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Objective: The objective of this study was to explore and verify the subtypes in
hepatocellular carcinoma based on the immune (lymphocyte and myeloid cells), stem,
and stromal cells in the tumor microenvironment and analyze the biological characteristics
and potential relevance of each cluster.

Methods: We used the xCell algorithm to calculate cell scores and got subtypes by k-
means clustering. In the external validation sets, we verified the conclusion stability by a
neural network model. Simultaneously, we speculated the inner connection between
clusters by pseudotime trajectory analysis and confirmed it by pathway enrichment, TMB,
CNV, etc., analysis.

Result: According to the results of the consensus cluster, we chose k = 4 as the optimal
value and got four different subtypes (C1, C2, C3, and C4) with different biological
characteristics based on infiltrating levels of 48 cells in TME. In univariable Cox regression,
the hazard ratio (HR) value of C3 versus C1 was 2.881 (95% CI: 1.572–5.279); in
multivariable Cox regression, we corrected the age and TNM stage, and the HR value of
C3 versus C1 was 2.510 (95% CI: 1.339–4.706). C1 and C2 belonged to the immune-
active type, C3 and C4 related to the immune-insensitive type and the potential
conversion relationships between clusters. We established a neural network model, and
the area under the curves of the neural network model was 0.949 in the testing cohort; the
same survival results were also observed in the external validation set. We compared the
differences in cell infiltration, immune function, pathway enrichment, TMB, and CNV of four
clusters and speculated that C1 and C2 were more likely to benefit from immunotherapy
and C3 may benefit from FGF inhibitors.
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Discussion: Our analysis provides a new approach for the identification of four tumor
microenvironment clusters in patients with liver cancer and identifies the biological
differences and predicts the immunotherapy efficacy between the four subtypes.
Keywords: hepatocellular carcinoma, tumor immunology, tumor microenvironment subtypes, precise treatment,
immunotherapy, tumor-infiltrating lymphocytes, tumor stromal cells, stem cells
INTRODUCTION

Hepatocellular carcinoma (HCC) is one of the most lethal
malignancies worldwide, with low survival rates in advanced-
stage patients and minimal improvement in survival trends. The
tumor microenvironment (TME) consists of many cell types,
including immune infiltrates (lymphocyte and myeloid cells),
cancer-associated fibroblasts (CAFs), and vascular endothelial
cells. Immune cells and stromal cells, which are two major types
of non-tumor cell components, play crucial roles in tumor
progression and metastasis (1, 2). Previous studies have been
conducted on the relationship between tumor-infiltrating
immune cells and clinical outcomes (3). However, other
components in the TME, such as stromal cells, also affect the
therapeutic outcome (4), and the research on the comprehensive
compendium of the cell landscape in TME is still lacking
in LIHC.

Immunotherapy has received tremendous attention and is
revolutionizing cancer treatment. Immune checkpoint inhibitors
(ICIs) can reverse the immunosuppressive microenvironment by
decreasing the potential of tumor immune escape, resulting in a
noteworthy improvement of prognosis (5). In TME, multiple
factors affect immunotherapy. The stem cells and stromal cells
could suppress pro-inflammatory processes and promote the
immune tolerance (6). Accordingly, not all cancer patients
exhibit the same response to immunotherapy, and it is of
utmost importance to identify the immunodominant
population to help clinicians conduct immunotherapy or
immunotherapy-based combination strategies.

In view of this situation, this study aimed at establishing the
tumor microenvironment subtypes based on 48 types of cells,
including immune (lymphocyte and myeloid cells), stem, and
stromal cells in TME. We investigated the differences in
biological characteristics among different subtypes, including
infiltration of immune cells, tumor microenvironment status,
tumor mutations, and the differences in prognosis and the
efficacy of immunotherapy, which may refer to current
research on treatment strategies for patients with LIHC.
METHODS

Data Source
RNA-seq data of LIHC patients were downloaded from The
Cancer Genome Atlas (TCGA) (https://portal.gdc.cancer.gov/)
and further normalized into transcripts per kilobase (TPM) for
analysis. Normalized microarray gene expression data of the
Hoshida Y et al. cohort (GSE10141) were available from the
org 2
Gene Expression Omnibus (GEO) database (https://www.ncbi.
nlm.nih.gov/geo/), and LIHC transcriptome and clinical data of
the Japanese cohort were available from the International Cancer
Genome Consortium (ICGC) database (https://dcc.icgc.org).
TCGA dataset was used to investigate the immune subtypes of
tumor microenvironment subtypes, and the Hoshida Y et al.
cohort and Japanese cohort were independently used for
external validation.

The enrichment scores of 64 cells in TME were inferred by the
xCell algorithm, which integrated the advantages of gene-set
enrichment with deconvolution approaches to remove
dependencies between cell types (7). When selecting cell types,
we first removed the other cell type family, which mainly
included neural and sebaceous cells, in the algorithm.
According to the cell p-value and the standard deviation of cell
scores, we removed 8 cell types again. The tumor purity of TCGA
patients was inferred by ESTIMATE (Estimation of Stromal and
Immune cells in Malignant Tumors using Expression data),
ABSOLUTE, LUMP (leukocyte unmethylation for purity), and
CPE (consensus measurement of purity estimations) algorithms,
and the immune subtypes of TCGA patients were provided in the
study of Vésteinn Thorsson et al. (8). Moreover, related features,
including the signature scores of tumor proliferation, wound
healing, macrophage regulation, lymphocyte infiltration
signature, IFN-g response and TGF-b response, leukocyte
fraction, tumor-infiltrating lymphocyte (TIL) regional fraction,
and intratumor heterogeneity, were also used in our study.

Non-Supervisor Clustering and
Identification of TME Subtypes
We performed the k-mean consensus cluster method to identify
tumor microenvironment subtypes for TCGA patients, based on
the R package “ConsensusClusterPlus”. Performance of
consensus matrix, empirical cumulative distribution function
(CDF) plots, and relative change in area under CDF curve
were considered when selecting optimal k value. The tumor
microenvironment subtypes of patients in the Japanese cohort
and the Hoshida Y et al. cohort were determined by a neural
network model, which was trained and internally validated in
TCGA dataset (the training and testing cohorts were randomly
divided at a ratio of 7:3).

The neural network consisted of the input layer, hidden
layers, and output layer. We set the cell matrix as the input
layer and the subtype result as the output layer. The setting of the
hidden layer neural nodes refers to the following formula:

Nh =
Ns

a* Ni + Noð Þ
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Ni is the number of neurons in the input layer; No is the
number of neurons in the output layer; Ns is the number of
training set samples; and a could be an arbitrary variable.

We used the receiver operating characteristic (ROC) curve
analysis to confirm the performance of the prognostic model.

Survival Analysis
The KM and Cox regression analyses were used to calculate the
significance of differences in the overall survival (OS) for
categorical variables. The statistical difference of the OS in the
KM curve analysis was compared using the log-rank test, and the
pairwise comparison was performed between multiple groups.
For continuous variables, Cox regression was used to calculate
the hazard ratio (HR) and significance of differences in the OS.

Gene Set Enrichment Analysis
R package “DESeq2” implement procedures were utilized for the
differential expression analysis between any cluster and other
patients (9). The genes with a false discovery rate (FDR, also
known as Benjamini–Hochberg-adjusted p-values) < 0.05 and
absolute log-transformed fold change (log2FC) > 1.0 were
defined as differential expression genes. The gene list is then
ranked by log2FC and studied using gene set enrichment
ana lys i s , which was computed by the R package
“ClusterProfiler” (10). The signaling pathway information in
the Molecular Signatures Database (MSigDB) (https://www.
gsea-msigdb.org/gsea/msigdb/) was used. The pathway
enrichment scores for each patient were calculated by the gene
set variation analysis (GSVA).

Genomic Mutation and Copy
Number Variants
The gene mutation data of LIHC were downloaded from TCGA
database. The “Maftools” R package was applied to visualize the
gene mutations and type of the mutation (11). The copy number
data were recognized by GISTIC 2.0 (12).

Pseudotime Trajectory Analysis
Through inversed pseudotime trajectory analysis, we reduced the
dimensions of all samples on the same plane, observed the
distribution between different clusters, and explored the latent
associations between clusters. Through the pseudotime ordering
of each patient, we attempted to reveal the patient’s possible
disease development directions (13).

Evaluation of Drug Sensitivity and
Patients’ Response to Immunotherapy
Using the pRRophetic algorithm (14), a ridge regression model
was established to predict the sensitivity value (IC50) of 51 drugs
for LIHC patients of TCGA, the Japanese cohort, and the
Hoshida Y et al. cohort based on the expression profile.
pRRophetic is a popular enrichment algorithm, which was
extensively utilized in medical studies (15–19). The potential
response of patients to immunotherapy was inferred by the
tumor immune dysfunction and exclusion (TIDE) score, which
calculates how the expression of each gene in the tumor interacts
with the level of cytotoxic T-cell infiltration to affect patient
Frontiers in Immunology | www.frontiersin.org 3
survival (20). Generally, a lower TIDE score predicts a better
response to immunotherapy.

Other Statistical Analysis
Immune and stromal scores were calculated using the
ESTIMATE algorithm, which was provided in the R package
“estimate,” and the correlation analysis was conducted based on
the Spearman method. The Kruskal–Wallis test examined the
statistical difference of distribution in three or more groups, and
the Wilcoxon test compared that of two groups. The missing
value of clinical data in our study was imputed by multiple
imputation methods based on chain equitation. The FDR was
calculated by the Benjamin–Hochberg method for adjusting the
p-value in multiple comparisons.
RESULTS

The Association Between 48 Cells in TME
and Clinical Characteristics in
TCGA Patients
Based on the xCell algorithm, a total of 48 types of cells,
including immune (including lymphocyte and myeloid cells),
stem, and stromal cells in TME, were available for analysis in
LIHC. The correlation between tumor microenvironment cells
and the age of patients was calculated (Figure 1A). The
adipocytes and macrophages M2 were significantly positively
correlated with age. In contrast, the granulocyte-macrophage
progenitor was negatively correlated with age. Although CD8+ T
cells, CD4+memory T cells, CD4+ naïve T cells, T helper 1 (Th1)
cells, and T helper 2 (Th2) cells were positively associated with
the patients’ age, the associations were insignificant. The
associations between age and each cell score in the TME of
patients are shown in the Supplementary Figure 1.

Subsequently, we compared the estimated cell scores across
different genders, levels of obesity, Child–Pugh grade, alcohol
consumption, TNM stages, T stages, N stages, and M stages
(Figure 1B). In comparing different levels of obesity and different
Child–Pugh grades, the CD4+ T effector memory cells, immature
dendritic cells, and macrophages M2 had higher scores in obese
people and in the Child–Pugh grade B/C population. Maturation of
dendritic cells could act as antigen-presenting cells and initiate the
host anticancer immune response (21), but patients with obesity
and poor liver function gradingmay havematuration disturbance of
dendritic cells. When comparing the cell scores between TNM
stages, the score of conventional dendritic cells and activated
dendritic cells decreased in stage III/IV and stage T3/T4, which
could activate cytotoxic T lymphocytes cross-presenting
antigens (22).

We utilized the TME cell network to depict the
comprehensive landscape of tumor–immune cell interactions,
cell lineages, and their effects on the overall survival of patients
with LIHC (Figure 1C, Supplemental Table 1). Through
univariable Cox analysis, we found that only the Th 2 cell
score was associated with poor prognosis in lymphoid, which
was consistent with previous research conclusions (23). Many
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cells, such as adipocytes and endothelial cells, were associated
with favorable prognosis, which was usually thought to accelerate
tumor metastasis (24, 25). We also calculated the HR of these
cells using multivariable Cox analysis to correct the age and
TNM stage (Figure 1D). Similar to the result of univariable Cox
analysis, we found that Th 2 cells were associated with poor
prognosis, and endothelial cells, etc., were associated with
favorable prognosis.

Identification of Subtypes in TME of
Patients With LIHC
The consensus matrix was used as the similarity matrix to define
the final clusters. Sample classification robustness was analyzed
by consensus clustering, which involved k-means clustering by
resampling randomly selected tumor profiles (Figure 2A).
According to the results of the consensus cluster and the areas
under the curve of the consensus distribution function (CDF)
plot, we chose k = 4 as the optimal value and divided 370 LIHC
patients into four different subtypes (C1, C2, C3, and C4) with 57
samples in C1, 57 samples in C2, 144 samples in C3, and 112
Frontiers in Immunology | www.frontiersin.org 4
samples in C4. In parallel, the overall survival in the TME
clusters was significantly different (p of log-rank test = 0.0026,
Figure 2B). Compared to patients of C1, those of C2 and C3 had
a significantly poorer overall survival. In univariable Cox
regression, the HR value of C2 versus C1 was 2.128 (95% CI:
1.087–4.165), that of C3 versus C1 was 2.881 (95% CI: 1.572–
5.279), and that of C4 versus C1 was 1.413 (95% CI: 0.740–
2.698). In multivariable Cox regression, the HR value of C2, C3,
or C4 versus C1 was 1.983 (95% CI: 1.005–3.916), 2.510 (95% CI:
1.339–4.706), or 1.307 (95% CI: 0.677–2.525), respectively, by
correcting the age and TNM stage (Figure 2C).

To explore the potential relationship between the four tumor
microenvironment clusters, we used pseudotime ordering to
analyze the development of the four subtypes (Figure 2D).
According to the result, the patients in C1 and C3 were seated
at both ends of the pseudotime ordering analysis, while the
patients of C2 and C4 were in the middle of pseudotime
ordering. The result of the pseudotime ordering analysis was
similar to the overall survival result of each cluster. The
pseudotime ordering suggested that C1 and C4 may be at a
B

C D

A

FIGURE 1 | The association between 48 cells in TME and clinical characteristics with patients. (A) Correlation between age and cell score. The size of each cell
represented the correlation between age and cell score. Spearman correlation coefficients and the associated p-value (Spearman) were shown. (B) Volcano plot
diagrams showed the comparison of cell infiltration levels. The significance (p-value) versus and fold change were plotted on the X-axis and T-axis. (C) Landscape of
the TME in LIHC. Cellular interaction of the TME cell types. The lymphoid cells are marked by yellow; the myeloid cells are marked by blue; stem cells are marked by
red; and stromal cells are marked by brown. The size of each cell represents the survival impact of each TME cell type, which was calculated by log10 (log-rank test
p values indicated). Risk factors are indicated in red, and favorable factors for overall survival are indicated in green. The lines connecting TME cells represent cellular
interactions. The thickness of the line represents the strength of correlation estimated by Spearman correlation analysis. Positive correlation is indicated in red and
negative correlation in blue. (D) Forest plots showing multivariable Cox regression analyses of the cell score, and each score is adjusted by age and TNM stage.
July 2022 | Volume 13 | Article 838374
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similar stage in the glycan biosynthesis and metabolism
pathways and cellular process pathways (including transport
and catabolism, cell growth and death, cellular community,
and cell motility) and have a potential timing relationship with
C2 and C3 (Figure 2E, Supplementary Figure 2). In
carbohydrate metabolism-, energy metabolism-, and nucleotide
metabolism-related pathways and all cellular process-related
pathways, we observed that C2 and C4 were on different
timing stages, which may have a potential temporal evolution
relationship (Supplementary Figure 2). We discussed the more
particular biological characteristics and enrichment analysis in
the next.

The Immune Characteristics in Different
TME Clusters
To further characterize and understand the biological and immune
differences and connections among these TME clusters, we
contrasted the difference of cell scores in each TME cluster. As
illustrated in Figure 3A, we observed a higher CD8+ T cell
infiltration, including that of the CD8+ T cells, CD8+ T effector
memory cells, and CD8+ T center memory cells, in C2 and C1
patients. Meanwhile, macrophages M1 and dendritic cells had
higher cell scores in patients of C1 and C2. Concurrently, the
other two clusters (C3 and C4) showed lower infiltration levels of
Frontiers in Immunology | www.frontiersin.org 5
CD8+ T cells, and the patients of C3 had lower endothelial
cell scores.

The ESTIMATE, LUMP, IHC, and CPE scores from each
TME cluster were also compared, which provided a qualitative
estimation of tumor purity (Figure 3B). We observed that
patients of C3 had higher tumor purity than other clusters. We
counted the leukocyte fraction, stromal fraction, and intratumor
heterogeneity in each subtype (Figure 3C). Notably, there was no
significant difference in intratumor heterogeneity among the four
subgroups, but C3 had the lowest leukocyte fraction and stromal
fraction scores.

By probing the association between six identified immune
subtypes and TME clusters, we found that most wound healing
immune subtype patients belonged to TMEC3, whichmeans a high
proliferation rate and an association with worse survival
(Figure 3D). In contrast to wound healing, the IFN-g-dominant
subtype principally flowed to TME C2, which usually had the
highest macrophages M1 and CD8+T cells. The lymphocyte-
depleted subtype had minimal T helper cells and mainly flowed
to TME C3 and C4. Furthermore, we discovered that C1 and C2
had higher lymphocyte infiltration and macrophage regulation
scores than the other clusters, and C2 had higher macrophage
regulation than others (Figure 3E). Simultaneously, C1 and C4 had
a lower proliferation rate than C2 and C3, and C3 had the lowest
B

C D E

A

FIGURE 2 | Identification and clinical characteristics of TME subgroups. (A) Consensus clustering displaying the robustness of sample classification using multiple
iterations (×1,000) of k-means clustering. The consensus distribution function (CDF) depicting the cumulative distribution from consensus matrices at a given cluster
number (k). (B) Kaplan–Meier curves for overall survival of 370 patients in TCGA database showed the association between TME subtypes and overall survival (global
log-rank test, p = 0.00033). (C) Forest plots showing multivariate Cox regression analyses of the TME class, age, and TNM stage on the overall survival of LIHC
patients. (D) Pseudotime trajectory analysis speculated the developmental relationship of the clusters based on the differential genes. (E) Pseudotime trajectory
analysis of 370 patients in TCGA based on the glycan biosynthesis and metabolism pathway-related genes and cellular processes (including transport and
catabolism, cell growth and death, cellular community, and cell motility) pathway-related genes. *p≤ 0.05, **p≤ 0.01, ***p≤ 0.001.
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IFN-g signature. To seek the difference of immunocompetence
between each cluster, we examined the immunomodulatory gene
expression in each cluster (Figure 3D). Almost all antigen
presentation genes were highly expressed in C2 and C1, and the
receptor genes had a high gene expression in C2.
The Analyses of Differentially Expressed
Genes and Enriched Functions Between
Different TME Clusters
We selected the top quarter with the most considerable variance
from all genes to analyze the differential expression of genes in
each TME cluster (Figure 4A, Supplemental Table 2). The
highly altered genes involved in different TME clusters were
TRARG1, CLEC4G, and GDF2 in C1; immunoglobulin lambda
variable cluster family genes in C2; LGALS14, SST, and
CYP11B2 in C3; and Lnc-NPVF-2, LUZP2, AQP6 in C4.

Then we used the gene sets in the MSigDB database to
annotate the enriched biological functions, selected the
significant enrichment pathway, and scored each patient by
GSVA (Figure 4B). In TME C1, immune response-related
pathways were highly enriched, including TGF-b signaling,
complement activation, and B-cell receptor signaling pathway.
The pathway enrichment of TME C2 was similar to that of C1,
and those immune-related pathways were also enriched in C2.
Nevertheless, IFN-a and IFN-g response pathways and MYC
Frontiers in Immunology | www.frontiersin.org 6
target pathways were highly enriched in C2, specifically.
Meanwhile, the cell cycle-related pathways were activated in
TME C3, and the metabolism and decomposition-related
pathways were activated in TME C4. In contrast, we found
that cell cycle and cell proliferation-related pathways were the
least enriched in C1, meaning that TME C1 may have the lowest
cell proliferation rate. The metabolism-related and the
oxidation–reduction (redox) reaction-related pathways were
lowly enriched in C2 (Figure 4C). The downregulated
pathways of C3 and C4 were highly similar, but C1 and C3
were opposite, especially in immune-related pathways
(Figures 4B, C). Although the enrichment of immune
pathways was similar in C1 and C2, the DNA replication and
cell-cycle pathways were more enriched in C2. The same pattern
also appeared in C3 versus C4, the metabolic-related pathways of
C4 were more enriched, and the cell proliferation-related
pathways were more enriched in C3 (Supplementary Figure 3).

Genomic Alteration Landscape of Different
TME Clusters
To investigate the genomic alteration landscape of the TME cluster,
we found that C3 showed a significantly higher tumor mutation
burden and copy number variation than C1 (Figure 5A). By
comparing genes with mutation rates greater than 5%, we
observed that TP53, CTNNB1, OBSCN, DNAH7, CSMD1, RB1,
FRAS1, and KMT2D, the most frequent alterations identified in
B

C

D

EA

FIGURE 3 | The immune characteristics of different TME clusters. (A) Unsupervised clustering of TME cells for 370 patients in TCGA database. Clinical stage, sex,
alcohol consumption, Child grade, BMI grade, age, and TME cluster were shown as patient annotations. (B) The boxplots showed the comparison of tumor purities
with ESTIMATE, LUMP, IHC, and CPE, respectively. The thick line represents the median value. The bottom and top of the boxes were the 25th and 75th percentiles
(interquartile range). The whiskers encompassed 1.5 times the interquartile range. The statistical difference of four groups was compared through the Kruskal–Wallis
test. (C) Violin plots showed the comparison of immunocompetence with leukocyte fraction, stromal fraction, and intratumor heterogeneity respectively. The
differences between every two groups were compared through the Kruskal–Wallis test. (D) Sankey diagram illustrates change between the immune subtype and
TME cluster in each patient. Heatmap of IFN-g response, TGF-b response, macrophage regulation, lymphocyte infiltration, proliferation, and wound healing in
different TME clusters. (E) Heatmap of immune genes that were differentially expressed in patients from different TME clusters. *p≤ 0.05, **p≤ 0.01, ns: p> 0.05.
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LIHC (Supplemental Table 3), had significantly different patterns
between clusters. Considering that the APOBEC family members,
including APOBEC3A and APOBEC3B, catalyze mutation and
promote cancer growth (26, 27), we chose the APOBEC activity-
related mutational signatures, SBS2 and SBS13, to investigate the
differences of the immune microenvironment among clusters. We
found that C3 had more mutations in APOBEC-related signatures.

Through the description of the entire cluster of CNV
landscapes (Figure 5B) by GISTIC 2.0, we discovered that the
CNV of C1 was significantly less than those of the other three
clusters. Although the degree of amplification was generally
higher in C2, there were more amplifications and deletions of
the chromosomal locus in C3. The chromosomal specificity loci,
such as 11q13.3 and 9p21.3, only had no significant amplification
in C1 (Supplemental Tables 4-5).

Internal Validation and External
Exploration of TME Clusters
The LIHC patients in TCGA dataset were randomly divided into
the training cohort (n = 259) and the testing cohort (n = 111).
We incorporated the matrix of putative cell scores into the neural
network model and verified it in the validation set to determine
TME clusters (Figure 6A). For internal validation, the accuracy
of the neural network model was 0.949 in the testing cohort. In
the external validation dataset, we used the neural network
model to obtain the TME clusters and observed consistent
Frontiers in Immunology | www.frontiersin.org 7
survival differences between predicted TME clusters in the
Japanese cohort and the Hoshida Y et al. cohort with that in
TCGA dataset (Figure 6B).

To verify the stable interrelationship among the four
subtypes, we performed pseudotime ordering analyses in the
validation set with the same genes (Figure 6C). In all datasets,
the patients in C1 and C3 were distributed at both endpoints
of the hypothetical timeline and the patients of C2 and C4 were
in the middle of the hypothetical timeline.

The landscape of infiltrating cells in TME was also explored
(Figures 6D, E). Higher CD8+ T cell scores of C1 patients were
observed in different validation datasets. Moreover, endothelial
cells’ legible low-infiltrating score could be observed in C3
patients, and the Th 1 cells had a low infiltrating score in C4.
These findings in validation datasets indicate a similar pattern of
infiltrating cell enrichment with that of TCGA dataset.

Therapeutic Response to Chemotherapy
and Immunotherapy of Patients in
Different TME Clusters
To find the response of LIHC patients to drugs in different TME
clusters, we inferred the IC50 value of the 51 drugs in TCGA-
LIHC, the Japanese cohort, and the Hoshida Y et al. cohort
patients (Figure 7A). We found that patients in C1 might be
more sensitive to paclitaxel, cisplatin, bortezomib, etc. The
patients in C2 might be more sensitive to docetaxel,
B

C

A

FIGURE 4 | Differentially expressed genes and enriched functions in the TME cluster. (A) The volcano map showed the differentially expressed genes of each
cluster. Red dots represent upregulated genes, blue dots represent downregulated genes, and gray dots represent no differentially expressed genes. (B) The
Hallmark, KEGG, Gene Ontology Biological Process (GOBP), Gene Ontology Cellular Component (GOCC), and Gene Ontology Molecular Function (GOMF)
enrichment analyses were performed for upregulated genes in each cluster, respectively. (C) The above enrichment analyses were performed for downregulated genes in
each cluster, respectively.
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BA

FIGURE 5 | Genomic alteration landscape of each TME cluster. (A) The log10TMB of each cluster, gene-level CNV mutational signature, waterfall chart of significant
(>5%) and differently (Fisher’s exact test p < 0.1) mutated genes, and heatmap of gene copy number variation were shown from the top to the bottom panels. Patients
were ordered by the combined contribution of APOBEC-related mutational signatures (SBS2 + SBS13) with each cluster. (B) GISTIC copy number variation analysis. The
amplifications and deletions of chromosomal regions were colored red and blue, respectively (FDR cutoff: 0.01).
B

C

D EA

FIGURE 6 | Identification and clinical characteristics of TME clusters in the verification group. (A) Neural network. The cell matrix was the input layer, and the subtype result
was the output layer. (B) Kaplan–Meier curves for overall survival of 240 patients in the Japanese cohort (global log-rank test, p < 0.0001), and 80 patients in the Hoshida Y
et al. cohort (global log-rank test, p = 0.11). (C) Pseudotime trajectory analysis of the Japanese cohort and the Hoshida Y et al. cohort. (D) Unsupervised clustering of TME
cells for 240 patients in the Japanese cohort. (E) Unsupervised clustering of TME cells for 80 patients in the Hoshida Y et al. cohort.
Frontiers in Immunology | www.frontiersin.org July 2022 | Volume 13 | Article 8383748

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Zhang et al. TME Subtypes of LIHC Patients
elesclomol, etc. The patients in C3 were less sensitive to most
targeted drugs, except epothilone B and gemcitabine.
Furthermore, patients in C4 might be more sensitive to
metformin, vinorelbine, erlotinib, etc. The potential response
of ICB therapy was estimated by the TIDE algorithm, which can
evaluate the efficacy of anti-PD1 and anti-CTLA4 treatments.
We discovered that C1 had the lowest TIDE score than other
clusters (Figure 7B), which means the patients of C1 may get
more benefits from immunotherapy. Comparing the scores of C2
patients in three cohorts, we speculated that C2 patients could
not benefit from immunotherapy stably. Moreover, the patients
of C3 and C4 may have poor immunotherapy efficacy.
DISCUSSION

We identified four tumormicroenvironment subtypes based on the
lymphocytes, myeloid cells, stem, and stromal cells and discussed
the difference of survival, cell infiltration, tumor mutation burden,
copy number variation, and functional enrichment pathways
Frontiers in Immunology | www.frontiersin.org 9
between the clusters. A neural network model was established
based on the obtained cell matrix and verified in the Japanese and
Hoshida Y et al. cohorts. In conclusion, the multiple signatures
suggested that the long-termoutcome and immunotherapy efficacy
of patients may be different among four TME subtypes.

It was generally considered that the hematopoiesis becomes
skewed toward myeloid and away from lymphoid lineages with age;
therefore, aging negatively impacted CD8+ T cell immunity and
positively connected with adipocytes (28). Similar trends may also
exist in the tumor microenvironment of LIHC patients. The increase
of adipocytes and the decrease of granulocyte-macrophage progenitor
may indicate the transformation to the aging microenvironment,
which may dramatically affect tumor progression (29). Our study
suggested thatmacrophageM2was increased in older LIHC patients,
with obvious tumor-promoting functions (30). Tumor-associated
adipocytes can promote the immunosuppressive TME and
aggravate tumor progression (31). Considering the immune cell-
adipocyte cross talk mentioned in single-cell studies, the growth of
adipocytes may cause systemic energy imbalance in TME (32). In
summary, we speculated that elderly patients might have a more
immunosuppressed TME than young patients.
BA

FIGURE 7 | Predicting the efficacy of each TME cluster. (A) Heatmap of drug sensitivity in patients of different TME clusters in TCGA, Japanese, and Hoshida Y
et al. cohorts. (B) Violin plots showed the comparison of the TIDE score of TME clusters in TCGA, respectively. *p≤ 0.05, **p≤ 0.01, ns: p> 0.05.
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Besides, most of the previous research was based on the
immune microenvironment and did not analyze the types of
stromal cells and stem cells. Our research explored immune and
non-immune cells in the immune microenvironment of liver
cancer, which makes our study more complete and closer to the
real situation. The TME component of LIHC may be unique, such
as the existence of endothelial cells. Highly endothelial cell
infiltration was usually associated with poor survival, and the
liver sinusoidal endothelial cells could not be ignored in the liver,
which has vital physiological and immunological functions,
including antigen presentation, and leukocyte recruitment (33).
In liver cancer, a high endothelial cell score is associated with a
good prognosis, and correspondingly, the patients of C3 have a
lower endothelial cell score and worse prognosis. Likewise, in the
non-neoplastic cirrhotic and non-cirrhotic liver, PD-L1 was
expressed on Kupffer cells (macrophages that reside in hepatic
sinusoids), endothelial cells, and immune cells, all of which scored
lowly in C3 (34). This result is consistent with the low expression
of CD274 in C3, which also indicates that immunotherapy may be
less effective in C3. In addition, a single-cell sequencing study
found that exhausted CD8+ T cells and regulatory T cells were
preferentially enriched and potentially clonally expanded in LIHC,
but the functions of CD8+ T cells were repressed (35). Although
the patients of C2 had a higher CD8+ T cell score than C1, the
functions of CD8+ T cells may be inhibited.

We observed that the enrichment of pathways in different
types seems regular. For instance, the cell cycle and cell
proliferation-related pathways had the highest enrichment in
TME C3, followed by C2, C4, and C1. In immune-related
pathways, the enrichment of C1 and C2 was opposite to that
of C3 and C4. These results indicated that the immune
phenotype of C1 may be similar to that of C2 and antagonistic
to that of C3 and C4. Simultaneously, the cell proliferation-
related pathways in C1 that had the lowest enrichment may
indicate that the cancer cells were less malignant, which
explained the better survival outcome of patients in C1.
Interestingly, the patients of C1 had a relatively inactive
immune microenvironment compared with patients of C2. The
immune cell scores, stromal fraction, and immune pathway
enrichment were similar in C1 and C2. Intriguingly, the
expression of immune-related genes of C2 was even higher,
but C2 did not have a better survival outcome than C1.
Regarding the metabolism laws of the four subtypes, we
believed that the metabolism and cell cycle of C1 were
relatively inactive, and there is an evolutionary process from
C1 to high-metabolome subtypes by pseudotime ordering
analysis. Considering that the enrichment of immune and
metabolic-related pathways in C2 was higher than that in C1,
we speculated the high immune activity could not control more
malignant tumors in C2, which may explain why the survival
outcome of C2 was worse than that of C1. In addition, the TIDE
score consisted of a dysfunction score and an exclusion score,
which were associated with the average expressions of CD8A,
CD8B, GZMA, GZMB, and PRF1 (20). The above cytotoxic T
lymphocyte markers were expressed differently between C1and
C2; therefore, the TIDE scores between C1 and C2 were different.
Frontiers in Immunology | www.frontiersin.org 10
As for the differences of TMB in each cluster, proliferative
hepatocellular carcinoma was associated with chromosomal
instability and TP53 mutations, and non-proliferative tumors
were a well-differentiated phenotype with CTNNB1 mutations
(36). The TP53 mutation frequency was higher in C2; we
speculated that the patients of C2 may belong to the
proliferative hepatocellular carcinoma. Involved in CNV,
although the amplified chromosomes were at the same locus,
the amplified genes were not the same among clusters. Oncogenes
expressed by chromosomal 11q13.3, such as CCND1 and some
FGF family genes, increased the immune checkpoint signature
expression, including CD274, PDCD1, BTLA, CTLA4, HAVCR2,
IDO1, and LAG3 (37). We discovered that CCND1 was only
amplified in C2, which may account for the high expression of
immune checkpoint signatures in C2. There have been targeted
drugs applicated for 11q13.3 amplification (38). However, the
amplified genes were significantly different between clusters, and
only patients in C3 were accompanied by amplified FGF family
genes, which suggested a better response to FGF inhibitors. It is
also noteworthy that FGF3 amplification may be associated with
multiple lung metastases and a poorly differentiated tumor (39).

We also observed a similar situation at site 9p21.3. LIHC does not
belong to the frequent 9p21 loss cancer type, but this CNV type can
distinguish between subtypes with obvious deletion (C1) and no
apparent deletion (C2–4), according to our study. The 9p21 loss
correlates with “cold” tumor-immune phenotypes and shorter
survival (40). In melanoma, the deletion of 9p21 was associated with
primary resistance to anti-PD-1/PD-L1monotherapy, suggesting that
immunotherapymay not be effective in C2–4. On the other hand, we
must pay attention to the high expression of CD274 in C2, suggesting
that C2 patients may benefit from immunotherapy. Combined with
9p21.3 loss, the immunotherapy efficacy in these patients may be
variational. Moreover, this conclusion is the same as the result
calculated by TIDE in our study. In parallel, patients with deletions
or mutations in CDKN2A and CDKN2B, common deletion genes in
C2–4, had a significantly shorter time to progress on chemotherapy
(41). In contrast, C2 and C3–4 have different genes deleted at the
chromosomal 9p21. The patients of C2 had more CDKN2B and
CDKN2B-AS1 deletions than C3–4. The CDKN2B-AS1 knockdown
inhibited cell proliferation, migration, and invasion and induced G1
arrest andapoptosisof tumorcells (42). In short,C2patientsmayhave
fewer metastases than C3 and 4.

In brief, the patients of C1 have lower malignancy and higher
immunological activity, without 9p21.3 deletion or 11q13.3
amplification, and can achieve better curative effects in
immunotherapy. C2 patients have high immunological activity
and a high expression of immune checkpoint inhibitors. The
malignance of the two clusters may be lower and tumor not easy
tometastasize, and both of themmay benefit from immunotherapy
or local therapy.The patients ofC3with lower immune and stromal
cell infiltration, and highest tumor purity, find it challenging to
benefit from immunotherapy. They may get better curative effects
from drugs that target FGF/FGFR, including lenvatinib (43). The
patients of C4 may belong to immune-insensitive subtypes like C3
anddevelop towardC3.Considering that the cell-divisionMphase-
related pathways, like the sister chromatid segregation pathway,
July 2022 | Volume 13 | Article 838374
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were highly enriched inC3, the vinorelbine drugsmay achieve good
results in C4.

Although our study confirmed four TME subtypes that
potentially predicted antitumor treatment efficacy, our research
still has limitations. The experimental data were lacking in our
study, and the evaluation of efficacy of therapies mentioned in
our study should be performed in larger-scale clinical data. In
conclusion, our study laid an accurate foundation of four TME
subtypes, which may provide therapeutic inspiration for patient
selection for appropriate therapies in LIHC.
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25. Attané C, Muller C. Drilling for Oil: Tumor-Surrounding Adipocytes Fueling
Cancer. Trends Cancer (2020) 6(7):593–604. doi: 10.1016/j.trecan.2020.03.001

26. Law EK, Levin-Klein R, Jarvis MC, Kim H, Argyris PP, Carpenter MA, et al.
APOBEC3A Catalyzes Mutation and Drives Carcinogenesis In Vivo. J Exp
Med (2020) 217(12):e20200261. doi: 10.1084/jem.20200261

27. Wang D, Li X, Li J, Lu Y, Zhao S, Tang X, et al. APOBEC3B Interaction With
PRC2 Modulates Microenvironment to Promote HCC Progression. Gut
(2019) 68(10):1846–57. doi: 10.1136/gutjnl-2018-317601

28. Drijvers JM, Sharpe AH, Haigis MC. The Effects of Age and Systemic
Metabolism on Anti-Tumor T Cell Responses. eLife (2020) 9:e62420.
doi: 10.7554/eLife.62420

29. Fane M, Weeraratna AT. How the Ageing Microenvironment Influences
Tumour Progression. Nat Rev Cancer (2020) 20(2):89–106. doi: 10.1038/
s41568-019-0222-9

30. Wan S, Zhao E, Kryczek I, Vatan L, Sadovskaya A, Ludema G, et al. Tumor-
Associated Macrophages Produce Interleukin 6 and Signal via STAT3 to
Promote Expansion of Human Hepatocellular Carcinoma Stem Cells.
Gastroenterology (2014) 147(6):1393–404. doi: 10.1053/j.gastro.2014.08.039

31. Liu Y, Tiruthani K, Wang M, Zhou X, Qiu N, Xiong Y, et al. Tumor-Targeted
Gene Therapy With Lipid Nanoparticles Inhibits Tumor-Associated
Ad ipocy t e s and Remode l s th e Immunosuppre s s i v e Tumor
Microenvironment in Triple-Negative Breast Cancer. Nanoscale Horiz
(2021) 6(4):319–29. doi: 10.1039/d0nh00588f

32. Rajbhandari P, Arneson D, Hart SK, Ahn IS, Diamante G, Santos LC, et al.
Single Cell Analysis Reveals Immune Cell-Adipocyte Crosstalk Regulating the
Transcription of Thermogenic Adipocytes. eLife (2019) 8:e49501.
doi: 10.7554/eLife.49501

33. Shetty S, Lalor PF, Adams DH. Liver Sinusoidal Endothelial Cells -
Gatekeepers of Hepatic Immunity. Nat Rev Gastroenterol Hepatol (2018) 15
(9):555–67. doi: 10.1038/s41575-018-0020-y

34. Ihling C, Naughton B, Zhang Y, Rolfe PA, Frick-Krieger E, Terracciano LM,
et al. Observational Study of PD-L1, TGF-b, and Immune Cell Infiltrates in
Hepatocellular Carcinoma. Front Med (2019) 6:15. doi: 10.3389/
fmed.2019.00015
Frontiers in Immunology | www.frontiersin.org 12
35. Zheng C, Zheng L, Yoo JK, Guo H, Zhang Y, Guo X, et al. Landscape of
Infiltrating T Cells in Liver Cancer Revealed by Single-Cell Sequencing. Cell
(2017) 169(7):1342–56.e16. doi: 10.1016/j.cell.2017.05.035

36. Calderaro J, Ziol M, Paradis V, Zucman-Rossi J. Molecular and Histological
Correlations in Liver Cancer. J Hepatol (2019) 71(3):616–30. doi: 10.1016/
j.jhep.2019.06.001

37. Chan AW, Zhang Z, Chong CC, Tin EK, Chow C, Wong N. Genomic
Landscape of Lymphoepithelioma-Like Hepatocellular Carcinoma. J Pathol
(2019) 249(2):166–72. doi: 10.1002/path.5313

38. Sawey ET, Chanrion M, Cai C, Wu G, Zhang J, Zender L, et al. Identification of a
Therapeutic Strategy TargetingAmplified FGF19 in Liver Cancer byOncogenomic
Screening. Cancer Cell (2011) 19(3):347–58. doi: 10.1016/j.ccr.2011.01.040

39. Arao T, Ueshima K, Matsumoto K, Nagai T, Kimura H, Hagiwara S, et al.
FGF3/FGF4 Amplification and Multiple Lung Metastases in Responders to
Sorafenib in Hepatocellular Carcinoma. Hepatology (Baltimore Md) (2013) 57
(4):1407–15. doi: 10.1002/hep.25956

40. Han G, Yang G, Hao D, Lu Y, Thein K, Simpson BS, et al. 9p21 Loss Confers a
Cold Tumor Immune Microenvironment and Primary Resistance to Immune
Checkpoint Therapy. Nat Commun (2021) 12(1):5606. doi: 10.1038/s41467-
021-25894-9

41. Lowery MA, Ptashkin R, Jordan E, Berger MF, Zehir A, Capanu M, et al.
Comprehensive Molecular Profiling of Intrahepatic and Extrahepatic
Cholangiocarcinomas: Potential Targets for Intervention. Clin Cancer Res
(2018) 24(17):4154–61. doi: 10.1158/1078-0432.Ccr-18-0078

42. Huang Y, Xiang B, Liu Y, Wang Y, Kan H. LncRNA CDKN2B-AS1 Promotes
Tumor Growth and Metastasis of Human Hepatocellular Carcinoma by
Targeting Let-7c-5p/NAP1L1 Axis. Cancer Lett (2018) 437:56–66.
doi: 10.1016/j.canlet.2018.08.024

43. Sato J, Satouchi M, Itoh S, Okuma Y, Niho S, Mizugaki H, et al. Lenvatinib in
Patients With Advanced or Metastatic Thymic Carcinoma (REMORA): A
Multicentre, Phase 2 Trial. Lancet Oncol (2020) 21(6):843–50. doi: 10.1016/
s1470-2045(20)30162-5

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Zhang, Yao, Wu, Zhou, Zhao, He and Xu. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.
July 2022 | Volume 13 | Article 838374

https://doi.org/10.1016/j.intimp.2021.108340
https://doi.org/10.1038/s41591-018-0136-1
https://doi.org/10.1038/s41423-018-0005-3
https://doi.org/10.1016/j.it.2016.09.006
https://doi.org/10.1038/s41568-020-0285-7
https://doi.org/10.1111/cas.13336
https://doi.org/10.1016/j.trecan.2020.03.001
https://doi.org/10.1084/jem.20200261
https://doi.org/10.1136/gutjnl-2018-317601
https://doi.org/10.7554/eLife.62420
https://doi.org/10.1038/s41568-019-0222-9
https://doi.org/10.1038/s41568-019-0222-9
https://doi.org/10.1053/j.gastro.2014.08.039
https://doi.org/10.1039/d0nh00588f
https://doi.org/10.7554/eLife.49501
https://doi.org/10.1038/s41575-018-0020-y
https://doi.org/10.3389/fmed.2019.00015
https://doi.org/10.3389/fmed.2019.00015
https://doi.org/10.1016/j.cell.2017.05.035
https://doi.org/10.1016/j.jhep.2019.06.001
https://doi.org/10.1016/j.jhep.2019.06.001
https://doi.org/10.1002/path.5313
https://doi.org/10.1016/j.ccr.2011.01.040
https://doi.org/10.1002/hep.25956
https://doi.org/10.1038/s41467-021-25894-9
https://doi.org/10.1038/s41467-021-25894-9
https://doi.org/10.1158/1078-0432.Ccr-18-0078
https://doi.org/10.1016/j.canlet.2018.08.024
https://doi.org/10.1016/s1470-2045(20)30162-5
https://doi.org/10.1016/s1470-2045(20)30162-5
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles

	Comprehensive Analysis Identifies and Validates the Tumor Microenvironment Subtypes to Predict Anti-Tumor Therapy Efficacy in Hepatocellular Carcinoma
	Introduction
	Methods
	Data Source
	Non-Supervisor Clustering and Identification of TME Subtypes
	Survival Analysis
	Gene Set Enrichment Analysis
	Genomic Mutation and Copy Number Variants
	Pseudotime Trajectory Analysis
	Evaluation of Drug Sensitivity and Patients’ Response to Immunotherapy
	Other Statistical Analysis

	Results
	The Association Between 48 Cells in TME and Clinical Characteristics in TCGA Patients
	Identification of Subtypes in TME of Patients With LIHC
	The Immune Characteristics in Different TME Clusters
	The Analyses of Differentially Expressed Genes and Enriched Functions Between Different TME Clusters
	Genomic Alteration Landscape of Different TME Clusters
	Internal Validation and External Exploration of TME Clusters
	Therapeutic Response to Chemotherapy and Immunotherapy of Patients in Different TME Clusters

	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


