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Abstract: The impact of lifestyle on shaping the genome content of an organism is a well-known
phenomenon and cytochrome P450 enzymes (CYPs/P450s), heme-thiolate proteins that are ubiq-
uitously present in organisms, are no exception. Recent studies focusing on a few bacterial species
such as Streptomyces, Mycobacterium, Cyanobacteria and Firmicutes revealed that the impact of lifestyle
affected the P450 repertoire in these species. However, this phenomenon needs to be understood
in other bacterial species. We therefore performed genome data mining, annotation, phylogenetic
analysis of P450s and their role in secondary metabolism in the bacterial class Gammaproteobacteria.
Genome-wide data mining for P450s in 1261 Gammaproteobacterial species belonging to 161 genera
revealed that only 169 species belonging to 41 genera have P450s. A total of 277 P450s found in
169 species grouped into 84 P450 families and 105 P450 subfamilies, where 38 new P450 families
were found. Only 18% of P450s were found to be involved in secondary metabolism in Gammapro-
teobacterial species, as observed in Firmicutes as well. The pathogenic or commensal lifestyle of
Gammaproteobacterial species influences them to such an extent that they have the lowest number
of P450s compared to other bacterial species, indicating the impact of lifestyle on shaping the P450
repertoire. This study is the first report on comprehensive analysis of P450s in Gammaproteobacteria.

Keywords: cytochrome P450 monooxygenases; Gammaproteobacteria; genome data mining; lifestyle;
secondary metabolism; biosynthetic gene clusters; Firmicutes; Streptomyces; Mycobacterium; Cyanobacteria

1. Introduction

The phylum Proteobacteria is the most metabolically diverse bacterial phylum [1,2],
constituting most of the known bacteria of medicinal, industrial, and agricultural sig-
nificance [1,2]. Based on the 16S rRNA gene sequence and multiprotein phylogenetic
analysis, Proteobacteria are divided into seven classes: Alphaproteobacteria, Betaproteobac-
teria, Gammaproteobacteria, Deltaproteobacteria, Epsilonproteobacteria, Zetaproteobacteria and
Acidithiobacillia [3]. Proteobacteria members are well-known human pathogens; especially
the class Gammaproteobacteria contain bacterial species that are medically, ecologically and
scientifically important [1,2]. Gammaproteobacteria contain species with different physiology
such as anaerobic, microaerophilic, and facultative aerobic, as well as different shapes such
as rods, cocci or curve shapes [1]. Most of the bacterial species in this class are commensals
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with the ability to cause diseases and some of them are strictly pathogenic. Below we
provide brief information on well-known pathogens of this class (Table 1).

Table 1. Information on well-known pathogens of the bacterial class Gammaproteobacteria.

Species Name General Information Reference(s)

Citrobacter freundii It is a commensal resident of the intestinal tracts of both humans and
animals. It causes diarrhea and other infections in humans. [4]

Citrobacter koseri
It is present as part of human flora. It causes meningitis in neonates,

infants and immune-compromised people and in adults it causes
urinary tract infections.

[5]

Enterobacter cloacae
It is a common nosocomial pathogen capable of producing a wide
variety of infections, such as pneumonia, urinary tract infections,

and septicemia.
[6]

Enterobacter aerogenes It is a commensal of humans and an opportunistic pathogen. It causes
respiratory, urinary, blood, or gastrointestinal tract infections. [7]

Enterobacter sakasakii It is a food-borne pathogen causing a severe form of sepsis, necrotizing
enterocolitis and meningitis in neonatal infants. [8]

Escherichia coli

It is commonly found in human flora. Pathogenic E. coli can be divided
into two groups: extra-intestinal pathogens associated mainly with

neonatal meningitis and urinary tract infections in adults and intestinal
pathogens causes diarrhea.

[9]

Escherichia albertii It is an emerging human enteropathogen and avian pathogen
that causes diarrhea. [10,11]

Klebsiella pneumoniae

It used to be an opportunistic pathogen causing a wide range of
infections in immunocompromised patients, but has recently emerged

as a pathogen of healthy and immunocompetent people. It causes
pneumonias, urinary tract infections, bacteremia, and liver abscesses.

[12,13]

Klebsiella oxytoca
It is an emerging pathogen causing a wide range of infections similar to
K. pneumoniae. K. oxytoca causes neonatal infections of the bloodstream,

urinary tract, central nervous system, lung, skin, and soft tissues.
[14]

Proteus mirabilis

It is a human opportunistic pathogen. It causes infections of the urinary
tract, including cystitis and pyelonephritis. It is also found in cases of

asymptomatic bacteriuria, particularly in the elderly and patients
with type 2 diabetes.

[15–17]

Proteus vulgaris It is also an opportunistic pathogen causing infections
such as P. mirabilis. [18]

Salmonella enterica This food-borne pathogen causes typhoid and paratyphoid
fever in humans. [19]

Serratia marcescens It is an opportunistic pathogen causing bacteremia/sepsis. [20]

Shigella dysenteriae, S. flexneri,
S. sonnei and S. boydii

Shigella spp. are responsible for acute diarrhea and are major
contributors to the global diarrheal disease burden. [21,22]

Yersinia pestis It causes bubonic plague and pneumonia. It is well-known to cause one
of the most devastating diseases of human history, the black death. [23]

Yersinia enterocolitica It causes acute diarrhea, mesenteric adenitis, terminal ileitis, and
pseudo-appendicitis. [24]

Yersinia pseudotuberculosis It causes mesenteric lymphadenitis, diarrhea,
and septicemia in humans. [25]

Because of the pathogenic nature of these species, quite a large number of Gammapro-
teobacterial species’ genomes have been sequenced and are available for public use at
different genome databases, including the Kyoto Encyclopedia of Genes and Genomes
(KEGG) [26], the National Center for Biotechnology Information (NCBI) (https://www.

https://www.ncbi.nlm.nih.gov/genome/microbes/
https://www.ncbi.nlm.nih.gov/genome/microbes/
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ncbi.nlm.nih.gov/genome/microbes/) (accessed on 15 January 2021) and Joint Genome
Institute Integrated Microbial Genomes and Microbiomes [27]. Most of these genome-
sequencing articles focused on finding traits that play a role in pathogenesis to come up
with novel drug targets. However, key enzymes such as cytochrome P450 monooxygenases
(CYPs/P450s) have been neglected or not reported in the genome sequencing studies
owing to their typical nomenclature criteria that involve identification of key motifs and as-
signing the family and subfamily based on International P450 Nomenclature rules [28–30].
Only a handful of studies reported the presence of a number of P450s in certain groups
of Gammaproteobacteria [31,32]. P450s are heme-thiolate proteins known to be involved in
organisms’ primary and secondary metabolism and are found in species belonging to dif-
ferent biological kingdoms [33], including in non-living entities such as viruses [34]. P450s
perform enzymatic reactions in regio- and stereo-specific manners [35,36] and because of
this inherent property they have been under the spotlight for the last 57 years to harness
their potential [37]. P450s’ enzymatic reactions are essential in assessing the drug toxicity
of prodrugs and xenobiotic compounds have been well-established [38]. P450s serve as
drug targets against pathogenic microbes [39–41]. Well-known examples of P450s targeted
are the CYP51 [39] and CYP53 [40] families. P450s have been investigated for various
biotechnological, environmental and pharmaceutical applications and recently, their role
in the generation of secondary metabolites valuable to humans has been thoroughly re-
viewed [42,43]. One of the best examples of the role of P450s is antibiotic production, such
as in the biosynthesis of the macrolide antibiotic erythromycin and glycopeptide antibi-
otics [44,45] and in the production of the anticancer drugs taxol and perillyl alcohol [46,47].
Gammaproteobacterial species, especially marine species, are well-known producers of a
variety of secondary metabolites [48]. These metabolites include antibacterial, antiviral and
anti-tumor compounds (violacein, pentabromopseudilin, alterochromides and thiomari-
nol) and a variety of siderophores (vibrioferrin, anguibactin, vanchrobactin, vibriobactin,
avaroferrin, putrebactin, and bisucaberin) [48]. The synthesis of secondary metabolites
such as thiomarinol, the alterochromides, pentabromopseudilin, and violacein compounds
has been studied in detail and their synthesis has been linked to the biosynthetic gene
clusters [48]. Information on Gammaproteobacterial species producing different secondary
metabolites, secondary metabolites’ biological properties and their genetic information has
been reviewed [48].

Recent studies from our laboratory focusing on bacterial species revealed that the
lifestyle of an organism plays a key role in shaping P450 content vis à vis P450s helping
microbes to adapt to ecological niches. However, these studies were limited to few groups
of bacterial species belonging to the genera Streptomyces [49,50] and Mycobacterium [51–53]
and from the phyla Cyanobacteria [54] and Firmicutes [55,56]. Furthermore, to date, a
comparative analysis of P450s in the Gammaproteobacterial species has not been reported.
Thus, this study is aimed at addressing these research gaps by not only performing genome
data mining, annotation and phylogenetic analysis of P450s in Gammaproteobacterial
species, but also performing comparative analysis with other bacterial species to see the
impact of lifestyle shaping the P450 content in this group of bacteria, among others with
respect to P450s’ involvement in secondary metabolism.

2. Results and Discussion
2.1. Only Few Gammaproteobacterial Species Have P450s

Genome-wide data mining for P450s in 1261 Gammaproteobacterial species belonging
to 161 genera revealed the presence of P450s only in 169 Gammaproteobacterial species,
indicating that most of these species do not have P450s in their genomes (Figure 1 and Sup-
plementary Dataset 1; Sheet 1). Analysis of the Gammaproteobacteria genera disclosed that of
the 161 genera, species belonging to 41 genera have P450s in their genomes (Supplementary
Dataset 1; Sheet 1). A point to be noted is that the number of species genomes available in
the 120 genera is very low. Sometimes only a single species genome is available and thus
future availability of a higher number of species genomes will provide more accurate infor-

https://www.ncbi.nlm.nih.gov/genome/microbes/
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mation on P450s in these genera (Supplementary Dataset 1: Sheet 1). However, a significant
number of species belonging to genera such as Shewanella, Aeromonas and Haemophilus were
analyzed in this study and no P450s were found, suggesting that species in these genera
probably do not have P450s (Supplementary Dataset 1: Sheet 1). Genera-level comparison
revealed that at least 50% of Pseudomonas and Xanthomonas species have P450s. Analysis
of P450s in 169 Gammaproteobacterial species revealed the presence of 277 P450s in their
genomes (Supplementary Dataset 1: Sheet 2). The P450 count in the Gammaproteobacte-
rial species ranged from a single P450 to six P450s; Gammaproteobacterium HdN1 had the
highest number of P450s in its genome (Supplementary Dataset 1: Sheet 2). Apart from
the complete P450 sequences (277 P450s), one P450 fragment and 10 P450 false-positive
hits were also found in some Gammaproteobacterial species (Supplementary Dataset 1:
Sheet 2). Comparative analysis of the average number of P450s with Firmicutes species,
Streptomyces, mycobacterial species and cyanobacterial species revealed that Gammapro-
teobacterial species have the lowest average number of P450s (0.2%) in their genomes
(Table 2). Gammaproteobacterial species P450 sequences along with P450 fragment and
false positive hit proteins were presented in Supplementary Dataset 2.
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Figure 1. Analysis of P450s in Gammaproteobacterial species. Detailed analysis of the species and
P450s is presented in Supplementary Dataset 1.

2.2. A Few P450 Families Are Expanded in Gammaproteobacterial Species

Based on the P450 nomenclature criteria [29,30], 277 P450s of Gammaproteobacterial
species can be classified into 84 P450 families and 105 P450 subfamilies (Table 3). Anno-
tation of P450s in this study was further verified by performing phylogenetic analysis
(Figure 2). As shown in Figure 2, P450s belonging to the same family grouped together,
indicating the correct annotation of P450s. Gammaproteobacterial species P450s identified
in this study, along with their protein sequences and species, are presented in Supplemen-
tary Dataset 2. The number of P450 families in Gammaproteobacterial species is found
to be highest compared to Firmicutes species, mycobacterial species and cyanobacterial
species, indicating the highest diversity of P450s in Gammaproteobacterial species (Table 2).
However, the number of P450 families in Gammaproteobacterial species was found to
be lowest compared to Streptomyces species (Table 2). In order to understand the P450
diversity in Gammaproteobacterial species, the P450 diversity percentage was calculated
by modifying the previously proposed formulae [54,57] to reflect the actual number of
species with P450s. The new formula is presented below:

P450 diversity percentage = 100 × Total number of P450 families ÷
(Total number of P450s × Number of species with P450s)

(1)
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Table 2. Comparative analysis of key features of P450s and their association with secondary metabolism between Gammapro-
teobacterial species and different bacterial species. BGCs: biosynthetic gene clusters.

Gammaproteobacterial
Species

Firmicutes
Species

Streptomyces
Species

Mycobacterial
Species

Cyanobacterial
Species

Total no. of species analyzed 1261 972 203 60 114

No of Species have P450s 169 229 203 60 114

No. of P450s 277 712 5460 1784 341

No. of families 84 14 253 77 36

No. of subfamilies 105 53 698 132 79

Dominant P450 family CYP133 CYP107 CYP107 CYP125 CYP110

Average no. of P450s 0.2 1 27 30 3

P450 diversity percentage 0.18 0.008 0.02 0.07 0.09

No. of P450s part of BGCs 49 126 1231 204 27

Percentage of P450s part of BGCs 18 18 23 11 8

Reference(s) This work [55,56] [49,50] [49,51] [54]

Table 3. Comparative analysis of P450 families and subfamilies in Gammaproteobacterial species.

Family Subfamily P450 Count Percentage Contribution

CYP101 M 1 0.36

CYP102 J 1 0.36

CYP1043 C 1 0.36

CYP1049 A 1 0.36

CYP105 BQ 4 1.44

CYP107 DJ 3 7.94

E 4

HT 1

S 14

CYP108 R 1 0.36

CYP1097 B 1 0.36

CYP1104 B 3 1.08

CYP111 A 1 0.36

CYP112 A 3 1.08

CYP1138 A 1 0.36

CYP1142 A 1 0.36

CYP114 A 4 1.44

CYP1157 C 1 0.36

CYP115 A 3 1.08

CYP1164 A 1 0.36

CYP1165 A 1 0.72

B 1

CYP116 B 2 0.72

CYP1172 A 1 0.36

CYP1179 A 1 0.36
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Table 3. Cont.

Family Subfamily P450 Count Percentage Contribution

CYP117 A 3 1.08

CYP1199 A 2 0.72

CYP1200 B 1 0.36

CYP1201 A 1 0.72

B 1

CYP1202 A 1 0.36

CYP1225 A 1 0.36

CYP1234 A 5 2.17

B 1

CYP1247 A 9 3.25

CYP1261 B 1 0.36

CYP126 C 4 1.44

CYP1278 A 1 0.36

CYP1311 A 1 0.36

CYP133 B 22 8.30

D 1

CYP134 B 2 0.72

CYP136 F 2 0.72

CYP1413 A 3 1.44

B 1

CYP1414 A 1 0.72

B 1

CYP1415 A 3 1.08

CYP1464 A 2 0.72

CYP1465 A 4 1.44

CYP1466 A 1 0.36

CYP1467 A 1 0.36

CYP1468 A 1 0.36

CYP1469 A 2 0.72

CYP1470 A 3 1.08

CYP1471 A 1 0.36

CYP1472 A 1 0.36

CYP1473 A 1 0.36

CYP1474 A 3 2.53

B 2

C 2

CYP1475 A 1 0.36

CYP1476 A 1 0.36

CYP1477 A 1 0.36

CYP1478 A 1 0.36
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Table 3. Cont.

Family Subfamily P450 Count Percentage Contribution

CYP1479 A 1 0.36

CYP1480 A 1 0.36

CYP1481 A 2 0.72

CYP1482 A 1 0.36

CYP1483 A 1 0.36

CYP151 A 2 0.72

CYP152 G 3 3.25

R 2

W 2

X 1

Y 1

CYP153 A 16 6.86

E 3

CYP159 B 3 1.08

CYP168 A 18 7.22

B 1

C 1

CYP169 A 13 4.69

CYP172 B 1 0.36

CYP177 E 2 0.72

CYP198 A 3 1.08

CYP221 A 2 0.72

CYP226 A 5 1.81

CYP229 A 7 6.50

D 7

E 4

CYP234 A 1 0.36

CYP236 A 3 1.08

CYP238 A 1 0.36

CYP261 D 1 0.36

CYP289 A 6 2.53

D 1

CYP51 B 2 0.72

CYP107 S 1 0.36

CYP1229 A 1 0.36

CYP1414 A 1 0.36

CYP2242 A 1 0.36

CYP159 B 1 0.36

CYP163 K 1 0.36

CYP1779 A 1 0.36
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Figure 2. Phylogenetic analysis of Gammaproteobacterial species P450s. P450 families that are expanded in these species
were highlighted in different colors and indicated in the figure.

Based on the above formulae, Gammaproteobacterial species were found to have the
highest P450 diversity percentage compared to Firmicutes species, mycobacterial species,
cyanobacterial species, and Streptomyces species (Table 2).

Among P450 families, the CYP133 has the highest number of member P450s with
two-digit members: (23 P450s) contributing to 8.3% of total P450s in Gammaproteobacterial
species (Table 3), followed by CYP107 (22 P450s contributing 7.9%), CYP168 (20 P450s con-
tributing 7.2%), CYP153 (19 P450s contributing 6.8%), CYP229 (18 P450s contributing 6.5%)
and CYP169 (13 P450s contributing 4,7%) (Table 3). The number of member P450s in the
remaining 78 P450 families ranged from one to nine members (Table 3). The CYP133 family
was found to be dominant in Gammaproteobacterial species, whereas in other bacterial
species P450 families such as CYP107, CYP125 and CYP110 are dominantly present (Table 3).
Considering the number of member P450s and the large number of species analyzed in
this study, it can safely be said that these P450 families are expanded and not bloomed (a
few P450 families with many genes) in Gammaproteobacterial species, which is contrary to
other bacterial species where some P450 family blooming was observed [49–51,54]. The
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number of subfamilies in a family ranged from one to five subfamilies; CYP152 has five
subfamilies, followed by CYP107 with four subfamilies (Table 3). Interestingly, some kind
of P450 subfamily level expansion was observed in Gammaproteobacterial species where
subfamily S in the CYP07 family, subfamily B in the CYP133 family, subfamily A in the
CYP153 family and subfamily A in the CYP168 family have the highest number of mem-
bers (Table 3). Contrary to the other bacterial species, analysis of the conservation of P450
families in Gammaproteobacterial species revealed that none of the 84 P450 families were
conserved in these species and that none of the P450 families were co-present (Figure 3).
The comparative analysis of P450 families in different Gammaproteobacterial species is
presented in Supplementary Dataset 1: Sheet 4.
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Figure 3. Heat map figure representing the presence or absence of cytochrome P450 families in 169 species of Gammapro-
teobacterial species. The data have been represented as −3 for family absence (green) and 3 for family presence (red).
One-hundred and sixty-nine Gammaproteobacterial species form the horizontal axis and 84 P450 families form the
vertical axis.

Analysis of P450 families revealed the presence of 38 new P450 families in Gammapro-
teobacterial species. Eighty-one P450s were found to be part of these 38 new P450 families.
The list of new P450 families found in these species is presented in Supplementary Dataset
1: Sheet 5.

2.3. A Few P450s Are Involved in Secondary Metabolism in Gammaproteobacterial Species

Analysis of the P450s part of secondary metabolite biosynthetic gene clusters (BGCs)
revealed that only a few P450s (18%) are part of these clusters, indicating their involvement
in secondary metabolism in Gammaproteobacterial species (Figure 4). The percentage of
P450s involved in Gammaproteobacterial species was found to be the same as in Firmicutes
species (Table 2). Among 277 P450s, only 49 P450s belonging to 22 P450 families were
found to be part of a secondary metabolite gene cluster (Figure 4). Among these families,
CYP107 P450 family members were dominantly present (37%) in secondary metabolite
BGCs (Figure 4). The same phenomenon was observed in Streptomyces species [49,50] and
Firmicutes species [55], where CYP107 P450 family members were dominantly present as
part of BGCs. Interestingly, among six P450 families that are expanded in these species,
only two P450 family members were found to be part of the clusters (Figure 4). Among
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these two P450 families, the CYP107 family has 18 members and the CYP153 family has
two members involved in secondary metabolism. This suggests that P450 family expansion
has no correlation with P450s’ involvement in secondary metabolism in Gammaproteobac-
terial species, with the exception of the CYP107 family. The analysis of P450 secondary
metabolite gene clusters revealed the presence of 12 types of BGCs, where the nonriboso-
mal peptides (NRPS) were dominant (Supplementary Dataset 1: Sheet 2). One interesting
point to be noted is that CYP107 family members are associated with the NRPS cluster
(Supplementary Dataset 1: Sheet 2). The P450 secondary metabolite gene clusters showed
the lowest percentage similarity to known secondary metabolite clusters, suggesting that
these gene clusters probably produce novel compounds. Detailed information on P450s,
their particular type of cluster and percentage identity to known secondary metabolite
gene clusters is presented in Supplementary Dataset 1: Sheet 2).
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Figure 4. Comparative analysis of P450s involved in secondary metabolism in Gammaproteobacterial species. The P450
family name, number of P450s and the percentage of the total number of P450s that are part of BGCs are presented in the
figure. Detailed information on secondary metabolite clusters, species and P450s is presented in Supplementary Dataset 1:
Sheet 2.

2.4. Functional Prediction of Gammaproteobacterial P450s

Most of the Gammaproteobacterial P450s are orphans without an assigned biological
function. Based on homolog P450s from other organisms, some of the Gammaproteobac-
terial P450s functions can be predicted. CYP51, also known as sterol 14α-demethylase, is
a highly conserved P450 across the phyla and stimulates a key enzymatic reaction that
involves the stereo-selective three-step oxidative removal of the 14α-methyl group from
the sterol during the synthesis of membrane sterol [39]. CYP102 family members are
involved in the hydroxylation of fatty acids [58–60]. CYP101 family members are involved
in camphor hydroxylation [61]. CYP105, CYP107, and CYP109 have been found to display
highly diverse functions [43,62,63]. CYP107 and CYP105 family members are involved
in degradation and biotransformation of a large number of xenobiotic and secondary
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metabolites [63,64]. P450s belonging to the CYP107, CYP109, and CYP134 families were
found to hydroxylate different steroids, albeit with different substrate specificities [22].
CYP152 family members were found to be peroxygenases catalyzing the hydroxylation and
decarboxylation of fatty acids [65–67]. CYP153 members are well-known alkane hydroxy-
lases [68]. CYP226 family members are involved in the catabolism of dehydroabietic acid
and abietic acid [69,70]. CYP261 family members were found to have a high affinity to fatty
acids [71]. Based on the biosynthetic gene cluster analysis, in this study, we conclude that
49 P450s are involved in the synthesis of secondary metabolites (Supplementary Dataset
1: Sheet 2). However, the functions of these P450s in the synthesis of different secondary
metabolites need to be determined.

2.5. Impact of Lifestyle on P450 Repertoire Is Also Evident in Gammaproteobacteria

It is now well known that lifestyle plays a key role in shaping the genome content
of organisms, and P450s are no exception. The impact of lifestyle on P450 profiles in
organisms or P450s’ role in the adaptation of organisms to different ecological niches
reported in animals [72], plants [73], oomycetes [57] and fungi [28,40,74–79] was scrutinized.
A number of P450s or a number of members of a P450 family have been found to be present
in large numbers in species compared to the pathogenic species or species adapted to
a simpler lifestyle where simpler/abundant carbon sources are available for survival.
This phenomenon of the impact of lifestyle shaping P450 content has also been observed
in bacterial species belonging to the genera Streptomyces [49,50], Mycobacterium [51,52],
and the phyla Cyanobacteria [54] and Firmicutes [55]. Especially in Firmicutes, it has been
reported that the pathogenic/commensal lifestyle was influenced to such an extent that
some of the species belonging to quite a large number of genera have no P450s in their
genomes [55]. The same phenomenon of a low number or no P450s was also observed
in Gammaproteobacterial species’ genomes. Most of the bacterial species in the class
Gammaproteobacteria are commensals with the ability to cause diseases and some of them
are strictly pathogenic [1,2] which possibly led to have fewer P450s, as observed for
Firmicutes [55]. The presence of the lowest number of P450s compared to the large number
of species analyzed in the study (Table 2) clearly indicates that these bacterial species
adapted to mostly living on simple carbon sources available in the host environment,
which led to having fewer P450s in their genomes as observed in other species [55,77].
However, a noticeable difference was that the Gammaproteobacterial species had the
highest number of P450 families and subfamilies compared to Firmicutes species, and
thus the highest P450 diversity percentage compared to other bacterial species (Table 2).
Nevertheless, the percentage of P450s involved in BGCs is the same as in Firmicutes species,
indicating that most of the P450s play a role in primary metabolism. In summary, based
on the number of P450s present in Gammaproteobacterial species and in comparison with
other bacterial species, it is safe to say that the lifestyle of Gammaproteobacterial species
profoundly affect their P450 repertoire, which is the same as what is observed in other
organisms, as mentioned earlier.

3. Materials and Methods
3.1. Species and Their Genome Database Information

In this study, 1261 Gammaproteobacterial species belonging to 161 genera that are
available for public use at the KEGG [80] database were used. Information on genera,
species names, species codes and their genome IDs is presented in Supplementary Dataset
1: sheet 1.

3.2. Genome Data Mining and Annotation of P450s

P450 data mining and annotation were carried out following the standard procedure
described previously by our laboratory [50,54,55]. Briefly, proteomes of each bacterial
species were downloaded from the KEGG and subjected to the NCBI Batch Web CD-Search
Tool [81]. The result was analyzed and proteins that belong to the P450 superfamily were
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selected and searched for the presence of characteristic P450 motifs, EXXR and CXG [82,83].
Proteins that were short in amino acid length and lacking both motifs were regarded as P450
fragments and these P450 fragments were not considered for further analysis. Proteins
having both motifs were selected and subjected to BLAST analysis against annotated
P450s at the P450 website (http://www.p450.unizulu.ac.za/) (accessed on 15 January
2021). Based on the percentage identity to the named homolog P450s at the P450 website,
selected P450s were assigned to specific P450 families and P450 subfamilies, following the
International P450 Nomenclature Committee rule [28–30] that proteins with >40% identity
and >55% identity will be grouped under the same family and subfamily, respectively.
P450s with less than 40% identity were assigned to a new P450 family.

3.3. Phylogenetic Analysis of P450s

Phylogenetic analysis of P450s was carried out following the protocol previously
described by our laboratory [54,55]. Briefly, the P450 protein sequences where aligned
using the MAFFT v6.864 program [84], which is available at the Trex web server [85].
For tree inferring and optimization, the Trex web server [85] was used. Then, the server
inferred the tree with different algorithms, including maximum likelihood, for the best
phylogenetic tree in the least-squares sense. Finally, the best-inferred tree was visualized,
colored and generated by the Interactive Tree of Life (iTOL) [86].

3.4. Generation of P450 Profile Heat Maps

The generation of the heat map profile was carried out according to the method
previously reported by our laboratory [28,54,55]. Gammaproteobacterial P450 family data
information was used to show the presence and absence of P450s in this class. The data
were presented as positive 3 with the presence of P450 indicated in red and negative 3
indicated in green for the absence of P450. A tab-delimited file containing P450 presence
and absence data was loaded into the multi-experiment viewer using a two-color array [87].
Hierarchical clustering using a Euclidean distance metric was used to cluster the data. P450
families formed the vertical axis and Gammaproteobacterial species formed the horizontal
axis.

3.5. Identification of P450 Part of Secondary Metabolite BGCs

The identification of secondary metabolite BGCs and P450s forming part of the BGCs
was carried out following the procedure previously reported by our laboratory [54–56].
Briefly, genome ID of Gammaproteobacterial species (Supplementary Dataset 1: sheet 1)
having P450s was submitted to anti-SMASH (antibiotics & Secondary Metabolite Analysis
Shell) [88] for the identification of secondary metabolite BGCs. Anti-SMASH results
were downloaded both in the form of gene cluster sequences and Excel spreadsheets
representing species-wise cluster information. P450s that formed part of a specific gene
cluster were identified by manual data mining of gene cluster sequences. Standard gene
cluster abbreviation terminology available at the anti-SMASH database [88] was maintained
in this study.

3.6. Data Analysis

All calculations were carried out following the procedure reported previously by our
laboratory [54]. The average number of P450s was calculated using the formula: Average
number of P450s = Number of P450s/Number of species. The P450 diversity percentage
was calculated using the formula presented in the main text of this article. The percentage
of P450s that formed part of BGCs was calculated using the formula: Percentage of P450s
part of BGCs = 100 × Number of P450s part of BGCs/Total number of P450s present
in species.

http://www.p450.unizulu.ac.za/
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3.7. Comparative Analysis of P450s and Gene Cluster Data

P450s and their BGCs data for Firmicute species [55], Streptomyces species [49,50],
mycobacterial species [49,51] and cyanobacterial species [54] were retrieved from published
articles and used for comparative analysis.

4. Conclusions

Sustained research into genome sequencing resulted in the sequencing of a large
number of species genomes. This gives us an opportunity to look at specific protein families,
their distribution and their role in organisms’ physiology. This study is an example of
such work, where cytochrome P450 monooxygenases (CYPs/P450s) were analyzed in the
bacterial class Gammaproteobacteria. The study revealed that species in this class have few
P450s in their genomes compared to other bacterial species. Interestingly, despite having
a low number of P450s, Gammaproteobacterial species have the highest P450 diversity
percentage compared to Firmicutes species, Streptomyces species, mycobacterial species
and cyanobacterial species. The lifestyle of Gammaproteobacterial species, pathogenic
or commensalism, had a profound impact on the P450 count in their genomes, leading
to having a low number of P450s, as observed in Firmicutes species, indicating that the
lifestyle of an organism plays a key role in shaping P450 content. Since P450 enzymes
follow typical nomenclature criteria, this study will serve as a reference for P450 annotation
in the class Gammaproteobacteria. Studies are in progress to determine the impact of lifestyle
in other bacterial species.

Another interesting result from the study is the identification of secondary metabolite
biosynthetic gene clusters that have P450s in the Gammaproteobacterial species. In this post-
genomic era, before entering the laboratory one can analyze large numbers of genomes and
select the best candidates for the production of unique/novel secondary metabolites. This
approach is now gaining momentum, as it saves a tremendous amount of wet-laboratory
work, money and laborious practice. In this study, we followed this approach and identified
secondary metabolite biosynthetic gene clusters that seem to be novel, as they have the
lowest percentage identity to known or characterized secondary metabolite gene clusters,
indicating that the compounds synthesized by these gene clusters are novel and possibly
have biotechnological values. Future studies include cloning of these novel clusters to
enable the synthesis of metabolites and assessment of the biological properties of the
synthesized metabolite.

Supplementary Materials: The following are available online, Supplementary Dataset 1: Sheet1:
Information on species used in the study; Sheet 2: Secondary metabolite biosynthetic gene clusters
analysis in Gammaproteobacterial species; Sheet 3: P450 profile heat map information; Sheet 4:
Comparative analysis of P450 families in Gammaproteobacterial species; Sheet 5: New P450 families
and their count in the bacterial class Gammaproteobacteria; Supplementary Dataset 2: Gammapro-
teobacterial species P450 sequences identified in this study. Each P450 sequence is presented with its
assigned name, protein code (in parenthesis) and species name. Full-length P450 sequences along
with P450-fragment and false positive hit proteins were presented.
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