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Abstract

For encapsulated bacteria such as Streptococcus pneumoniae, asymptomatic carriage is

more common and longer in duration than disease, and hence is often a more convenient

endpoint for clinical trials of vaccines against these bacteria. However, using a carriage end-

point entails specific challenges. Carriage is almost always measured as prevalence,

whereas the vaccine may act by reducing incidence or duration. Thus, to determine sample

size requirements, its impact on prevalence must first be estimated. The relationship

between incidence and prevalence (or duration and prevalence) is convex, saturating at

100% prevalence. For this reason, the proportional effect of a vaccine on prevalence is typi-

cally less than its proportional effect on incidence or duration. This relationship is further

complicated in the presence of multiple pathogen strains. In addition, host immunity to car-

riage accumulates rapidly with frequent exposures in early years of life, creating potentially

complex interactions with the vaccine’s effect. We conducted a simulation study to predict

the impact of an inactivated whole cell pneumococcal vaccine—believed to reduce carriage

duration—on carriage prevalence in different age groups and trial settings. We used an indi-

vidual-based model of pneumococcal carriage that incorporates relevant immunological

processes, both vaccine-induced and naturally acquired. Our simulations showed that for a

wide range of vaccine efficacies, sampling time and age at vaccination are important deter-

minants of sample size. There is a window of favorable sampling times during which the

required sample size is relatively low, and this window is prolonged with a younger age at

vaccination, and in a trial setting with lower transmission intensity. These results illustrate

the ability of simulation studies to inform the planning of vaccine trials with carriage end-

points, and the methods we present here can be applied to trials evaluating other pneumo-

coccal vaccine candidates or comparing alternative dosing schedules for the existing

conjugate vaccines.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006333 October 1, 2018 1 / 16

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Cai FY, Fussell T, Cobey S, Lipsitch M

(2018) Use of an individual-based model of

pneumococcal carriage for planning a randomized

trial of a whole-cell vaccine. PLoS Comput Biol

14(10): e1006333. https://doi.org/10.1371/journal.

pcbi.1006333

Editor: Cecile Viboud, National Institutes of Health,

UNITED STATES

Received: February 2, 2018

Accepted: June 27, 2018

Published: October 1, 2018

Copyright: © 2018 Cai et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: All source code for

the model and analysis can be found in the Github

repository at (https://github.com/ocsicnarf/

vaccine-trial-planning).

Funding: PATH Vaccine Solutions (http://www.

path.org/) provided input on the scientific question

that motivated this work as well as funding (award

#1773-00460733-COL). They reviewed the

manuscript with the option to provide advice only.

The funder had no role in data collection and

http://orcid.org/0000-0003-4718-9632
http://orcid.org/0000-0002-3702-8387
http://orcid.org/0000-0003-1504-9213
https://doi.org/10.1371/journal.pcbi.1006333
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006333&domain=pdf&date_stamp=2018-10-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006333&domain=pdf&date_stamp=2018-10-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006333&domain=pdf&date_stamp=2018-10-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006333&domain=pdf&date_stamp=2018-10-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006333&domain=pdf&date_stamp=2018-10-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006333&domain=pdf&date_stamp=2018-10-11
https://doi.org/10.1371/journal.pcbi.1006333
https://doi.org/10.1371/journal.pcbi.1006333
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/ocsicnarf/vaccine-trial-planning
https://github.com/ocsicnarf/vaccine-trial-planning
http://www.path.org/
http://www.path.org/


Author summary

Streptococcus pneumoniae, a bacterium carried in the nasopharynx of many healthy peo-

ple, is also a leading cause of bacterial pneumonia, sepsis, and ear infections in children

aged five years and younger. Vaccines targeting select strains of S. pneumoniae have been

effective, and the development of new vaccines, particularly those that target all strains,

can further lower disease burden. For clinical trials of these vaccines, the number of study

participants needed depends on the expected effect of the vaccine on a conveniently mea-

sured outcome: asymptomatic carriage. The most economical way to test a vaccine for its

effect on carriage is by measuring prevalence at a specific time, and comparing vaccinated

to unvaccinated participants. The relationship between incidence (or duration) and preva-

lence is complex, and changes with time as children develop natural immunity. We

explored this relationship using a mathematical model. Given a vaccine efficacy, our com-

puter simulations predict that fewer study participants are needed if they are vaccinated at

a younger age, taken from a population with intermediate levels of transmission, and sam-

pled for carriage at a certain time window: 9 to 18 months after vaccination. Our study

illustrates how simulation studies can help plan more efficient vaccine trials.

Introduction

For encapsulated bacteria such as Streptococcus pneumoniae [1], Haemophilus influenzae [2],

and Neisseria meningitidis [3], asymptomatic carriage in the human upper respiratory tract is a

precursor to mucosal or invasive disease. The population of bacteria in the upper respiratory

tract, which may be sampled in the oropharynx or nasopharynx, is also the primary or sole

source of transmission of these bacteria. Because carriage is far more common and typically

longer in duration than disease with these bacteria, it is often a more convenient endpoint for

clinical trials of vaccines against them. If a vaccine can prevent or terminate carriage, then it is

likely to reduce both the risk of disease and the opportunities for transmission, leading to herd

immunity effects. Many of the current generation of vaccines against these organisms, made

from their capsular polysaccharides chemically conjugated to a protein carrier (conjugate vac-

cines), have been evaluated in randomized controlled trials (RCTs) where carriage was the pri-

mary endpoint [4–10], and the case for carriage as an endpoint in vaccine licensure has been

put forth by an international consortium [11]. Carriage endpoints have also been used for

RCTs of other vaccines against encapsulated bacteria, such as the protein-based vaccine

designed to protect against group B meningococci [12].

While the use of carriage as an endpoint in an RCT is often convenient and offers the possi-

bility of smaller sample sizes than disease endpoints, it presents added complexities. Carriage

is almost always measured as prevalence (whether the target organism is present at a particular

time) rather than as incidence (the rate at which individuals acquire the organism), the more

traditional endpoint in vaccine trials. For vaccines such as conjugate vaccines that are thought

to act directly on vaccinated persons by reducing the incidence of acquiring colonization, the

proportional reduction in prevalence due to a vaccine will in general be smaller than the pro-

portional reduction in incidence it causes [13], because prevalence increases less than linearly

with incidence. Under certain assumptions, the estimated impact on prevalence can be con-

verted into an estimate of the impact on incidence [13], though this becomes more complex

when there are multiple serotypes targeted by the vaccine [14]. At a practical level, decisions

must be made about when to sample the carriage population to estimate efficacy, with the goal

of observing the largest effect possible (to reduce sample size) and also of being able to estimate
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a meaningful efficacy parameter [15]. Moreover, immunity to carriage of S. pneumoniae (also

called pneumococci, the species on which this paper and the remainder of this introduction

will focus) likely involves at least two different parts of the immune system: antibodies that act

in a serotype-specific fashion to reduce the risk of acquisition [16] and T-helper cells that act

in a serotype-independent manner to reduce the duration of a carriage episode [17]. Both of

these forms of immunity are imperfect: even after multiple exposures to pneumococci, a

human can acquire colonization and will not clear it immediately [16,18,19]. Vaccines typically

augment or hasten the acquisition of immunity, but vaccine-induced immunity against

carriage is also only partially effective [13]. In a vaccine trial conducted in infants or

toddlers, participants in both the vaccine group and the control group will be repeatedly

challenged by exposure to pneumococci. Through the experience of acquiring and clearing

colonization, these individuals will develop immune responses that reduce their rate of acqui-

sition on exposure and increase the rate at which they clear the colonization episode [16,20].

Further complexity arises from the fact that individuals may be colonized simultaneously with

multiple strains of pneumococci [21–23], some of which may be undetected at sampling time

and not all of which may be affected by the vaccine. Given these complexities, design of an

RCT for a new vaccine involves challenging questions of choosing the best population and

inclusion criteria to improve the chances of seeing a real effect of the vaccine, choosing at what

time after vaccination to measure carriage, and estimating power and sample size

requirements.

Mathematical simulations [15,24–26] have been used to assist in the design of intervention

trials for infectious diseases. These approaches have been needed, and useful, because standard

assumptions about the magnitude of effect size and predictable event rates in controls are

often not met in the setting of a transmissible pathogen, particularly when accounting for com-

plexities like those mentioned above.

An inactivated whole cell pneumococcal (wSP) vaccine has recently been manufactured

under Good Manufacturing Practices [27] and has been employed in dose-finding, immuno-

genicity, and safety studies in Kenyan adults and toddlers (clinicaltrials.gov NCT02097472)

[28]. Although not powered for efficacy evaluation, this study was extended to evaluate naso-

pharyngeal carriage in toddlers participating in the trial. Based on murine data, it is believed

that the primary impact of such a vaccine is to hasten the development of T-cell-mediated

immunity to colonization, thereby reducing the duration of carriage episodes [17,29]. To aid

in evaluating the results of this study and in planning future, larger studies, we undertook

simulation modeling of such a trial in different age groups and settings to answer several

questions:

1. What is the relationship between the amount of immune protection such a vaccine

confers and the size of the effect on carriage prevalence in a setting similar to the Kenyan

trial?

2. How does this relationship depend on the age of the trial participants (which affects their

level of immunity at baseline, as well as their exposure to transmission during the trial), and

on the intensity of transmission in the population (which affects the rate at which immunity

develops in both vaccine recipients and controls)?

3. What are the implications for the sample size required to detect a particular effect size?

4. Which choice of setting, age group, and time from vaccination to carriage measurement

will be most powerful in detecting various levels of vaccine impact on hastening develop-

ment of immunity?

Use of a pneumococcal carriage model for planning a whole-cell vaccine trial
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Results

Sampling time and participant age strongly influence sample size

Our simulation study was based on a published individual-based model of pneumococcal

transmission that incorporates many of the complexities described above [30]. To this model,

we added the ability to simulate vaccine trials, and implemented an algorithm to fit parameters

to carriage prevalence data. The wSP vaccine was modeled as accelerating the exposure-depen-

dent development of non-serotype-specific immunity against carriage duration, i.e. vaccina-

tion was immunologically equivalent to having cleared more colonizations. Three possible

vaccine efficacies were considered: 3, 5, or 10 “colonization equivalents” (“c.e.”), which corre-

spond, respectively, to an additional 26%, 39%, or 63% reduction in carriage duration. We

assumed a minimum carriage duration of 20 days, and so reductions in duration affect the

duration of carriage beyond the first 20 days. Trial participants in the model were vaccinated

once, either as infants, at 60 days of age, or as toddlers, at 360 days, and the vaccine was

assumed to be effective immediately upon receipt. Simulated trials took place in two settings

that differed in their transmission intensity: the higher transmission setting had an under-five

carriage prevalence of 66%; the lower transmission setting, 55%.

For the higher transmission setting, we ran 50 simulations of the vaccine trial using differ-

ent random seeds and recorded the carriage prevalence every month (defined as 30 days),

starting from birth to 24 months after vaccination (Fig 1). For both infants and toddlers, all

vaccine efficacies led to reductions in prevalence throughout the follow-up period. Higher effi-

cacies resulted in greater reductions in carriage. However, that marginal benefit attenuated

with time as both controls and vaccinees acquired more natural immunity from carriage epi-

sodes. Similar patterns were observed in the toddler trials, but with smaller reductions in prev-

alence (Fig 2A–2C).

For the infants, the prevalence in the control and vaccine arms followed non-monotonic

trajectories over the course of the follow-up period. In the infants, the median prevalence in

the control arms started at 74% at 2 months of age, peaked at 91% at 8 months of age, and then

declined (Figs 1A and 2A–2C). The timing of the peak is consistent with previously reported

data from Kilifi, Kenya [31]. In the vaccinated infants, the median prevalence peaked at the

same time, at 8 months of age for the 3 c.e. vaccine efficacy, or slightly earlier, at 5 months of

Fig 1. Age-specific carriage prevalences from representative simulation runs. (A) Carriage prevalences, sampled

every month starting from birth, is shown for three arms–control (black), those vaccinated as infants (blue), and those

vaccinated as toddlers (purple)–in a simulated trial in the higher transmission setting. Only the 10 colonization

equivalent (c.e.) wSP vaccine efficacy is presented here. On the x-axis, two arrows indicate the age at which the vaccine

was administered for the vaccinated arms. (B) Similar to (A), but for a simulated trial in the lower transmission setting.

https://doi.org/10.1371/journal.pcbi.1006333.g001
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age for the 5 c.e. and 10 c.e. wSP vaccine efficacies (Fig 2A–2C, blue). For the toddlers, who are

vaccinated later in life at 12 months of age, the age-specific prevalence in both the control and

vaccine arms steadily declined across the 24-month follow-up period (Fig 2A–2C, purple).

From the joint trajectory of the control and vaccine arm prevalence over the follow-up

period, we determined how the sample size required for a two-sample test of equal proportion

varied with sampling time. We assumed a 5% type I error probability, 80% power, and bal-

anced arms, and use the term “sample size” to refer to the combined size of both arms. In

infants, for all vaccine efficacies, the median sample size decreased dramatically—almost ten-

fold or more—in the period 3 to 9 months post-vaccination, plateaued, and then started

increasing around 18 months post-vaccination. In toddlers, the median sample size over time

was also U-shaped, reaching a minimum at 9 months post-vaccination before increasing (Fig

2D–2F, purple). At virtually all sampling times and for all vaccine efficacies, the median sample

size was larger in the toddler trials than in the infant trials (Fig 2D–2F).

Lower transmission intensity lengthens window of favorable sampling

times

To examine the impact of transmission intensity in the population on carriage prevalence in

the trial, we also ran 50 simulations of the vaccine trial in the lower transmission setting. As in

Fig 2. Prevalence and sample size over the follow-up period in the higher transmission setting. Panels are

organized column-wise by vaccine efficacy: 3 colonization equivalents (c.e.), or 26% reduction in carriage duration (A,

D); 5 c.e., or 39% (B, E); and 10 c.e., or 63% (C, F). Within each panel, results are presented separately for infants (blue)

and toddlers (purple). (A-C) The joint kernel density estimate (see Methods) of the control and vaccine arm

prevalences at each sampling time (every 3 months until 24 months post-vaccination) is shown as a contour map

truncated by the convex hull of the simulated points, with the median values marked by a cross. These crosses are

connected chronologically, and those corresponding to 0, 12, and 24 months post-vaccination are labeled. The dashed

line indicates equal prevalences in the two arms. (D-F) The kernel density estimate of the total sample size (combined

size of both samples) needed to detect a difference between control and vaccine arm prevalences at each sampling time

(assuming 80% power, 5% type I error rate, balanced arms). The horizontal bars in each violin plot indicate the

minimum, median, and maximum values across all simulations. In (D), the maximum sample sizes for infants and for

toddlers at 3 months post-vaccination are greater than one million (236 million and 4 million, respectively) and

outside the limits of the y-axis.

https://doi.org/10.1371/journal.pcbi.1006333.g002
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the higher transmission setting, all vaccine efficacies resulted in reductions in carriage preva-

lence at all sampling times. The prevalence peak previously observed in infants was delayed,

due to the slower acquisition of non-serotype-specific immunity in a lower transmission set-

ting (Fig 1). Thus, the prevalence trajectories in controls and vaccinees followed non-mono-

tonic trajectories in both infants and toddlers (Fig 3A–3C). In the infant arms, the kink in the

prevalence trajectory between 9 and 12 months post-vaccination was due to the change in age-

specific contact patterns as the participants aged into the next age group (Fig 3A–3C, S1

Table).

As in the higher transmission setting, the total sample size decreased substantially in the

period 3 to 9 months post-vaccination, and reached similar minimums. In the infant arms, the

total sample size remained close to the minimum until the end of the 24-month follow-up

period. In the toddler arms, the median sample size increased slightly near the end of the fol-

low-up period. However, this rebound was considerably smaller than in the higher transmis-

sion setting, and the median sample size at 24 months post-vaccination was roughly five- to

six-fold smaller. The sample sizes for the infant and toddler arms were more similar than in

the higher transmission setting, particularly for later sampling times (Fig 3D–3F).

Discussion

Using a computational, individual-based transmission model of pneumococcal carriage, we

estimated that a vaccine that enhances the immune response by an amount corresponding to

Fig 3. Prevalence and sample size over the follow-up period in the lower transmission setting. Panels are organized

column-wise by wSP vaccine efficacy: 3 colonization equivalents (c.e.), or 26% reduction in carriage duration (A, D); 5

c.e., or 39% (B, E); and 10 c.e., or 63% (C, F). Within each panel, results are presented separately for infants (blue) and

toddlers (purple). (A-C) The joint kernel density estimate (see Methods) of the control and vaccine arm prevalences at

each sampling time (every 3 months until 24 months post-vaccination) is shown as a contour map truncated by the

convex hull of the simulated points, with the median values marked by a cross. These crosses are connected

chronologically, and those corresponding to 0, 12, and 24 months post-vaccination are labeled. The dashed line

indicates equal prevalences in the two arms. (D-F) The kernel density estimate of the total sample size (combined size

of both samples) needed to detect a difference between control and vaccine arm prevalences at each sampling time

(assuming 80% power, 5% type I error rate, balanced arms). The horizontal bars in each violin plot indicate the

minimum, median, and maximum values across all simulations. In (D), the maximum sample sizes for infants and for

toddlers at 3 months post-vaccination are greater than one million (510 million and 18 million, respectively) and

outside the limits of the y-axis.

https://doi.org/10.1371/journal.pcbi.1006333.g003
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3, 5, or 10 carriage episodes could reduce age-specific carriage prevalence up to 7%, 10%, and

17%, respectively, compared to control in a setting similar to that of the wSP vaccine trial in

Kenya, but that the magnitude of the reduction would depend strongly on the age at which

participants were sampled. We found, however, that larger reductions could be observed if the

same trial were performed in infants, in a lower-transmission setting, or both. Altogether, this

analysis indicated that an infant trial conducted in a lower-transmission setting for a vaccine

simulating 3, 5, or 10 exposures could be adequately powered with fewer than 800, 330, or 110

participants respectively, if the sampling window were chosen to be 15 to 24 months post-vac-

cination. Suboptimal choices of setting, age group, and sampling time could multiply the

required sample size by a factor of ten or more.

The individual-based computational model [30] on which our work is based was originally

used to explain serotype diversity and explore serotype replacement following the introduction

of conjugate vaccines. With modifications, this model is also well suited to address our model-

ing questions, because it incorporates many processes, epidemiological and immunological,

that complicate the relationship between the efficacy of a vaccine believed to reduce carriage

duration but not risk of acquisition, and its effect on carriage prevalence. Our extensions—an

algorithm to fit the model to specific epidemiological settings and the ability to randomize trial

participants to different vaccine interventions—allow this model to be used for vaccine trial

planning.

Our simulated vaccine trials show that sampling time and participant age greatly influence

the number of participants needed to detect a protective effect of a vaccine whose effect is

accelerating the development of immunity against carriage duration, as the wSP vaccine and

perhaps other protein-based vaccines targeting carriage are expected to do. Across different

combinations of vaccine efficacies and participant ages, the required sample size reached a

minimum approximately 9 months post-vaccination before rebounding in later months. This

favorable sampling time is consistent with simulation results by Scott et al., who explored simi-

lar questions, but more generally and for vaccines whose primary effect is on acquisition rather

than duration, and using a non-serotype-specific compartmental transmission model [15].

This timing is also consistent with what Auranen et al., who explored pneumococcal trial

design questions with a Markov transition model, suggest: waiting at least twice the average

carriage duration after immune response before sampling [32].

In our simulations, the U-shaped trajectory of sample size over the follow-up period indi-

cates a window of favorable sampling times, when the sample size is relatively small as com-

pared to earlier or later. We found that sample sizes are lower, and the favorable window

longer, when trial participants were younger, and when the transmission level was lower. In

these scenarios, natural immunity is weaker initially or develops more slowly, and thus

immune enhancement by the vaccine is more apparent. This intuition is what our simulation

study attempts to quantitate, in terms of sample size, for different trial conditions.

Certain model assumptions may affect our conclusions. Our formulation of vaccine efficacy

requires estimating the acquisition rate of exposure-dependent immunity. Direct estimates of

vaccine efficacy against carriage, when they become available, can be used instead. We assume

that the vaccine shortens only future carriage episodes, but not ones already present at the

time of vaccination. Since the intrinsic duration of the fittest serotype is five months, this

assumption would delay the vaccine’s effect on carriage prevalence, and thus, our reported

favorable sampling times. This delay would affect infants more than toddlers, as they are more

immunologically naïve and experience longer carriage durations. Auranen et al., in their

study, report that sampling time is determined by the rate of clearance rather than rate of

acquisition, which reinforces the importance of determining whether a vaccine accelerates the

clearance of pre-existing carriage episodes [32]. Another important assumption is that

Use of a pneumococcal carriage model for planning a whole-cell vaccine trial

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006333 October 1, 2018 7 / 16

https://doi.org/10.1371/journal.pcbi.1006333


exposure, rather than age alone, is responsible for the progressive shortening of carriage epi-

sodes as an individual gets older. If immune maturation due to calendar age, rather than or in

addition to increased exposure, actually reduces carriage duration, then that would bolster the

case for younger trial participants. Regardless of age at vaccination, the favorable sampling

windows will likely be shortened as well. Our simulation framework can be easily updated

should future evidence suggest revisiting these assumptions.

In its current form, our current simulation framework is already adaptable enough to

examine a variety of scenarios. The ability to tailor simulations to specific settings is particu-

larly useful—vaccine trials take place in countries with different age and serotype distributions,

and Phase I/II and Phase III trials of the same vaccine may be conducted in the different loca-

tions. While we present results for a vaccine against carriage duration, we can also model vac-

cine protection against acquisition, and specify whether a vaccine effect is serotype-specific.

The analysis presented here can be easily repeated, without changes to the source code, for tri-

als involving polysaccharide conjugate vaccines, which protect against acquisition [4] and

whose protection is serotype-specific [10], and novel vaccines with both polysaccharide and

protein antigens [33], which may elicit a combination of serotype-specific and cross-reactive

responses against carriage. The general population can also be vaccinated. Hence, our frame-

work can be used to simulate trials—such as those comparing dosing schedules—that take

place in countries with existing vaccination programs. In addition to planning future trials,

our simulation framework can be used to examine completed trials. For completed trials with

carriage endpoints that have not found a statistically significant vaccine effect, such as a recent

phase II trial of a protein and polysaccharide-based vaccine in Gambian infants [33], simula-

tion studies such as this can help assess whether inadequate power is a compelling explanation.

The analysis presented in this paper does not consider the effect of vaccination on carriage

density or other factors (apart from duration) that would affect the infectiousness of a person

who is vaccinated yet still becomes colonized. More generally, we do not consider the impact

of vaccination on transmission at all in our simulations: simulated trial participants are com-

putationally isolated from other hosts to approximate an individually randomized trial in

which the participants are a negligible fraction of the population. However, our current frame-

work can also simulate roll-outs of vaccination programs in the simulated population, where

there is transmission between individuals, thus allowing the indirect effect of vaccination to be

included. Vaccines with direct effects against transmissibility, possibly via reducing bacterial

density in the nasopharynx, can be incorporated into our framework as well, with minimal

modifications to the source code.

Methods

Mathematical model

Pneumococcal transmission dynamic model. This simulation study was based on a pub-

lished individual-based model of pneumococcal carriage that incorporates many of the com-

plexities relevant to our modeling questions [30]. Briefly, hosts are exposed to and can be

colonized by multiple serotypes through age-specific contact with others. Serotypes differ in

their mean duration of colonization in a naive host (“intrinsic duration”), which ranges from

20 to 150 days [19,20], and in their ability to prevent other strains from colonizing the same

host. These phenotypes are positively correlated—i.e. fitter serotypes have longer intrinsic

durations and are more likely to prevent concurrent colonizations—through their dependence

on a serotype-specific fitness parameter. Hosts acquire immunity through colonizations.

Clearing a colonization results in serotype-specific (anti-capsular) immunity that reduces risk
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of acquisition of the same serotype. Each clearance, of any serotype, enhances non-serotype-

specific immunity that reduces the mean duration of carriage episodes.

wSP vaccine effect. The wSP vaccine was modeled as accelerating the acquisition of non-

serotype-specific immunity that reduces carriage duration. As in Cobey et al. [30], the duration

of a carriage episode is drawn from an exponential distribution with a mean given by

mðs; ncÞ ¼ mmin þ ðms � mminÞexpð� εncÞ; ð1Þ

where s is the serotype carried, nc is the number of cleared carriage episodes (of any serotype),

μmin is the minimum mean duration, and μs is the intrinsic duration of serotype s. The expo-

sure-dependent development of non-serotype-specific immunity is captured in the exponen-

tial decay term in Eq 1. Each cleared colonization is immunizing, but with diminishing

returns, and brings the mean duration closer to the minimum mean duration. For a vaccinated

individual, the mean duration is given by

~mðs; ncÞ ¼ mðs; nc þ nvÞ; ð2Þ

where nv is a positive constant characterizing the strength of the vaccine effect. Thus, the wSP

vaccine can be thought of as boosting the non-serotype-specific immunity by an additional nv

cleared colonizations, and we can express its efficacy in terms of “colonization equivalents” or

“c.e.” We considered three different values of nv: 3, 5, and 10. The duration of each carriage

episode was determined at the time of colonization, and hence, the vaccine did not affect colo-

nizations already present on the day of vaccination. For simplicity, we assumed that full effi-

cacy is achieved immediately upon receipt of a single dose.

Vaccine trials. To the original transmission model, we added the ability to simulate vac-

cine trials. Each trial arm was characterized by the number of participants, the enrollment

date, and the vaccine and dose schedule used. We assumed full knowledge of all colonization

and clearance events, i.e. we do not consider any measurement error in the sampling process.

In our implementation, trial participants were semi-isolated from the population: their demo-

graphics were tracked separately and their colonizations do not contribute to the force of colo-

nization for the main population, but their exposures and risk of colonization were equivalent

to those of the same age in the main population. This implementation design ensured that

their colonization histories remain representative of participants within the main population,

while affording two advantages: 1) We can have an arbitrarily large number of trial partici-

pants without skewing the epidemiological dynamics of the population, and 2) participants

can be “enrolled” simply by birthing them into the simulation, without skewing the age struc-

ture of the population. Alternatively, we could have achieved these properties by simulating a

large enough population such that the trial participants are a negligible fraction and thus do

not create appreciable herd immunity in the population—the case in most real-world individ-

ually-randomized vaccine trials. However, that approach would have been considerably more

computationally intensive.

Simulations. Simulations were initiated with hosts of different ages and no colonizations.

The number of hosts was kept constant throughout a simulation. Every simulation was run

first for 50 years to allow the age distribution of the population to stabilize, after which coloni-

zations were seeded in the population and the simulation was run for another 50 years to allow

the epidemiological dynamics to equilibrate. At this point, the simulated vaccine trial was initi-

ated. For simplicity, all participants were birthed into the trial on the same calendar day; how-

ever, this may reduce the variance of age-specific carriage prevalence. To reduce sampling

noise, each trial arm had 5000 participants, 100-fold more than the trial arms in the Kenyan

wSP study [28]. The participants were followed for five years and the carriage prevalence in
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each trial arm was recorded every 30 days. These carriage prevalences were then used as “true

prevalences” to calculate the sample size needed to compare between arms, based on a two-

sample test for equal proportions and assuming a 5% type I error rate, 80% power, and bal-

anced arms [34]. We use “sample size” to refer to the combined size of both arms. All combi-

nations of vaccine efficacies (3, 5, 10 c.e. and control) and ages at vaccination (60 and 360

days) were represented in each simulated trial (for a total of 8 arms), allowing us to control for

transmission in the main population when comparing between arms. For computational

speed, the main population was set at 25 thousand individuals. For each parameter set, we con-

ducted 50 simulations runs–enough so that trends could be distinguished from stochastic vari-

ation between simulations, but not too many as to require an unreasonable amount of

computation time. The model was implemented in C++11 with Boost C++ libraries. Analysis

of simulation results was performed using Python 2.7 and browser-based Jupyter interactive

notebooks [35]. Smoothed distributions were estimated using Gaussian kernel density estima-

tion as implemented in the SciPy and Matplotlib Python libraries [36,37], and visualized as a

violin plots (1-dimensional) or contour plots (2-dimensional).

Parameter choices

We considered two settings that differ in their transmission intensity. The higher transmission

setting was chosen to approximate Kenya, the site of a recent dose-finding and safety study

[28]. The age distribution of simulated hosts was matched to that of Kenya’s population in

2015 [38], the second year of the study, which ran from April 2014 to December 2015. The

age-specific mixing matrix was estimated from a social contact study in Kilifi, Kenya from

2011–2012 [39] and can be found in S1 Table. The age structure in the model is described in

more detail in S1 Text. We fixed the non-serotype-specific immunity acquisition rate so the

simulated age-specific carriage durations are consistent with the age-specific rates of clearance

in Kenyan toddlers estimated by Abdullahi et al. [40] (S3C Fig). The serotype fitness parame-

ters were fit to serotype-specific carriage prevalences from a cross-sectional study in Kilifi

from 2006 to 2008 [31], before the introduction of the conjugate vaccine PCV10. We chose to

fit using only pre-PCV10 data. Trying to reproduce changes in serotype distribution due to

PCV10 would have introduced additional complications, while being unlikely to yield further

insight into our modeling questions given that the wSP vaccine is expected to act in a sero-

type-agnostic manner [41]. A mathematical description of the fitting algorithm can be found

in S2 Text and the fitted serotype fitness parameters are listed in S2 Table.

For the lower transmission setting, we used a smaller overall contact rate, so the simulated

carriage prevalence at 12 months of age resembles preliminary estimates from a study in Indo-

nesia [42], the proposed site for a follow-up wSP vaccine efficacy trial (S3B Fig). To facilitate

comparisons between settings, we kept the same age distribution, age-specific mixing pattern,

and fitness parameters used in the higher transmission setting. A summary of the model

parameters and their values can be found in Table 1.

Sensitivity analyses

To isolate the effect of transmission intensity in our main analyses, we had used the same age-

specific mixing pattern–based on Kenya contact survey data [39]–in both the higher and lower

transmission settings. Real-world vaccine trials, however, will take place in the context of dif-

ferent mixing patterns, or may be planned in the absence of reliable social contact data. To

examine the robustness of our findings to the pattern of age-specific mixing, we repeated our

analyses assuming random mixing between individuals, i.e., equal contact rate for all pairs of

individuals. We re-fit the model to the observed Kenya carriage survey data [31], and ran a set
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of 50 simulations. With a random mixing pattern, there was a slightly higher carriage preva-

lence in trial participants during the first two years of follow-up. However, the total sample

sizes, in both magnitude and trend across sampling time, remained similar to those from the

main analyses (S4 Fig, Fig 2). We also confirmed that the inflection in the prevalence trajecto-

ries at 12 months of age (Figs 1 and 2 blue) were due to changes in age-specific mixing when

infants age into the next age group (from 0–1 years to 1–6 years); this inflection was not seen

in simulations with a random mixing pattern (S4 Fig blue).

Other potential sources of bias were the population and trial arm sizes. In the main analy-

ses, we chose values that were small enough to allow simulations to finish reasonably quickly,

and reduced the effect of simulation variability by running multiple simulations and consider-

ing sample median. To assess whether the sample median may be biased, we performed uni-

variate sensitivity analyses of the population and trial arm size. Specifically, within the higher

transmission setting, we varied population size between 10K, 25K, and 50K individuals (not

including trial participants), with the trial arm size fixed at 5K. We also varied the trial arm

size between 2.5K, 5K, or 10K participants, with the population size fixed at 25K. Note that the

middle values, a population size of 25K and a trial arm size of 5K, were the ones used in the

main analyses. Twenty-five simulations were run for each set of parameter values. Varying the

population and varying the trial arm size did not appreciably alter the sample median of the

simulated carriage prevalences (S5 Fig). Larger population sizes led to smaller variability

Table 1. Selected1 model parameters.

Symbol2 Description Value(s) Refs

Demographic

N(0) Number of hosts (in thousands) 25 Main text

- Maximum age (years) 101 [38], S1 Text

- Lifespan distribution S1 Fig [38], S1 Text

α Age-specific mixing weights S1 Table [39], S1 Text

Epidemiological

- Minimum intrinsic duration (days) 20 [20]

- Maximum intrinsic duration (days) 150 [19]

κ Minimum carriage duration in any host (days) 20 [20]

μmax Maximum competitive exclusion 0.25 [20]

- Serotype fitness parameters S2 Table S2 Text

∊ Acquisition rate of non-serotype-specific immunity 0.1# [40]

β Overall contact rate (contacts per day per host) 0.1 or 0.13& S2 Text

Vaccine trial

av Age at vaccination (days) 60 or 360 Main text

- Vaccine efficacy (colonization equivalents) 26%, 39%, or 63%‡ Main text

- Number of participants per arm (in thousands) 5 Main text

1 Parameters adequately described in Cobey and Lipsitch’s paper [30] are not repeated here. Parameters in this table

either have new values, or are newly introduced.
2 The symbol used in Cobey and Lipsitch’s paper [30], or “-” if no symbol was used or if the parameter is new.
# Chosen such that age-specific carriage duration is consistent with previous clearance rate estimates.
& Fit to carriage prevalence in Indonesia and Kenya, respectively, and the only parameterization difference between

the lower and higher transmission settings used in this paper.
‡ Reduction in carriage duration, in addition to that due to natural immunity. Corresponding to the amount of

immune enhancement from 3, 5, or 10 additional carriage episodes.

https://doi.org/10.1371/journal.pcbi.1006333.t001
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between simulations, which is expected given the stochastic nature of transmission in the

model (S5A and S5B Fig). Larger trial arm sizes did not reduce variability, suggesting that the

epidemiological dynamics in the general population are driving the variability in the trial arm

prevalences, at least for the trial arm sizes examined (S5C and S5D Fig).

Code repository

C++11 code for fitting and simulating the individual-based model can be found in the Github

repository linked here: https://github.com/ocsicnarf/vaccine-trial-planning.

Supporting information

S1 Text. Model age structure. Derivation of the lifespan distribution and age-specific contact

weights used in the model.

(DOCX)

S2 Text. Model fitting algorithm. Mathematical description of the algorithm used to fit the

transmission model to carriage prevalence data.

(DOCX)

S1 Table. Age-specific mixing matrix.

(DOCX)

S2 Table. Fitted serotype fitness parameters.

(DOCX)

S3 Table. Parameters of the fitting algorithm.

(DOCX)

S1 Fig. Lifespan distribution. The lifespan distribution used in all simulations. The probabili-

ties refer to 1-year age bins. It is derived by assuming that the 2015 Kenya age distribution [38]

is stable, i.e. no population growth. The step-wise nature of the distribution reflects the five-

year intervals in the age distribution data.

(TIF)

S2 Fig. Estimation of serotype fitness parameters. (A) The fitting process for one representa-

tive serotype, 6A. The evolving estimate of 6A’s fitness parameter (thin line, right y-axis) and

6A’s simulated prevalence (gray dots, left y-axis) is shown over the course of 125 iterations.

Lower values of the fitness parameter correspond to a fitter phenotype. The moving average

(thick line, n = 5) of the simulated prevalences more clearly shows the trend of the simulated

prevalences towards the target prevalence (horizontal dashed line). The light gray shaded

region highlights the last 25 iterations, whose results are considered in (B). (B) One method of

assessing the quality of the model fit. The distribution of prevalence errors (simulated minus

target prevalence) in the last 25 iterations of the fitting process is shown for the top 25 sero-

types (out of 56 total) by target prevalence (ranging from 9.96% for 19F to 0.53% for 35A).

Each distribution is represented by a violin plot labeled by serotype name, and with horizontal

bars marking the minimum, mean, and maximum values.

(TIF)

S3 Fig. Age-specific carriage prevalence and duration. (A, B) Distribution of carriage preva-

lence in infants, by 1-month age categories, for the higher (A) and lower (B) transmission set-

tings. (C, D) Distribution of carriage duration in infants and toddlers, by 6-month age

categories, for the higher (C) and lower (D) transmission settings. Distributions are shown as
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violin plots, with horizontal bars indicating the minimum, median, and maximum values.

(TIF)

S4 Fig. Prevalence and sample size over the follow-up period in the higher transmission

setting, without age-structured mixing. Panels are organized column-wise by wSP vaccine

efficacy: 3 colonization equivalents (c.e.), or 53% reduction in carriage duration (A, D); 5 c.e.,

or 71% (B, E); and 10 c.e., 92% (C, F). Within each panel, results are presented separately for

infants (blue) and toddlers (purple). (A-C) The joint kernel density estimate (see Methods) of

the control and vaccine arm prevalences at each sampling time (every 3 months until 24

months post-vaccination) is shown as a contour map truncated by the convex hull of the simu-

lated points, with the median values marked by a cross. These crosses are connected chrono-

logically, and those corresponding to 0, 12, and 24 months post-vaccination are labeled. The

dashed line indicates equal prevalences in the two arms. (D-F) The kernel density estimate of

the total sample size (combined size of both samples) needed to detect a difference between

control and vaccine arm prevalences at each sampling time (assuming 80% power, 5% type I

error rate, balanced arms). The horizontal bars in each violin plot indicate the minimum,

median, and maximum values across all simulations. In (D), the maximum sample sizes for

infants and for toddlers at 3 months post-vaccination are greater than one hundred thousand

(108 thousand and 105 thousand, respectively) and outside the limits of the y-axis.

(TIF)

S5 Fig. Population and trial arm size sensitivity analyses. (A, B) The age-specific prevalence

in the control (A) and wSP 10 c.e. (conferring an additional 92% reduction in carriage dura-

tion; B) infant arms for three different population sizes– 10K, 25K, and 50K individuals–with

the trial arm size fixed at 5K participants. (C, D) The age-specific prevalence in the control (C)

and wSP 10 c.e. (D) infant arms for three different trial arm sizes– 2.5K, 5K, and 10K partici-

pants–with the population size fixed at 25K. Each violin plot shows the distribution of preva-

lences across 25 simulations, with horizontal bars marking the minimum, median, and

maximum values, and darker shades indicating larger population or trial arm sizes. The values

used in the main analyses–a population size of 10K and a trial arm size of 5K –are marked with

asterisks in the legends.

(TIF)
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