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from the anterior, intermediate mesoderm, and extends caudally.4 
In the case of mouse, WD formation begins approximately on 
embryonic day (E) 8.5 and is completed by reaching the cloaca at E9.55 
(Figure 1a and 1b). As the WD elongates, it induces the formation of 
nephric tubules through a mesenchymal-epithelial transition process. 
The tubules form three kidney primordia: pronephros, mesonephros 
and metanephros6 (Figure 1c). The pronephros and mesonephros are 
transient kidneys and degenerate soon after their formation. However, 
in the mesonephros, the WD and cranial mesonephric tubules (MT) 
are retained and give rise to the male reproductive tract including the 
epididymis and efferent ducts, respectively.

Because WD formation is crucial for kidney development in mammals, 
many mouse models that show abnormal WD or mesonephric development 
also display urogenital abnormalities. The paired domain transcription 
factors Pax2 and Pax8 are well-known inducers of the initial formation 
of the WD.7,8 The LIM-class homeobox gene Lim1 is required for the 
extension of the WD.9,10 Mice carrying a null mutation of Emx2, a mouse 
homologue of the Drosophila head gap gene empty spiracles (ems), display 
normal WD development until E10.5, but at later time points the duct 
degenerates, resulting in lack of a kidney and a failure of the reproductive 
tract to develop. 11 Mice carrying a null mutation of Gata3, which is a 
transcriptional target of Pax2 and Pax8, also show defects in WD initiation.12

Growth factors can differentially regulate gene expression 
especially through epithelial-mesenchymal interactions. Fibroblast 
growth factor (FGF) signaling is one of the well analyzed growth factor 
signaling events during mesonephric formation. Fgf8 encodes an FGF 
ligand, which is expressed in the intermediate mesoderm, and lack of its 
expression results in the absence of the cranial mesonephros and MTs.13 

INTRODUCTION
Understanding the mechanisms that regulate the development of the 
Wolffian duct (WD) is important because disruption of epididymal 
function may arise as a consequence of its abnormal development. 
Very little is known of either the process of WD development or the 
nature and causes of congenital defects that lead to male infertility. 
For example, it is clear that an undeveloped initial segment of the 
epididymis leads to male infertility1,2 and considering that the 
human epididymis has an initial segment-like epithelium,3 it is 
important to at least understand the development of this region. 
There are three developmental processes that are considered to be 
important during the development of the WD:  (1) mesonephros 
formation, (2) stabilization of the ductal system and further growth, 
(3) postnatal differentiation  (Figure  1). Each process is dependent 
upon developmental factors as shown by WD phenotypic mice carrying 
mutations of each factor.

This review focuses on mouse models that display abnormalities 
in WD or mesonephric development, the importance of these mouse 
models toward understanding male reproductive tract development, 
and how these models contribute to understanding clinical 
abnormalities in humans. Table 1 shows mutations of genes in mice 
that display Wolffian/epididymal duct phenotypes.

DEVELOPMENT OF WOLFFIAN/EPIDIDYMAL DUCT AND 
MOUSE MODELS

Mesonephros formation
During development, the nephric duct/Wolffian duct  (WD) arises 
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FGF ligands bind and activate alternatively-spliced forms of four tyrosine 
kinase FGF receptors (FGFRs 1–4).14 During mesonephric development, 
Fgfr1 is expressed in the mesenchyme while Fgfr2 is in the epithelium, 
maintaining the WD and mesonephric mesenchyme.15 The function of 
FGFR2 in the WD epithelia is suggested to maintain the caudal part of 
the WD in the mesonephros by regulating cell proliferation.16

Wnt genes encode a family of secreted glycolipoproteins regulating 
multiple processes during development, including cell proliferation 
and cell polarity. Among the Wnt genes, Wnt9b is mainly expressed 
in the WD epithelium while Wnt7b is faintly expressed from E9.5 
onward. In animals devoid of Wnt9b their MTs are absent, and the 
epididymis is lacking at birth despite the normal formation of the 
WD at E10.5.17 β-catenin-dependent canonical WNT signaling, which 
mainly regulates cell proliferation and differentiation, is sufficient to 
rescue MT induction in Wnt9b null mice. On the other hand, during 
metanephric kidney development, attenuation of Wnt9b affects the 
planar cell polarity of the epithelium and lead to tubules with an 
increased diameter.18 Further spatiotemporal analyses of epididymal 
development in this mutant would contribute to our understanding 
of this molecule in tubulogenesis and its maintenance.

The number of MTs differs between species, and their function as 
a secretory organ is observed in pigs and humans but not in mice.19–21 
The number of efferent ducts reaching the testis also differs between 
species.22,23 It is unclear whether there is a correlation between early MT 
number and the final number of efferent ducts observed in the adult. MT 

formation may resemble the formation of the renal nephron; both have 
the characteristic ‘J’ or ‘S’ shape during early development. The nephric 
tubule is formed through a mesenchymal-to-epithelial transition, and this 
cellular process is shared between mesonephric and metanephric tubules. 
Pax2/8, Emx2 and Lim1 are expressed in the condensed nephric cord 
and are required for tubulogenesis in addition to WD development.7–11,24 
The Wilms’ tumor suppressor gene Wt‑1 and the homeobox gene Six1 
are also expressed in the nephrogenic mesenchymal condensation 
throughout the nephrogenic cord. Mice lacking Wt‑1 or Six1 lack 
caudal MTs while cranial MTs are intact. These observations indicate 
that the regulation of the cranial and caudal set of MTs is distinct.25–27 
Conversely, lack of the forkhead transcription factors Foxc1 and Foxc2, 
as well as Sonic hedgehog (Shh) expressed in the notochord or floor plate, 
results in supernumerary MT formation, suggesting suppressive effects 
of these genes on MT formation.28,29 It is important to uncover how the 
differential regulation of tubule formation and stabilization along the 
anterior-posterior axis of the nephrogenic cord is established.

The connection between the rete testis and efferent ducts is 
observed at E13.5, and testicular fluid transport is detected at the 
corresponding stage of the rat embryo.30 The patterning of efferent 
duct formation is intriguing, but the manner by which they reach the 
testis is not clear. There are at least two hypotheses on how the efferent 
ducts could be formed: (1) that a subset of MTs branch and fuse with 
each other forming the characteristic network of ductules,  (2) that 
branching morphogenesis does not occur and the characteristic 

Figure 1: Schematic diagram of mouse Wolffian/epididymal duct development. (a–c) The origin of the epididymis is the intermediate mesoderm. Spatiotemporally 
distinct intermediate mesoderm at E8.5 gives rise to the WD and metanephric mesenchyme.37 The anterior intermediate mesoderm, which gives rise to 
the pronephros and the whole WD, is composed of Osr1‑positive cells at E8.5. The posterior intermediate mesoderm, which gives rise to the metanephric 
mesenchyme, is positive for T at E9.5. The posterior intermediate mesoderm may correspond to axial progenitor cells, which serve as the source of the caudal 
body trunk.96,97 The WD begins to form from the anterior intermediate mesoderm at E8.5 and grows posteriorly reaching the urogenital sinus at E9.5.98 Meanwhile, 
the pronephros regresses through apoptosis.99 The WD induces the formation of mesonephric tubules from the mesenchyme (nephric cord) adjacent to the WD 
in a cranio-caudal manner. At the caudal end of the WD, the metanephros is initiated by ureteric bud formation through the interaction between WD epithelia 
and the metanephric mesenchyme at E10.5. (d) After gonadal sexual differentiation begins, the WD in the female embryo regresses from cranial to caudal 
while the WD in the male embryo is stabilized. The cranial set of mesonephric tubules connected to the WD is stabilized while the caudal set of mesonephric 
tubules regresses via apoptosis. (e) In the male embryo, the stabilized WD begins to coil from the cranial portion at E15.5. The duct continues to elongate and 
coil throughout development. (f) Ductal elongation and coiling continue after birth. The single-layered ductal epithelia undergo differentiation between P15 and 
P44. At the same time, the regions of the epididymis, initial segment, caput, corpus and cauda, become morphologically distinct. Sperm transport through the 
duct begins at approximately P35.59,68 IM: intermediate mesoderm; UGS: urogenital sinus; IS: initial segment.
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network of ductules is formed by simple fusion of a subset of MTs. The 
latter hypothesis would seem more feasible than the first because of 
the presence of blind-ended tubules. These MTs only fuse to one other 
MT, leaving one end sealed, hence becoming blind-ended. Obviously, 
there must be considerable coordination between the fusion events that 
limit the number of MTs that can fuse4,5 resulting in the conus (2–3 
fused MTs) and the single common ductule.22 Identification of the 
genes and processes by which the formation and patterning of the 
efferent ducts occur is crucial, and the GUDMAP in situ hybridization 
database (http://www.gudmap.org/index.html)31,32 clearly shows some 

potential genes that may regulate their formation, e.g., collagen triple 
helix repeat containing 1(Cthrc1 ), cortexin 3 (Ctxn3) and laminin, 
alpha1 ( Lama1). Lunatic fringe  (Lfng) is one of the mammalian 
fringe genes encoding a modifier of the notch receptor expressed in 
the developing WD, MTs and testis.33–35 Lfng‑null mice show partial 
bilateral blockage of the connection between the rete testis and the 
efferent ducts, indicating the involvement of notch signaling in 
establishing the rete testis-efferent duct boundary.36

The origins of nephron progenitor cells are suggested to differ 
between mesonephros and metanephros.37 Metanephric mesenchyme is 

Table 1: Mouse models which show defects in WD/epididymal duct development

Gene Type of mutation, Cre driver Phenotype of the mutant References

Defect in mesonephros formation

Pax2 KO Dysgenesis of WD and MD, absence of MT 7

Pax8 KO Normal 24

Pax2/Pax8 dKO Dysgenesis of WD and MD, absence of MT 8

Lim1 KO Dysgenesis of WD 10

Pax2‑Cre Defect in caudal WD extension 9

Gata3 KO Dysgenesis of WD and MD, absence of MT 12

Wt‑1 KO Absence of caudal MT 26

Six1 KO Absence of caudal MT 27

Osr1 KO Defect in WD extension, absence of MT 100

Emx2 KO Regression of whole WD 11

Wnt9b KO Absence of MT, absence of epididymis 17

Fgf8 T‑Cre Regression of cranial mesonephros 13

Fgfr1/2 T‑Cre Dysgenesis of WD and MT 13

Pax3‑Cre Absence of MT 15

Fgfr2 Hoxb7‑Cre Regression of caudal WD 16

Shh KO Numerous ectopic MT, ectopic UB 29

Foxc1/2 Foxc1/Mf1ch, KO Numerous ectopic MT, ectopic UB 28, 101

c‑ret ret‑k− Reduced number of MT 102

Raldh2 KO Absence of WD 103

Lfng KO Blockage of the connection between efferent duct and rete testis 36

Defects in WD stabilization, elongation and coiling

Ar Tfm, KO WD regression 40,41

Inhba KO Failed to develop ductal coiling in epididymis 53

Sfrp1/2 dKO Shortened vas deferens 56

Vagl2 Vangl2lp/lp Shortened vas deferens 56

Wnt5a KO Shortened vas deferens 56

Pkd1 KO, Pax2‑Cre Coiling defect, cystic dilation of efferent ducts 54

Defects in postnatal differentiation

Pten Rnase10‑Cre Dedifferentiation of IS 2

Ros1 KO Undifferentiated IS 1

Dusp6 KO Large caput and corpus 67

Frs2 Hoxb7‑Cre Morphologically normal 68

Rnase10‑Cre Abnormal shape of epididymis 68

Ar Ap2a‑Cre Defective epithelial cell differentiation 47

Rnase10‑Cre Absence of IS, defective epithelial cell differentiation 70

FoxG‑Cre Absence of IS, defective epithelial cell differentiation 71

Probasin‑Cre Small epididymis and seminal vesicle 69

Dicer Defb4‑Cre Epithelial cell dedifferentiation 75

miR‑29a miR‑29b1UBC transgene Hypoplastic epididymis 77

Lgr4 Lgr4Gt/Gt Short, dilated and much less convoluted epididymal ducts 104

KO Blockage of efferent duct 105

Shp1 mev/mev Aberrant epididymal region 66

Hoxa11 KO Transformation of vas deferens to epididymis 79

Hoxa10 KO Transformation of vas deferens to epididymis 80

WD: wolffian duct; MT: mesonephric tubules; UB: ureteric bud; IS: initial segment; MD: mullerian duct
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derived from a posterior immature caudal population, which is positive 
for Brachyury (T) expression, and persists in the posterior end of the 
embryo until body axis extension is complete (Figure 1a). On the other 
hand, the WD and at least part of the mesonephric mesenchyme arise 
from the anterior intermediate mesoderm, which is defined by Osr1 
expression at E9.5 (Figure 1b). These recent studies may indicate that 
abnormal body axis extension affects the intermediate mesodermal 
cell fate. It is possible that disruption of the A-P body axis extension 
affects not only the metanephric mesenchyme but also the mesonephric 
mesenchymal distribution, and subsequently further male reproductive 
tract development. Conditionally-induced mutations of the planar cell 
polarity (PCP) pathway-related genes, Wnt5a, Ror2 and Vangl2, which 
are important for A-P body axis extension, demonstrate that insufficient 
A-P axis extension of the posterior intermediate mesoderm is correlated 
with urogenital tract abnormalities.38 It is clear that more studies are 
needed to examine the early formation of the intermediate mesoderm 
and how this translates into development of the WD.

Stabilization of the ductal system and further growth: elongation 
and coiling
During embryogenesis, the mesonephros gives rise to a stable 
male reproductive tract whereas the mesonephros in the female 
regresses (Figure 1d and 1e). Androgens produced in the testis are a 
major factor regulating this stabilization.39–42 Following gonadal sex 
differentiation, the testis begins to produce the androgen, testosterone, 
at approximately E12.5.43,44 Unlike for other androgen-dependent organs, 
such as the prostate and seminal vesicle, it has been suggested that 
locally-produced, and not systemic androgen, from the testis is necessary 
for WD stabilization.45 Indeed, fluorescence labeling of an androgen 
ligand shows that androgen is transported within the luminal fluid.30 
However, there are studies showing that testicular androgen delivered 
via the systemic circulation is sufficient to prevent WD regression. 
Subcutaneous testicular grafts stabilize the WD in female marsupial 
embryos.46 Androgens act through the androgen receptor (AR), a member 
of the nuclear receptor superfamily. The expression of AR is mainly 
detected in the mesenchyme surrounding WD epithelia at E13.5 in the 
mouse. Tissue-specific Ar knockout (KO) analyses demonstrate that WD 
stabilization and coiling is induced in the absence of epithelial-expressed 
Ar, demonstrating the importance of Ar in the mesenchyme.47 This finding 
is consistent with the observation from tissue recombination experiments 
on androgen-insensitive Testicular feminized  (Tfm) mice.48,49 Several 
growth factors, including FGF and Epidermal growth factor (EGF), are 
suggested to mediate androgen functions in the prostate and WD.50–52 
However, the molecular mechanisms by which androgens regulate these 
genes in vivo are not known.

To create a long, highly-convoluted epididymal duct, the WD begins 
to elongate and coil from E15.5, following stabilization (Figure 1e). 
This process is also androgen-dependent, but growth factor signaling 
has been reported to regulate this elongation event. Tomaszewski 
et  al. reported that Inhba, a subunit of both inhibins and activins, 
is a regional paracrine factor in mouse mesonephroi that controls 
coiling of the epithelium in the anterior WD.53 Pkd1, whose mutation 
accounts for 85% of autosomal dominant polycystic kidney disease, 
and is a membrane-spanning glycoprotein involved in growth factor 
signaling transduction and cytoskeleton dynamics. Epithelial coiling 
is absent from the Pkd1 mutant.54 In both mutations, epithelial cell 
proliferation is attenuated. Recently, mathematical modeling has 
suggested that epididymal tubule morphogenesis is dependent upon 
the cell proliferation area in the tubule and mechanical resistance from 
the tissues surrounding the tubule.55

The secreted frizzled-related proteins (SFRPs) antagonize WNT 
ligand protein binding to its receptor FZD. The double KO (dKO) of 
Sfrp1 and Sfrp2 genes results in a shortened WD and vas deferens.56 
Androgen administration to these animals never rescues this 
phenotype, indicating that the abnormalities in Sfrp1/2 dKO mutant 
male embryos are not caused by insufficient production of testosterone 
from the testes, but may reflect insensitivity of some target tissues to 
androgens.56 It is also possible to consider that these phenotypes are, at 
least partially, a secondary consequence of the A-P extension defect of 
intermediate mesoderm formation described above. Although recent 
analyses have partially revealed the molecular mechanisms of ductal 
morphogenesis, further analyses should be performed including how 
androgen signaling regulates these molecules.

Postnatal differentiation: regional differentiation and epithelial cell 
differentiation
The epididymis consists of distinct anatomical regions that vary 
between species. However, in the mouse four regions can be defined: 
initial segment and caput, corpus and cauda epididymidis (Figure 1f). 
Each region is further divided into many segments characterized 
by expression of specific mRNAs, proteins and a repertoire of cell 
types.57,58 The segments, divided by septa, are observed after birth 
and are distinct during puberty, postnatal (P) days 14–35. Impaired 
epididymal regionalization or epithelial cell differentiation results in 
male infertility. For example, if the initial segment does not develop, 
then male infertility results. Data from efferent duct ligation (EDL) 
experiments suggested that luminal fluid coming from testis is 
responsible for the maintenance of initial segment cell survival, 
proliferation and differentiation.59,60

Several growth factors, including FGFs 2,4 and 8, are detected 
in testicular fluid, and Fgfrs are expressed in the epithelium of the 
initial segment.61,62 During normal development, high activity of the 
MAPK pathway, especially p-MAPK1/3  (p-ERK1/2), is detected in 
the initial segment.60 EDL abolishes their activities, emphasizing the 
importance of lumicrine factors regulating their activity.60 Ros1 encodes 
an orphan receptor tyrosine kinase that is expressed in few epithelia, 
among them the WD and its derivatives.63–65 Loss of Ros1 expression 
or a naturally-occurring mutation of Shp1 (mev), a negative regulator 
of ROS1, results in abnormal differentiation of the initial segment.1,66 
RNase10‑Cre drives gene recombination in the initial segment epithelia 
from P17 onward. RNase‑Cre‑mediated mutation in Pten, a negative 
regulator of PIP3/AKT signaling, induces dedifferentiation of the 
initial segment.2 In these animals, abnormal differentiation results in an 
abnormally shaped initial segment. MAPK signaling regulators such as 
DUSP6 and FRS2 play important roles in epididymal cell proliferation 
and survival during postnatal development.67,68

Androgens are important regulators of epididymal development 
from embryonic to adult stages. From later stages of development 
to the adult stage, Ar expression in the epithelia is greater than that 
in the mesenchyme. Several Ar KO mice have been reported, and 
the majority show a hypoplastic epididymis and defective epithelial 
cell differentiation.47,69–71 A differentiated epididymal epithelium is 
pseudostratified and comprises principal, clear, narrow, basal and 
recently-identified dendritic cells throughout the duct.72,73 Similar 
to other pseudostratified epithelia, for example the trachea, the 
epididymal luminal environment regulates secretion and absorption of 
ions, water, organic solutes and proteins.74 The molecular mechanisms 
of epididymal epithelial differentiation are not clear. Chimeric mutation 
of the Ar indicates that defective epithelial cell differentiation is 
cell-autonomous.47 Dicer and small RNAs also regulate epididymal 
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development and epithelial cell differentiation partially through 
androgen action.75–77

Hox genes are evolutionarily-conserved transcriptional regulators 
that determine body patterning.78 As found for body plan formation, 
vertebrae and the gut, Hox genes, Hoxa10 and Hoxa11 are suggested to 
determine the boundary between the epididymis and vas deferens.79–81 
Later studies by Snyder et  al.82 showed that there were additional 
region-specific  (efferent ducts, epididymis and vas deferens) Hox 
transcripts that may define boundaries along the reproductive tract 
during development.

POSSIBLE CONTRIBUTION OF MOUSE MODELS TO 
UNDERSTAND HUMAN CINICAL ABNORMALITIES
One of the most well-known congenital anomalies of the epididymis or 
vas deferens is congenital bilateral absence of the vas deferens (CBAVD). 
It occurs in 1%–2% of men with infertility.83 60%–90% of the CBAVD 
men harbor at least one associated cystic fibrosis transmembrane 
conductance regulator (CFTR) gene mutation.84 10%–40% of CBAVD 
men do not have recognizable CFTR gene abnormalities accompanied 
by unilateral renal agenesis  (URA).85 Presumably, CBAVD patients 
have disrupted morphogenesis of the early mesonephros owing to the 
mutation of genes.86 Those genes involved in mesonephros formation, 
e.g., Pax2, Wt‑1 and Fgfs, may be viable candidate genes responsible 
for CBAVD with renal malformation.

Conversely, congenital anomalies of kidney and urinary 
tract  (CAKUT) often carry mutations in genes, such as PAX2 and 
WT‑1, and male mice carrying mutations of these genes also exhibit 
reproductive tract malformations.87 Syndromes with renal tract 
abnormalities also carry mutations in the genes described above. 
Branchio-Oto-Renal  (BOR) syndrome is a genetic condition that 
typically disrupts the development of tissues in the neck and causes 
malformations of the ears and kidneys. EYA1, the human homolog of 
the Drosophila eyes absent gene, is the most common gene responsible 
for BOR.88 Further, Foxc1 regulates Eya1 expression.28 Mutations in 
the SIX1 gene can be detected in 2% of individuals with the clinical 
diagnosis of BOR.89 Mutations in both ROR290 and WNT5A91 have 
been implicated in a rare genetic disease, Robinow syndrome, which 
exhibits several defects such as dwarfism, hydronephrosis and 
genital abnormalities. Because these syndromes often exhibit lethal 
abnormalities, it is still unclear if these mutations affect male fertility 
in humans.

Epididymal disjunction is the failure of the efferent ducts to reach 
the testis, which may reflect the failure of the efferent ducts to elongate, 
and presumably coil, during their development.92–95 Interestingly, one 
study95 has shown that 30%–79% of boys with an undescended testis 
also have Wolffian duct abnormalities, of which 25% display epididymal 
disjunction. Therefore, it is important that epididymal abnormalities 
be detected at orchidopexy, or other male infertility, which may be 
classified as idiopathic, will result. As mentioned above, it is not clear 
how the efferent ducts form, elongate, are directed toward the testis 
and then fuse with the rete testis. Obviously, mouse models that 
display epididymal disjunction will greatly aid our understanding of 
this abnormality.

SUMMARY
One of the striking characteristics of the epididymis is its complex 
developmental process. The primordium of the epididymis, the 
mesonephros, arises as a part of the transient kidney, and its stability 
and differentiation are regulated by hormonal signaling including by 
androgens and growth factors. In human, it transforms its morphology 

to form a 6 m duct that is coiled and packed into a three-dimensional 
organ of approximately 10  cm in length. Recent studies utilizing a 
variety of transgenic mice have revealed the molecular contribution 
of numerous factors at each stage of epididymal development. The 
molecular dissection of the developmental mechanisms of the epididymis 
has just begun. Integrative understanding of the hierarchy and interaction 
of each factor will provide new directions in this field. Considering that 
the epididymis shares its origin with the urinary tract, it is noteworthy 
that the molecular mechanisms which lead to kidney mal-development, 
such as CAKUT, may provide significant insight for the mesonephros 
derivative mal-development, such as CBAVD and vice versa.
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