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Cancer immunotherapy has revolutionized the field of cancer treatment in recent years.
However, not all patients receiving cancer immunotherapy exhibit durable responses, and
reliable, high-throughput testing platforms are urgently needed to guide personalized
cancer immunotherapy. The ability of patient-derived tumor organoids to recapitulate
pivotal features of original cancer tissues makes them useful as a preclinical model for
cancer research and precision medicine. Nevertheless, many challenges exist in the
translation of tumor organoid research to clinical decision making. Herein we discuss the
applications of patient-derived tumor organoid models and the advances and potential of
using complex immune-organoid systems as testing platforms to facilitate precision
cancer immunotherapy. In addition, we highlight intriguing applications of tumor
organoids with novel multi-omics in preclinical cancer research, highlighting genetic
editing, proteomics, and liquid biopsy.

Keywords: tumor organoid, tumor microenvironment (TME), precision medicine, multi-omics, exosome (vesicle),
CRISPR, proteomics
INTRODUCTION

Despite developments in early detection and treatment in the past decade, cancer remains the
second leading cause of death worldwide (1). Recently, the emergence of cancer immunotherapy has
revolutionized conventional cancer therapeutics and rejuvenated the field of cancer immunology
(2–5). Nevertheless, only a select group of cancer patients have achieved marked clinical responses
to cancer immunotherapy (6–9). The pressing need to improve cancer immunotherapies has
brought great attention to the tumor immune microenvironment (TIME), whose study requires
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robust and faithful preclinical research models recapitulating
patient-specific tumor-immune interactions.

The TIME, including immune cells and cancer-associated
fibroblasts (CAFs), greatly fosters carcinogenesis and tumor
progression and influences the therapeutic responses of
malignant cells (10–12). However, it was previously difficult
to model this TIME in experiments (13). Cancer cell lines
and patient-derived xenograft models (PDXs) suffer from
several limitations. The former fail to adequately reflect the
heterogeneity of tumor epithelial cells (13), and the latter are
based on the murine immune system, which cannot replicate the
tumor-immune interactions in humans (14). Patient-derived
tumor organoids (PDTOs) have emerged as a useful model
that can maintain tumor epithelial cells in a near-native state
(15). PDTOs are able to maintain the heterogeneity of original
cancers and can recapitulate the human TIME (16–18), thus
providing an intriguing opportunity to facilitate precision
cancer immunotherapy.

In this paper, we will discuss the state of the art of organoids in
cancer immunological research. The limitations and prospects of
this complex tumor organoid culture system are presented. We
propose the potential applications of complex tumor organoids as
testing platforms for various cancer immunotherapeutic
approaches including antibody-based immunotherapy, oncolytic
virus therapy and adoptive cell transfer therapy. We also highlight
the intriguing combination of PDTOs with cutting-edge multi-
omics and their applications in investigating cancer
immunobiology and developing immunotherapy drugs.
PATIENT-DERIVED TUMOR ORGANOIDS

Organoids are 3D self-organized structures derived from adult
tissue stem cells, embryonic stem cells, or induced pluripotent
stem cells that mimic key structural and functional features of
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their in vivo counterpart organs (18–20). In 2009, Hans Clevers’s
group developed the first organoids from mouse intestinal stem
cells (21), which established the starting point for other culture
protocols for mouse and human tissue-derived organoids.
The development of tumor organoid culture has allowed the
application of PDTOs to test and predict drug responses in the
context of precision cancer treatment. Currently, tumor
organoid biobanks have been established from various types of
cancer, including breast (17), lung (22, 23), colorectum (24–28),
stomach (29–31), liver (32, 33), pancreas (34), ovary (35, 36),
prostate (37), and brain (38). Although these epithelial-only
PDTOs are generally available, their lack of immune and other
nonimmune components of the TIME impedes immunotherapy
assessment, such as checkpoint inhibition blockade and adaptive
T-cell therapy. Therefore, significant effort is needed to optimize
the tumor organoid culture system, forging a path toward
organoid-guided personalized cancer immunotherapy.
RECENT ADVANCES IN COMPLEX
TUMOR ORGANOID CULTURE

An increasing number of studies have focused on the essential
factors of organoid development and novel organoid culture
methods to recapitulate the TIME, facilitating the basic research
and clinical translation of immuno-oncology. In this section, we
describe the recent advances in complex tumor organoid culture
systems (Table 1).

Adding Immune Cells to Organoid Culture
Currently, there are two conceptually different approaches to
organoid–immune cell coculture models: the reconstitution
approach expands tumor organoids and immune cells separately
and then generates a coculture system with both components,
whereas the holistic approach uses tumor organoids cultured
TABLE 1 | Overview of currently established tumor organoid-immune cell co-culture systems.

Co-culture
approach

Tissue of origin Sample type Species Immune cell type Duration
(days)

Functionality Refs

Holistic
approach

MC38 CRC cell line/
Melanoma

Cell implantation
orthotopically/Surgical
specimens

MDOTS/
PDOTS

T cells, B cells,
granulocytic, monocytic
lineages, dendritic cells,

9 days Preserve immune cell reaction to immune
checkpoint inhibitors

(39)

MC38 CRC cell line Subcutaneous mouse
tumors

MDOTS T cells 5 days Preserve immune cell reaction to CDK4
and CDK6 inhibitors plus immune
checkpoint inhibitors

(40)

Colon, pancreas, and
lung (14 distinct tissue
sites)

Subcutaneous mouse
tumors/Surgical
specimens

MDOTS/
PDOTS

Macrophages, T cells, NK
cells, and B cells

30 days Preserve the TCR repertoire of the original
fresh tumor

(41)

CRC or lung cancer Surgical specimens PDOTS CD45+ tumour-resident
leukocytes

>10 days In vitro survival of CD45+ cells (42)

Breast Surgical specimens PDOTS Peripheral blood and
tumour-derived gd T cells

2-3 w Preserve gd T cell activation and tumour
cell line cytolysis

(43)

Reconstitution
approach

Gastric cancer Triple-transgenic
mouse model

MDOTS CD8+ splenocytes and
bone marrow-derived DCs

2 days Organoid cytolysis (44)

Pancreatic cancer Surgical specimens PDOTS peripheral blood
lymphocytes & CAFs

6 days Tumor-dependent lymphocyte infiltration
and activation of myofibroblast-like CAFs

(45)
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directly from tumors while retaining endogenous immune cells (16,
46) (Table 1).

Reconstitution approaches initially expand organoids and
immune cells separately and then establish cocultures for the
investigation of organoid-immune cell interactions. The
reconstitution of tumor organoids with various immune cell
populations has been explored (Table 1). One study reported a
triple coculture of mouse gastric tumor organoids with dendritic
cells (DCs) and cytotoxic T lymphocytes (CTLs) (44). The
stimulated CTLs resulted in significant death of gastric tumor
organoids in the presence of an anti-PD-L1 neutralizing
antibody (44). Additionally, PDTO-T cell cocultures hold the
potential to predict the functionality of tumor-infiltrating
lymphocytes (TILs) after immune checkpoint blockade. In a
proof-of-principle study, the authors cocultured human
colorectal cancer organoids with TILs using a reconstitution
approach (47). The authors exposed the coculture to anti–PD-1
antibody and identified partial restoration of antitumor
immunity in TILs with increased PD1 expression (47),
revealing that these coculture assays have potential as a
platform to evaluate the efficacy of cancer immunotherapy.

In contrast to reconstitution approaches, which add
exogenous immune cells into epithelial-only tumor organoids,
holistic approaches expand and activate endogenous immune
cells within tumor organoids as a cohesive unit. A study in 2016
reported that intraepithelial lymphocytes were retained within
organoids derived from human epithelial breast tissue (43). The
authors then treated organoids for up to 4 weeks with
aminobisphosphonate drugs that have been proven to
selectively activate Vd2+ T cells, a subset of IFNg-producing T
cells. In a subsequent experiment, stimulated Vd2+ T cells from
breast organoids produced the antitumor cytokine IFNg and
efficiently killed breast carcinoma cells (43). In early 2018, two
groups described 3D microfluidic-based culture to recapitulate
anti-PD1/PDL1 cancer immunotherapy using mouse-derived
and patient-derived organotypic tumor spheroids (MDOTS
and PDOTS, respectively) (39, 40). Tumor spheroids together
with endogenous lymphocyte and myeloid populations could be
preserved for short-term (5-9 days) culture, allowing the
investigation of endogenous immune–tumor interactions (39,
40). Later in the same year, one study described a sophisticated
air-liquid interface (ALI) organoid culture method that enabled
the coculture of the original tumor epithelium with its diverse
endogenous immune cells (41). The authors showed that a
diversity of endogenous immune cell types, including tumor-
associated macrophages, T cells [T helper (Th), cytotoxic (Tc),
regulatory (Treg), and exhausted (Tex)], natural killer (NK) cells,
and B cells, were successfully cultured for up to 30 days in ALI
organoid cultures (41). Strikingly, the ALI PDTOs could preserve
the T cell receptor (TCR) heterogeneity found in the original
tumor and model immune checkpoint blockade, which led to the
proliferation and activation of tumor antigen-specific T cells and
subsequent tumor cytotoxicity (41).

Adding Cancer-Associated Fibroblasts
CAFs account for a large proportion of the tumor stroma and
play considerable roles in the TIME (48–50). Therefore, it is
Frontiers in Oncology | www.frontiersin.org 3
important to include CAFs in the culture system of tumor
organoids. Indeed, PDTOs and CAFs have recently been
employed in 3D coculture systems to investigate the reciprocal
interaction between tumor cells and CAFs (51–53). CAFs have
been utilized to supplement PDTO cultures using a
reconstitution approach (52–54). One study explored CAF
heterogeneity by coculturing pancreatic cancer organoids and
CAFs and identified two spatially separated subtypes of CAFs
with distinct protein expression profiles: high a-smooth muscle
actin (aSMA)-expressing myofibroblast-like CAFs proximal to
tumor cells and high IL-6-expressing inflammatory CAFs distally
located from neoplastic cells (53). The dynamic tumor-stroma
interaction was investigated in a 3D coculture system of lung
squamous carcinoma (LUSC) organoids with CAFs and
extracellular matrix (ECM) (55). Intriguingly, the authors
showed that CAFs could override cell intrinsic oncogenic
changes in determining the disease phenotype in the LUSC
setting (55). The ability to retain the heterogeneity and
phenotype of the original tumor tissue makes the 3D coculture
system of PDTOs and CAFs a promising model for tumor
immune microenvironment research.

Adding Vasculature
Another major issue in the current organoid system is the lack of
vascular circulation. Without a blood supply, organoids can grow
only to a limited size, beyond which the center of the organoid
would develop necrosis (56, 57). To overcome this challenge,
developments in organoid vascularization and perfusion are
required to maintain the complexity and scale of organoids.

Organoid vascularization could be generated by the
transplantation of organoids into vasculature-rich animal
tissue, including chicken chorion allantois membrane models,
with the host vasculature integrating into the organoids (58, 59).
The methods of adding vasculature in vitro include the layer-by-
layer deposition of endothelial cells and the selective removal of
material to form tubular voids that are connected to perfusion
networks (60). Moreover, vasculature is also induced in
organoid-endothelial cell cocultures in microfluidic devices
(60). In one recent study, 3D tumor spheroids were integrated
with human umbilical vein endothelial cells (HUVECs) and
normal human lung fibroblasts (nhLFs) in a fibrin gel, which
developed a perfusable vasculature in vitro (61).

Adding Extracellular Matrix
The in vivo ECM is a dynamic polymer network that not only
provides structural support but also delivers biochemical
signaling cues (62, 63). In relation to cancer research, the ECM
plays critical roles in tumor growth, invasion, metastasis, and
metabolism (64, 65). Therefore, it is crucial to integrate an
appropriate ECM into tumor organoid culture models. Over
the last decade, the most commonly used matrix for the culture
of tumor organoids has been basement membrane extracts
(BMEs) (66). The BMEs have been commercially available
under the trade name Corning Matrigel, a solubilized
basement membrane matrix secreted by Engelbreth-Holm-
Swarm (EHS) mouse sarcoma cells. BMEs that include ECM
proteins (laminin, collagen IV, and entactin) are simple to
April 2022 | Volume 12 | Article 872531
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prepare and use in organoid culture. Although BMEs have
provided a tumor-relevant environment for human tumor
organoid culture, several limitations hinder our understanding
of organoid-ECM interactions, including extensive batch-to-
batch variability, xenogenic contamination, ill-defined ECM
components, and poor control of mechanical properties (67).
Collagen is the most abundant structural ECM component in
human tumor tissues. Collagen type I matrices are also widely
used as scaffolds for tumor organoid studies because they share
biochemical and biophysical features of the TIME, such as cell
adhesion sites and stiffness (68). Tumor organoids with a
collagen type I matrix could be utilized for the investigation of
invasive cell phenotypes (69, 70). Nevertheless, as collagen is
often animal derived, collagen type I matrices suffer from similar
limitations to BMEs. Thus, it is imperative to develop new ECM
materials to replace the current animal-derived matrices.
Engineered matrices are promising alternatives for scaffolds in
tumor organoid models, offering well-defined, tunable ECMs
with high batch-to-batch reproducibility (71). Nevertheless,
engineered matrices also have some limitations, including low
culture efficiency and a lack of sufficient spatiotemporal control
to model the dynamics of the TIME. Overall, further efforts are
still required to develop the optimal ECM for tumor organoid
culture, facilitating a more complete understanding of cancer-
ECM interactions in vitro.
COMPLEX ORGANOIDS AND
IMMUNOTHERAPEUTICS

An ideal preclinical platform to test cancer immunotherapies
requires a cancer–immune cell coculture which reflects the
cellular distribution of the original tumor and recapitulates the
response to immunotherapeutic. Recent advances in complex
tumor organoids have shown this organoid system could be used
as efficient and pivotal platforms to assess the efficacy of cancer
immunotherapy and the identification of novel combination
treatment strategies.

Antibody-Based Immunotherapy
Antibody-based immunotherapy is a major form of cancer
immunotherapeutics that can specifically limit cancer cell
survival and activate the immune system to eradicate cancer
cells (72). Currently, tumor organoids have mainly been
employed as preclinical models to investigate the efficacy of
antibody-based checkpoint blockade immunotherapy. Using
either reconstitution or holistic approach, the efficacy of PD-1/
PD-L1 immunotherapy could be recapitulated in complex
organoid culture system in the presence of functional immune
cell populations (41, 45). Intriguingly, the immune–tumor
organoids system could also be used to identify novel strategies
for antibody-based combination cancer treatments. Small
molecule inhibitors such as TBK1/IKKe inhibitor or
CDK4/6 inhibitor were reported to synergize with PD-1
blockade and lead to enhanced tumor killing (39, 40). Bispecific
immunomodulatory antibodies could simultaneously bind two
Frontiers in Oncology | www.frontiersin.org 4
different antigens located on cytotoxic cell and target tumor cell
respectively, resulting in tumor cytotoxicity. Cibisatamab is a
bispecific antibody designed to target CD3 on T cells and CEA
in colorectal cancer cells. In one recent study, the complex cancer
organoids were used to identify potential novel strategy for
enhanced therapeutic effect of cibisatamab (73).

Oncolytic Virus Therapy
Oncolytic viruses that preferentially infect and replicate in cancer
cells, provide an intriguing immunotherapeutic option for cancer
patients (74). Oncolytic viruses can not only result in direct
destruction of cancer cells, but also trigger host anti-tumor
immune system responses (75). Several groups used tumor
organoids to evaluate the efficacy of oncolytic virus therapy in
preclinical settings. These studies demonstrated that oncolytic
adenovirus could show selective replication in PDTOs while not
in organoids derived from normal tissue, and tumor organoids are
ideal preclinical models to predict responses to oncolytic
adenovirus therapy (76–78). However, these studies failed to
investigate oncolytic virus therapy in complex immune–
organoids. One recent study first described the efficacy of a novel
oncolytic adenovirus treatment in PDTOs with various immune
cell populations. In order to activate multiple immune effector
populations including neutrophils and natural killer cells, the
authors engineered a Fc-fusion peptide against PD-L1 consisting
of a cross-hybrid Fc region containing constant regions of an IgG1
and an IgA1. This Fc-fusion peptide was cloned into an oncolytic
adenovirus, and enhanced oncolytic efficacy was observed in
complex immune–organoids platform (79).

Adoptive Cell Transfer Therapy
Adoptive cell transfer therapy represents an important
alternative to immune checkpoint inhibitors and uses
genetically engineered T cells with chimeric antigen receptors
(CARs) or high-affinity T cell receptors (TCRs) recognizing
tumor-associated antigens (80). In this scenario, antitumor
lymphocytes are expanded ex vivo and then given back to the
patients. While CAR-T cells targeting CD19 show prominent
effects in hematological malignancies including B cell lymphoma
and acute lymphoblastic leukemia, efficacy in solid tumor
remains elusive. Complex organoids have shown great
potential to serve as efficient platforms for evaluation of CAR
cell efficacy. PDTOs have now been used to test specific tumor
killing of CAR-NK92 targeting EGFRvIII or FRIZZLED in
colorectal cancer setting (81). Additionally, PDTOs could be
utilized as culture platforms to enrich tumor reactive T cells and
induce more effective anticancer immune responses (82).
COMBINATION OF PDTOS
WITH MULTIOMICS

Recent advances in organoids have not only facilitated biobank-
based disease modeling, cancer therapeutic strategies, and
personalized medicine (15) but also revolutionized the field of
cancer studies by improving the understanding of mechanisms
April 2022 | Volume 12 | Article 872531
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and disease modeling at the molecular level (18, 83).
Nevertheless, based on current knowledge and applications,
further improvements on the road to tumor organoid-based
clinical decision making are still required. In this section, we
will discuss the latest applications and promising prospects of
tumor organoids in various omics disciplines that could help
move precision medicine forward (Figure 1).

Genetic Engineering
Genetic engineering, especially the CRISPR–Cas9 system, has
substantially improved genetic modification and screening in
both in vitro and in vivo human cancer models, such as cell lines
and mouse models, revealing previously unknown cancer drivers
(84–90). Nevertheless, it is difficult for these preclinical models to
accurately recapitulate in vivo tumor biology. To this end, there
has been a growing interest in performing CRISPR–Cas9 genome
editing in tumor organoids. In 2013, Hans Clevers’s group was
the first to implement CRISPR–Cas9 technology in an organoid
model (91). They successfully corrected the CFTR gene in
intestinal organoids, demonstrating that the CRISPR/Cas9
system is feasible and efficient for genome editing in patient-
derived organoids (91). In one study, Han and coworkers
performed genome-wide CRISPR screens in both 2D and 3D
lung cancer models and found that screening in 3D models
captured the characteristics of oncogenes and tumor suppressor
genes more accurately than the use of 2D models (92).
Interestingly, the authors reported that the knockout of the
cancer driver gene CREBBP exerts a positive growth impact on
a 3D model but a negative growth effect in a 2D cancer cell line
(92). CRISPR–Cas9 could also be used to investigate the clonal
evolution of carcinogenesis. Successful multihit oncogenic
transformation of normal-tissue-derived organoids to
carcinoma has been achieved by introducing simultaneous or
sequential oncogenic mutations into tissues such as breast,
Frontiers in Oncology | www.frontiersin.org 5
stomach, pancreas and colon (31, 93–96). Although several
limitations need to be addressed including heterogeneous
growth rates of organoids and single-guide RNA coverage (97),
cancer organoids could serve as a promising platform for
CRISPR–Cas9-mediated genome editing and large-scale
screens to improve the efficacy of cancer immunotherapy.

Proteomics and Immunopeptidomics
Mass spectrometry (MS)-based proteomics shows great promise to
yield important insights for cancer therapy, yet poor resolution, the
need for large amounts of samples, and the absence of high-
throughput capacity are limiting factors. Recent advances in
sample processing, separations and MS instrumentation highlight
the possibility of personalized proteomics (98). The potentially
unlimited supply of well-characterized patient material makes
organoids a unique platform for personalized proteomic analysis.
In 2017, Cristobal and coworkers first performed deep proteome
profiling of human colon organoids and identified common
features shared by the original cancer samples, as well as
individual diversity that could aid in personalized cancer
treatment (99). Over the past years, the recognition of
neoantigens has been an important driver of the clinical activity
of T cell-based cancer immunotherapy, and various strategies to
identify accurate neoantigens have been pursued (100). In a 2019
study, the authors greatly improved neoantigen identification by
using deep learning and large datasets of human leukocyte antigen
(HLA) peptide mass spectrometry based on human tumor tissues
to create an optimal model of antigen presentation for neoantigen
prediction (101). It is likely that tumor organoids could serve as an
ideal system to further advance the identification of neoantigens. In
2020, Demmers and coworkers were the first to perform tumor
organoid proteomics for the investigation of intrapatient clonal
diversity in HLA peptide presentation (102). Single-cell-derived
tumor organoids showed high diversity in HLA peptide
FIGURE 1 | Complex culture system and possibilities for tumor organoids in cancer immunotherapy research. Complex immune organoid culture systems including
fibroblasts, various immune cells, and vasculature in addition to tumor organoids could be leveraged to serve as platforms for testing cancer immunotherapy. Various
state-of-the-art technologies can be used in combination with complex tumor organoid culture systems to propel precision medicine. The figure was generated on
Biorender.com.
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presentation even within the same cancer patient (102). In
summary, organoid-based proteomic analyses are currently
feasible and could expand the technical toolbox for precision
cancer therapy in the near future.

Exosomes
Exosomes are small (30-150 nm) extracellular vesicles
surrounded by a lipid bilayer membrane and secreted by most
eukaryotic cells (103, 104). The components of exosomes,
including proteins, nucleic acids (DNA, mRNA, microRNA,
lncRNA, etc.), lipids, and metabolites, play important roles in
regulating tumor growth, metastasis, metabolism and immune
escape (56, 105, 106). Exosomes have been detected in multiple
bodily fluids, including blood, urine, cerebrospinal fluid, bile, and
saliva, revealing great potential to serve as novel biomarkers for
cancer diagnosis (107, 108).

Tumor-derived exosomes are crucial in transferring
intercellular signals to modulate the TIME (109, 110). Recently,
exosomal PD-L1 has been reported to play vital roles in
systemically suppression of the anti-tumor immune response,
which illustrates potential mechanism of resistance to PD-L1
blockade (111, 112). Of note, exosomal PD-L1 before and during
anti-PD-1 treatment could indicate dynamic states of anti-tumor
immunity (111). Therefore, tumor organoid-derived exosomes
hold great promise to provide valuable insights regarding
immunosurveillance and ultimately cancer immunotherapy. To
date, only a few groups have explored the merits of PDTO-derived
exosomes in preclinical cancer research. In one study, the authors
cocultured esophageal adenocarcinoma-derived exosomes with
normal human gastric epithelial organoids (gastroids) and found
that exosomal miR-25 and miR-210 could induce an oncogenic
phenotype in gastroids (113). Another recent study indicated that
PDTO-derived exosomal miRNAs had potential as diagnostic
biomarkers for precancerous lesions of colorectal cancer (114).
PDTOs could be the source of standardized and scalable
production platforms for tumor-derived exosomes, facilitating
cancer diagnosis and immunotherapy. However, the availability
of organoid-derived exosomes in sufficient quantities, potential
contaminants from complex PDTO cultures, and heterogeneous
growth rates of PDTOs could be challenging issues, and further
research is needed. More studies focusing on the application of
organoid-derived exosomes for cancer immunotherapy are
underway, and the results are eagerly awaited.
CONCLUSION AND FUTURE OUTLOOK

The current efficacy of cancer immunotherapy is not satisfactory,
and there is a high unmet need for a faithful preclinical model
that allows better translation from bench to bedside. Tumor-
Frontiers in Oncology | www.frontiersin.org 6
derived organoids have shown promise for modeling the effects
of cancer immunotherapy. While the clinical application of
organoid technology is attractive, several significant challenges
remain to be overcome. One major bottleneck is that tumor
organoids are often derived from biopsies representing only a
small part of the entire tumor. In this way, the complexity of the
original malignant lesion will always be underrated, and
intratumoral heterogeneity could hinder clinical translation.
Additionally, the long-term preservation of various immune
cells and CAFs needs further optimization.

There are many clinical trials currently ongoing to appraise
the merits of PDTOs in precision cancer treatment. Complex
tumor organoid culture systems hold promise to unravel the
dynamic interactions between the cancer and the immune
system and to support drug screening for personalized
immunotherapy in the contexts of basic research and clinical
trials. As a research tool, tumor organoids currently offer the
most accurate in vitro system to recapitulate the original human
cancer tissues. The applications of genome-wide CRISPR
screens, proteomics and exosomes in tumor organoids show
great potential for both basic and translational cancer research in
the foreseeable future.
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