three numerical experiments (B, D–E): 

(A)	 For each region, the model was run over 400 days from 21 days before the date when the reported daily 
mortality reached Mcrit . Initial cases Ii(0) were set proportional to (1) the regional age distribution ϕi and 
(2) the critical onset mortality Mcrit . Initial transmissions βij(0) = βij,0 were derived from reported age—
contact data and corrected using the slope of the mortality curve at the start of the simulation (Sec. S5). The 
social trait H and the awareness factor �t (Sec. S2) were systematically varied in 800 simulations for each 
region. Epidemiological parameters were estimated from literature sources (see Sec. S1). The calibration 
of �t assured a rather synchronous lockdown timing of Western industrialized countries in mid-March72. 
The reported lockdown onset was anticipated by one week for Italy and Iran, and delayed by 5 days for all 
US states. Best fitting H0 s were retrieved according to minimal root-mean-squared (RMS) deviation to 
mortality and mobility data while only the first 180 days of data were used. H0 values revealing a RMS error 
below 120% of the minimum were used to estimate uncertainty ranges, which still likely underestimated 
realistic ranges because of neglected uncertainties in factors impacting calibrated H0 such as the seasonality 
effect on exposure. The close-to-optimal H0 were combined with a range in external input γ ′ varied from 
0 to 3 103 (thus two times the reference value, see Tab. S2) to calculate the corresponding uncertainty in 
model trajectories.

(B)	 Reference settings for non-zero disintegration of readiness ( rH > 0) were applied in all subsequent experi-
ments apart of a single run without decline in H ( rH =0 in Eq. (4), thus H=H0).

(C)	 The calibration in (A) was repeated using the full data set; for the period from late December (2020) to 
mid January (2021), the RMS error was weighed ten times higher than that for the preceding period in 
order to achieve a reconstruction at elevated accuracy of the second wave. Also, three global settings of 
the reference run were systematically calibrated for each region: disintegration rate rH , disintegration date 
treset , and external input γ ′.

(D)	 A series of 1.5-year simulations were run across the 20 regions as H was systematically increased from the 
regional reference value. Import rate γ ′ and disintegration rate rH were set zero.

(E)	 Model sensitivities were assessed for two regions (Louisiana and Belgium) by varying 12 parameters 50% 
up and down from their reference value in Tab. S2.

Code availability
The code required to produce all model results is available at: https://​github.​com/​kaiwi​rtz/​Covid​SocMod.
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