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Abstract

The idea that complex motor, perceptual, and cognitive behaviors are composed of smaller units, which are somehow
brought into a meaningful relation, permeates the biological and life sciences. However, no principled framework defining
the constituent elementary processes has been developed to this date. Consequently, functional configurations (or
architectures) relating elementary processes and external influences are mostly piecemeal formulations suitable to
particular instances only. Here, we develop a general dynamical framework for distinct functional architectures
characterized by the time-scale separation of their constituents and evaluate their efficiency. Thereto, we build on the
(phase) flow of a system, which prescribes the temporal evolution of its state variables. The phase flow topology allows for
the unambiguous classification of qualitatively distinct processes, which we consider to represent the functional units or
modes within the dynamical architecture. Using the example of a composite movement we illustrate how different
architectures can be characterized by their degree of time scale separation between the internal elements of the
architecture (i.e. the functional modes) and external interventions. We reveal a tradeoff of the interactions between internal
and external influences, which offers a theoretical justification for the efficient composition of complex processes out of
non-trivial elementary processes or functional modes.
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Introduction

The notion that basic elementary units serve as constituent

building blocks (or primitives) for the composition of complex

functional processes and behaviors, be they motoric, perceptual or

cognitive, is widely adhered to in the biological and life sciences.

For instance, the vocal behavior of singing birds comprises

functional elements with distinct associated time scales, such as

notes and syllables (groups of notes), that are represented

hierarchically in the avian forebrain [1]. The time-scale separation

that is inherent to the production of bird song has recently been

proposed to also underlie its perception [2]. Similar hierarchical

decompositions are likely to be involved in (human) speech

perception [3], where phonemes are known to constitute

meaningful categories relevant for communication [4]. In a

similar spirit, precise manual movements, as evident in handwrit-

ing, may result from the dual activity of a sequential controller

interacting with a trajectory generator [5]. Finally, perception-

action architectures in artificial intelligence may initiate learning

cycles using primitives to acquire complex skills [6].

These examples readily indicate that the literature is replete

with functional architectures with a hierarchy of processes

operating on different time scales. These architectures often

contain a considerable degree of detail and specificity, in order to

account for the specific features of a particular application.

However, it also limits their generality. A noticeable exception in

that regard is the approach developed over the last years by

Friston and colleagues [7]. The main premise of their approach is

that the brain’s structural and functional organization mimics the

causal structure in the environment through the free-energy

principle. The framework is nicely illustrated in [2], where

environmental dynamics are inherently structured as a temporal

hierarchy. The authors exemplified their approach in the context

of bird song, generated as a two-leveled coupled Lorenz attractor

operating on distinct time scales. Perceptually, the slower evolving

causal dynamics (singing bird) are retrieved via a Bayesian

inversion of the generative model from the temporal structure in

the fast environmental changes (sound waves). Powerful and

promissory as the approach is, the question as to what identifies

and classifies the elementary units of which complex behaviors are

constructed remains unaddressed.

A variety of attempts, nevertheless, to identify elementary units

has been pursued, mainly so, to our best knowledge, in the context

of motor control. There, a pertinent question is how the nervous

system reliably controls, stores, and activates complex motor

behavior in light of changing environmental context and neuro-

muscular system’s complexity [8,9]. Elementary functional units in

movement sciences are referred to as motor primitives or synergies

[9–15] in different domains stressing distinct albeit associated

aspects of motor control. In that regard, a synergy refers to a

temporal and functional organization in terms of ‘‘a group of

muscles often spanning a number of joints that is constraint to act

as a single functional unit’’ [16]. In contrast, a motor primitive

(originally) refers to mechanical consequences (force fields) that are

the resultant of the stimulation of hard-wired neural circuitry (see

below) although it has recently also been used in a broader sense

PLoS ONE | www.plosone.org 1 February 2011 | Volume 6 | Issue 2 | e16589



designating a ‘functional motor control unit’. Founded in the

cognitive information-processing perspective, Schmidt [9,17]

proposed that action is controlled on the basis of a limited

number of functional modules, referred to as generalized motor

programs (GMPs). Accordingly, each GMP contains fixed

‘algorithms’ to control a particular class of actions (e.g., overhand

throwing) such that it assures the class-invariant features

(presumably, the order of events, relative timing, and relative

force). Whenever a GMP is called upon several adjustable

parameters (time duration, force, and effectors used) are specified

so as to satisfy the context-specific task constraints. An altogether

different perspective stems from Mussa-Ivaldi and colleagues,

namely that neural circuits in the spinal cord are organized in

terms of functionally distinct modules. Experimental studies on

spinalized frogs revealed that stimulation of a particular spinal

cord circuit evoked reproducible contractions in groups of muscles,

inducing module-specific force fields—the motor primitives

[18,19]. The simultaneous activation of multiple modules leads

to the vectorial superposition of the corresponding force fields and

as such may generate a large variety of motor behaviors [10,20].

Others, still, have claimed that (stable) fixed points and limit cycles

– dynamical structures that are associated with discrete and

rhythmic movements, respectively – constitute the fundamental

building blocks that are at the nervous system’s disposal to

compose actions [14,21,22]. Importantly, their attractiveness

guarantees the units’ functionality in the face of perturbations,

which (among others) motivates their utility in humanoid robotics

design [23,24]. Also, turning ‘‘on’’ or ‘‘off’’ dynamical systems out

of an available ‘‘alphabet’’, depending on different behavioral

situations, is the basis of one popular control strategy in the

robotics and hybrid automatic control literature, known as Motion

Description Languages (MDLs) [25–27]. Outside of the motor

control domain, the notion of primitives is debated in the context

of visual perception, where Marr’s [28] proposal that local

geometrical properties serve as visual primitives has dominated

the debate for a long time. Recently, however, evidence was found

that the topologies of static [29,30] as well as dynamic [31] visual

scenes count as primitives underlying pattern recognition (see [32]

and [33] for contrasting views).

This brief overview readily indicates that the various

approaches stress different aspects adhering to motor primitives,

namely class-defining invariance and within class variation,

executive stability (i.e., maintenance of performance in the

presence of perturbations), and assemblability (i.e., the notion

that primitives can be assembled and embedded into a larger

functional organization). No single approach, however, incorpo-

rates all three features. Below, we outline a general dynamical

framework for functional two-layered architectures for the

production of complex behavioral processes incorporating all

three requirements. These architectures contain two ingredients:

functional modes that are defined in terms of phase flows, which

define the evolution of the state variables in their state space; and

signal operating upon the phase flows. These operational signals

may act on different time scales than the functional modes. We

define four representative functional architectures based on the

notion of time scale separation and evaluate their efficiency. The

latter is achieved by calculating the ‘informational content’ of the

operational signals and the ‘complexity’ of the functional modes

(see the Measures of Complexity section for the formal implemen-

tation of these intuitive notions). Please notice that we do not

refer to the functional elementary entities out of which complex

processes can be composed as primitives or synergies as these

concepts have particular connotations in the motor control

literature (see above) and the framework here outlined is not

limited to motor behavior.

We illustrate our framework in the context of the control of a

sequential movement, mimicking the well-known four introducto-

ry notes of Beethoven’s 5th symphony, as a toy example. We

portray the execution of this musical phrase as the sequence of

three piano key presses of equal duration followed by a forth one

of longer duration (Figure 1). Each key press is realized by a

different finger. Constructing a hierarchy of processes modeling

the entire sequence we evaluate the functional architecture with

regard to its mathematical form rather than from the specific

instantiation of the composite processes. Our perspective though

should not be limited to motor behavior only. Quite on the

contrary: we propose that phase flows constitute a generic

language of the nervous system for the coding of cognitive (in

the broadest sense) phenomena, although this is presently a

conjecture.

Methods

Phase flows and control
Dynamical systems are either autonomous or non-autonomous,

so defined via the absence versus presence of an explicit time-

dependent component, respectively. Autonomous, deterministic,

and time continuous systems are unambiguously described by the

flow in phase (or state) space, which provides a quantitative

description of a system’s evolution as a function of its current state

(see Figure 2). The phase flow topology uniquely determines a

system’s qualitative behavior. Another way of putting this is that

phase flow topologies conserve a system’s dynamic invariant

features—thus identifying all behavioral possibilities within a class

in a model-independent manner. While a system’s flow completely

describes an autonomous (deterministic) system’s behavior, the

behavior of non-autonomous systems additionally depends on

some (external) time-dependent influences. In its most general

Figure 1. Illustration of our toy example. One finger (blue) plays three notes in sequence followed by a fourth note of a longer duration played
by another finger (green). The fingers’ positions (x1*, x2*) are displayed in the right panel as a function of time.
doi:10.1371/journal.pone.0016589.g001

Functional Modes and Architectures of Behavior
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formulation, we can describe a functional architecture through its

phase flow as

_xxi~f xi,s tð Þð Þ ð1Þ

where xi for i = 1…N are the system’s state variables (the dot

indicates the time derivative) and s(t) represents a time-dependent

influence – the operational signal – that, if constant in time,

renders the process autonomous. A functional mode is defined

through equation (1) where _ss(t)~0 for all t and the dynamic

repertoire is the set of functional modes. To anticipate, intuitively

it makes sense to assume that the costliness associated with a

process is a function of the presence versus absence of an

operational signal, and furthermore depends on the complexity of

the functional mode and the operational signal (if present).

Different functions f may preserve particular invariant properties

while allowing for variation in detailed trajectory variability as

imposed, for instance, by particular task constraints, which is easily

illustrated in the context of limit cycles. Limit cycles may contain

various damping and stiffness terms (e.g., van der Pol, Rayleigh,

Duffing, and others, [34]) that all are closed orbits in phase space.

This formulation embraces the characteristics mentioned above:

class-defining invariance and within class variation, executive

stability, and assemblability.

The operational signal s(t) operates (upon) the functional

modes and generally will not be independent of xi. Here we wish

to focus on the causal effects of the operational signal upon the

functional modes. Let tf and ts denote the time scales

corresponding to a particular functional mode and operational

signal s(t) respectively. For different functional architectures, ts

may operate on various time scales relative to tf and could in

principle span a continuum of scales. Here, we choose four

different instantiations of time scale separations (see Figure 3 for

an overview). In cases in which s(t) acts much faster than the

functional mode (i.e., ts%tf), s(t) operates upon the mode

(exemplified below as Scenario 1). In those cases where s(t) acts on

a time scale similar to that of the functional mode (i.e.,

ts<tf2Scenario 2), s(t) may be said to operate the functional

mode. In Scenario 3 we consider the case where s(t) acts much

slower than the functional mode (ts%tf). Finally, in the fourth

architecture s(t) can be considered as time-independent (i.e.,

s(t)< constant during the functional process or equivalently

tsR‘2Scenario 4). All scenarios are exemplified below.

Functional hierarchies exemplified
We illustrate our approach by computationally implementing

the execution of our toy example (Figure 1) using qualitatively

distinct functional modes (phase flows) in the four different

scenarios. While each specific model implementation exemplifies

one of the four scenarios, it is important to notice that they

(merely) serve as placeholders representing phase flows: in each

case numerous other phase flows could be implemented, but the

scenarios are set apart via their corresponding time scale

separations. We have computationally implemented various

other realizations of individual phase flows (not shown here),

and all other results remained the same. The functional modes

used in the scenarios below can be conceived of as ‘minimal’

implementations such that they avoid capacities that are

irrelevant for the ‘task’ at hand (i.e., they are not functionally

redundant). The significance of the role of the functional mode(s)

in the scenarios depends, by large, on the degree of time scale

separation. The delineation of (invariant) functional modes and

(varying) operational signals s(t), however, allows for the

quantification of the (operational) influence required for a given

(complex) behavioral process as well as the functional mode’s

complexity (see below).

The functional modes implemented below consist of 4-

dimensional phase flows (two dimensions per effector). In all

cases, (x1, x2, x3, x4), are the state variables of the system, T1,2 are

the effectors’ main time constants while k1,2 introduce a time scale

separation between the state variables of each effector’s phase

flow. Thus, (x1, x2), T1, k1 and (x3, x4), T2, k2 refer are associated

with the first and second effector respectively. At the same time,

the state variables (x1, x3) correspond to the effectors’ positions,

while (x2, x4) correspond to their velocities. This notation is used in

Figures 4, 5, 6 and 7 describing the results and in the presentation

of Scenario 4 below. The same notation is used for the operational

signals where the indexes of s correspond to either the equation’s

state variables (1 to 4 in Scenarios 1 and 2) or to an effector (1 or 2,

in Scenario 3). For reasons of brevity, we only present the two-

dimensional phase flows used to model either both or each one of

the effectors for Scenarios 1–3 below, since the two effectors are

modeled as uncoupled (and can thus be presented separately). The

4-dimensional system in Scenario 4 is presented entirely as its

corresponding two effectors are coupled. No claim for the

generating mechanisms of the operational signals is made in the

present work. The ones used in the simulations where chosen such

Figure 2. Examples of functional modes. Phase flows corresponding to a linear point attractor, a limit cycle, a monostable, and a bistable
condition in panels A, B, C, and D, respectively (see also equations (3), (4) and (2) ignoring operational signal s(t) where present). Blue arrows sketch
the vector fields of the flows in phase space, here spanned by position x1 and velocity x2, and describe the system’s evolution as a function of its state
(x1, x2). Black lines represent trajectories (i.e., realized system evolutions) for various initial conditions; black circles represent stable fixed points (i.e.,
points where _xx1,2~0). The black closed orbit (panel B) represents a stable limit cycle (a circular structure describing oscillatory phenomena). A
separatrix (i.e., a structure that locally separate flow with opposing directions) exists in the monostable and bistable condition (panel C and D), and
can particularly well be gleaned from panel D, where two trajectories with initial conditions close to each other approximately in the middle of the
phase space, diverge into different directions. Fixed points, limit cycles, and separatrices are so-called topological structures.
doi:10.1371/journal.pone.0016589.g002
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as that the resulting multidimensional operational signals are non-

autonomous and their different dimensions are uncorrelated. All

simulations were carried out in MATLAB, while a Runge-Kutta

algorithm of 4th order has been used for the integration of the

dynamical systems. Further details on the models and simulations

can be found in the Supporting Information (Text S1).

Scenario 1. In architectures where ts%tf, the phase flows

maintain a constant structure, since s(t) operates only instantly on

them. The phase flow may account for more than one sub-

function coded in the phase space (in cases of multistability) and

s(t) aids in accessing them by acting as a functional perturbation.

In the context of our toy example, the movement execution is

accounted for by the functional mode, even though its initiation

requires the involvement of the instantaneous signal s(t). The

phase flows used to that aim potentially involve a fixed point (i.e.,

mono-stable) or two fixed points (i.e., bi-stable) (the Excitator

model can account for both cases [35]; Figures 2C,D). Both fixed

point regimes are implemented via

_xx1~
k

T
x2zx1{x3

1

� �
_xx2~

1

T
f x1,x2ð Þzs tð Þ

ð2Þ

where x1,2 are the state variables and k, T are constant. The

function f x1,x2ð Þ allows to manipulate the phase flow, where the

mono-stable regime is realized for f (x1,x2)~{(x1z1) and the

bi-stable regime for f x1,x2ð Þ~{x2. Both phase flows are

characterized by a so-called separatrix, a structure in phase space

that locally divides the flow in opposing directions. In these cases,

movement execution requires that an (instantaneous) input s(t)

‘kicks’ the system out of the fixed point and across the separatrix

(see also [36], who report evidence for the existence of the

corresponding threshold properties in humans, and [13]).

Consequently, the operational signal is responsible for the

movement timing and initiation only—it does not dictate the

Figure 3. Overview of the four functional architectures. Each column represents a functional architecture with time scale separation as
indicated at the top. Lower row: Time series depicting the operational signals si,j(t) (lower graph; i, j index the system’s dimensions –in columns 1 and
2- or fingers –in column 3- where s operates upon) and the system’s output x1,3(t) (upper graph; state variables accounting for position). Blue and
green lines represent si and x1 versus sj and x3, respectively. Upper rows: The time evolution is indicated by the arrows. Each square panel in the
upper rows represents the phase space of a particular functional mode; sequential panels (in time) indicate changes in the functional modes; dotted
lines indicate the persistence of a particular mode (until substituted by another one). Paired panels (left, right) represent the modes corresponding to
finger 1 and 2, respectively (except for the fourth column where the two fingers are coupled and where only three out of the four dimensions of the
system’s phase space can be shown). From left to right; first column (ts%tf): s2,4 provide instantaneous functional kicks to the modes (see equation
(2)); second column (ts<tf): fixed points are driven by s1,3 through phase space (one movement cycle depicted only –also see equation (3)); third
column (ts&tf): s1,2 sequentially select distinct functional modes (see equation (5)); fourth column (tsR‘): s = constant (has no effect), i.e., the
system is entirely autonomous. Notice that the more the time scales of the operational signals and the functional modes differ, the more the role of
the operational signals decreases and the complexity of the phase flows involved increases.
doi:10.1371/journal.pone.0016589.g003

Functional Modes and Architectures of Behavior
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Figure 4. Illustration of Scenario 1. Scenario 1 (see equation (2)) shows the vector fields of the phase flows (monostable and bistable) together
with the output trajectories (panel A) and the output time series (positions x1,3 and operational signals s2,4(t) -panel B). Blue and green discriminate
between first and second finger; a small black filled circle denotes an attracting fixed point. The phase flows remain constant during the functional
process (ts%tf), while the amplitude of the operational ‘‘kicks’’ has been regulated in order to optimize the output (in any case maintaining the
characteristics of a d-function like stimulus with very large amplitude and minimal duration). Note that s(t) operates upon the second and fourth
dimensions of x that account for the velocities of the fingers’ movements.
doi:10.1371/journal.pone.0016589.g004

Figure 5. Illustration of Scenario 2. Scenario 2 (see equation (3)) shows a sketch of the phase flows (linear point attractor -panel A) as well as the
output time series (positions x1,3 and operational signals s1,3(t) -panel B). Colour coding and fixed point notation are the same as in the previous
figure. A single pulse of s1(t) and its effect on the phase flow of the first finger are blown up in panel A, depicting five characteristic instances of the
phase flow. The phase flows change at the same time scale as the functional process (ts<tf), since the position of the attracting equilibrium point is
constantly assigned by the operational signal.
doi:10.1371/journal.pone.0016589.g005
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system’s dynamics. In contrast, the phase flows have to be complex

enough to endow the functional modes with the existence of

separatrices and (potentially) multistability, which is achieved via

the introduction of nonlinearities. We thus expect that Scenario 1

will be associated with a limited informational content of the

operational signal and a high complexity of the functional modes.

Scenario 2. Here ts<tf, so that s(t) acts on the phase flow on

a time scale similar to the one of the functional mode, thus,

constantly modifying its structure during the functional process.

Consequently, the operational signal determines the functional

dynamics by far.

An exemplar of such architectures is a dynamical formulation of

equilibrium-point models that are well-known in the motor control

literature [11,37–40]. It consists of a single linear point attractor

phase flow (for each effector),

_xxi~f xi,s tð Þð Þ~
_xx1~{

k

T
x1{s1 tð Þð Þ

_xx2~{
1

T
x2{s2 tð Þð Þ

8><
>: ð3Þ

where x1,2, T and k are as before. The operational signal s1,2(t)

determines the position of the linear point attractor in phase

space—and thus the ensuing trajectory. Consequently, this

scenario allows for the generation of trajectories of arbitrary

complexity, but at the price of requiring the constant involvement

of the operational signal s1,2(t) that specifies the trajectories

evolution. Indeed, as the operational signal largely prescribes the

functional dynamics we expect its informational content to be

high. The absence of nonlinearities, in contrast, is likely to result in

a moderate phase flow complexity.

Scenario 3. Architectures in which ts&tf typically involve

multiple functional modes since the slow change of s(t) yields

qualitative changes to the structure of the phase flow dynamics at

critical points.

To obtain the required movement, we implement a van der Pol

limit cycle (another instance of the generic Excitator model [35];

Figure 2B) as:

f1 x1,x2ð Þ~ _xx1~
k

T
x2zx1{x3

1

� �
f2 x1,x2ð Þ~ _xx2~{

1

T
x2

ð4Þ

(where x1,2, T and k are as before) and a linear point attractor, as

these are the simplest systems describing rhythmic and discrete

movements, respectively. In this implementation, s(t) is responsible

for sequencing phase flows; it sequentially selects a particular

functional mode and can be considered approximately constant

during the time the corresponding process evolves:

Figure 6. Illustration of Scenario 3. Scenario 3 (see equation (5)) shows the temporal succession of the phase flows (linear fixed points and limit
cycle) together with the corresponding concurrent segments of the output trajectories (panel A) as well as the output time series (positions x1,3 in
panel A and operational signals s1,2(t) in panel B). Colour coding and fixed point notation are the same as in the previous figures. The arrows are
pointing at segments of the output time series during which a phase flow is activated (and thus dominates the output dynamics). The actual moment
and duration of activation of each phase flow can be directly inferred by the operational signal plot in panel B. The phase flows change only at critical
moments during the functional process due to the slow change of s(t). Note that s1(t) and s2(t) operate upon the first and second finger phase flows
respectively.
doi:10.1371/journal.pone.0016589.g006
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_xx1~
X

j

sj tð Þf1j x1,x2ð Þ

_xx2~
X

j

sj tð Þf2j x1,x2ð Þ
ð5Þ

where the operational signal sj [ ½0,1� acts as an ‘on/off’ switch

for each component functional mode so that only one mode is ‘on’

(i.e., activated) at each time step even though the selecting or

switching parameter sj is present throughout the entire movement

sequence. This working of the selecting parameter sj resembles the

competition mechanisms in synergetics models of pattern

recognition [41,42].

While in contrast to Scenario 2, the operational signal in this

scenario does not prescribe the functional dynamics, it is present to

a far larger extent than in Scenario 1. Its informational content can

thus be expected to lie in between that of the former two scenarios.

The here combined use of linear and nonlinear phase flows

predicts an intermediate functional mode complexity relative to

Scenario 1 (only nonlinear phase flows) and to Scenario 2 (only linear

phase flows).

Scenario 4. In the exemplar of these architectures, s(t) is

constant during the functional process (tsR‘), in other words, no

operational signal is required (i.e., the system is autonomous), and

thus no informational content can be associated with it.

Furthermore, it will not come as a surprise that we expect this

scenario to be associated with the highest functional mode

complexity since it has to account for all the functional dynamics.

The current implementation consists of a single 4-dimensional

phase flow exhibiting one attractor that controls the entire musical

phrase as a whole. Such dynamics is achieved via an inhibitory

coupling of simpler phase flows, like the ones described in Scenario

3:

_xx1~
k1

T1
x2zx1{x3

1

� �

_xx2~{
1

T1
x1z

1

1ze{10 x3z0:5ð Þ

 !

_xx3~
k2

T2

x4zx3{x3
3

� �
_xx4~{

1

T2
x3{1{2x1ð Þ

ð6Þ

where x1–4, T1,2 and k1,2 are as before. Alternative implementa-

tions could be achieved by coupling the simple phase flows

through an additional slow varying state (or phase) variable

[43,44].

Measures of Complexity
We quantify the degree of control required in the four scenarios,

distinguishing between the control attributed to the operational

signals or to the phase flow. For the former ones we calculate their

Shannon entropy [45] (H), thus evaluating their informational

content. As an additional measure to evaluate how much of the

output trajectories dynamics is contained into s(t) we also calculate

their mutual maximum cross-correlation (MCrC).

For the phase flows, we quantify the complexity of the vector

field. Given equation (1) for a phase flow and ignoring the effect of

s(t) uniformly sampling the phase space corresponds to obtaining a

uniform distribution for the state variable x (in all that follows we

adopt a vectorial representation for an N-dimensional system). As a

consequence, its Shannon joint entropy maximally is H(x) = Hmax.

The phase flow structure is quantified as DH = Hmax2H( _xx). In

other words, we compute the entropy reduction due to the

application of the (vector field) function f(.) onto the random

sample of the state variable x. (In the Supporting Information –file

Text S1- we provide more technical details of all calculations

involved as well as a brief additional discussion on their

interpretation). Several other measures (such as singular value

decomposition, entropy, joint entropy and mutual information)

applied to time series generated by the phase flows utilized, have

been tested in quantifying the functional modes’ complexity,

always giving converging results.

Results

In the following we illustrate how the representative functional

architectures generate the time course of our toy problem (see

Figure 1).

In Scenario 1 (see Figure 4 and Video S1 with Video Legends S1),

the phase flows (monostable and bistable - fingers uncoupled)

remain constant during the functional process. Three inputs

(ts%tf) act upon the first finger’s monostable phase flow (one per

movement cycle) and two subsequent inputs upon the second

finger’s bistable phase flow. Notice that s(t) operates upon the

second and fourth dimensions of x that account for the velocities of

the fingers’ movements.

In Scenario 2 (see Figure 5 and Video S2 with Video Legends S1),

the phase flows (linear point attractors - fingers uncoupled) change

at the same time scale as the functional process (ts<tf), since the

position of the attracting fixed point is constantly assigned by the

operational signal.

Figure 7. Illustration of Scenario 4. Scenario 4 (see equation (6))
shows the phase flow (3-dimensional projection) through the output
trajectory (panel A) as well as the output time series (positions x1,3 and
operational signal s(t) –panel B). Blue and green discriminate between
first and second finger (coupled) only for the time series plot. The phase
flow remains constant during the functional process since there is no
operational signal involved. Although this is just a 3-dimensional
projection of the phase flow, one can observe the spiral of the three
movement cycles of the first finger on the plane x12x2, followed by one
more on what would be the plane x32x4.
doi:10.1371/journal.pone.0016589.g007
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In Scenario 3 (see Figure 6 and Video S3 with Video Legends S1),

the phase flows (linear point attractors and limit cycle) change only

at critical moments during the functional process due to the slow

change of s(t). In the initial period, both fingers are at rest. Then,

the operational signal activates the functional mode of finger 1

(blue line in Figure 6) resulting in a finger oscillation. The

functional modes are stable and constant during this period. Then

the first mode is deactivated followed by the activation of the

second mode (green line). Thus, Scenario 3 is characterized by a

consecutive activation of functional modes remaining active

during a period substantially larger than the time scale of the

relevant functional process (here the finger movement). As a

consequence, the functional modes have to be substantially rich in

complexity to account for the functional dynamics while

operational signals have to be present throughout the process.

In Scenario 4 (see Figure 7 and Video S4 with Video Legends S1),

the 4-dimensional phase flow remains constant during the

functional process since there is no operational signal involved.

The whole function is accounted by the unique 4-dimensional

complex attractor. Please note that in this scenario, the two finger

movements are coupled by necessity, whereas in all previous

scenarios this may or may not be the case.

Subsequently, the scenarios are evaluated via the application of

complexity measures separately for the functional modes’ phase

flows and the operational signals involved. As can be appreciated

from Figure 8, the measures confirmed the prediction of a

‘functional mode – operational signal complexity’ trade-off

between Scenarios 1and 4 (with constant phase flows during the

functional process) and Scenario 2 (with flow changes at a similar

time scale as the function) and Scenario 3 (with very slow and

intermittent time flow changes). In particular, both the operational

signal’s entropy and its cross-correlation with the system’s output is

zero in Scenario 4 (tsR‘ - that is, s is practically constant during

the functional process), while being minimal in Scenario 1 (ts%tf)

and much larger in Scenario 2 & 3. (One would also expect a

bigger difference between Scenarios 2 & 3. However, the simplicity

of our toy example does not allow this to become evident.) On the

other hand, DH increased from zero in Scenario 2 (ts<tf) to

intermediate values for Scenarios 1 & 3 (between which Scenario 1

exhibits higher functional mode complexity) and finally, to a

maximum value in Scenario 4.

Scenario 1 qualifies as an efficient functional architecture, since it

combines a minimal operational signal with a phase flow of

moderate complexity. In other words, it appears to be computa-

tionally efficient to ‘‘precode’’ the functional dynamics to a certain

degree with minimal intervention as the dynamics is executed.

Discussion

We proposed a framework for functional architectures for the

execution of complex functional processes. Accordingly, functional

architectures contain two functionally distinct ingredients: a

repertoire of functional modes, conceptualized as phase flows,

and additional operational influences acting at a continuum of

time scales relative to the ones pertaining to the functional modes.

Below, we discuss the implications of our approach for functional

modes, functional architectures, learning and related issues as well

as neuro-scientific evidence in support of the representative

architectures.

Functional modes
By conceptualizing functional modes in terms of phase flows,

our approach brings together the main features of functional

modes in the context of motor control (i.e., motor primitives,

synergies, and GMPs) as found in the dominating views in the

literature. As the modes are defined through their topology, they

combine class-invariant properties with within-class variation that

allows for adjustments to specific task constraints.

In that sense the functional modes here proposed reveal a

functional resemblance to generalized motor programs [9,17]—

though motivated from a diametrically opposing theoretical

perspective. In addition, functional modes may be super-posed

[10,20] via the (slow) operational signal. In our architecture

exemplified in Scenario 3 the modes were super-positioned by

setting one s to one with the others vanishing. In principle,

however, multiple s may be competing and obtain any value

(between zero and one) for an arbitrary duration of time, as for

instance in perceptual categorization [2,41,42]. In fact, our

approach and the modular primitives proposed by Musa-Ivaldi

and colleagues are distinct in two major aspects. First, the

primitives identified by Musa-Ivaldi et al. are defined in terms of

hard-wired neural circuits in the spinal cords rather than in terms

of (abstract) functional objects. The neurally-identified modules,

however, are not at odds with our dynamically motivated

architectures: it may well be that which neural modules are

assembled and how they are super-positioned depends on the

functional mode utilized in a given task context. Second, the

domain of operation of Mussa-Ivaldi et al.’s spinal modules is

limited to motor behaviors while our approach aims at a larger

degree of generality including perceptual and cognitive processes.

Finally, the executive stability requirement guarantees preserva-

tion of function in the face of perturbations. Several authors have

previously proposed that fixed points and limit cycles constitute the

building blocks of the (human) motor control system [13,14,22].

While (the flow pertaining to) these structures are included here,

our general formulation allows (in principle) for numerous other

flow topologies.

Regardless, some of the functional modes here utilized to

illustrate the architectures have been identified as being used by

humans (and other species) in the literature. In the motor control

literature, rhythmic movements conceived of as limit cycles have

been studied in-depth by various groups [46–49], which has shown

that a diversity of nonlinear oscillator ingredients can be utilized so

as to match particular task demands [34]. Similarly, discrete

movements have been conceptualized as fixed points [14,50]

Figure 8. Complexity evaluation. Complexity of the operational
signal (panel A) and the functional modes (panel B). The degree of
control of the operational signal quantified via the Shannon entropy (H)
and the maximum cross-correlation (MCrC) is high in Scenarios 2 and 3,
to drop remarkably in Scenario 1 and vanish in Scenario 4. The
complexity of the functional modes DH is zero in Scenario 2, moderate
in Scenarios 1 and 3 and maximal in Scenario 4. Notice that Scenario 1
qualifies as an efficient functional architecture, since it combines a
minimal operational signal with a phase flow of moderate complexity.
doi:10.1371/journal.pone.0016589.g008
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although they have been rarely explicitly identified (but see

[13,51,52]). Moreover, which functional mode is used in (motor)

precision aiming (a phase flow structured by a limit cycle or two

fixed points) has recently been shown to be dependent on the task’s

difficulty (i.e., the degree of accuracy required relative to the target

distance [52]). Changes of task difficulty within which a particular

functional mode was utilized resulted in the structural task-

dependent phase flow adjustments. All these instances, in other

words, provide exemplars of class invariance as well as within class

variability.

In the non-motor domain, distinct dynamical elements have

been proposed to be associated with specific functional processes.

For instance, an ‘s’ in a spoken word may be perceptually

categorized as /s/ or /sh/, depending on the position of the

tongue against the palette, and the transition from one category (or

perceptual functional mode) to the next occurs abruptly (indicative

of class invariance). At the same time, different speakers will

pronounce an ‘s’ differently due to various (among others)

anatomical differences of their articulator systems, indicating

within class variability, but perceivers may still hear an /s/ [4]. In

the visual domain, perceptual categorizing has also been mapped

onto specific topological structures. For instance, honey bees [29]

and humans [30] have been shown to be more sensitive to (static)

topological properties of objects (such as connectivity, presence

versus absence of holes) than to local features distinguishing the

objects (but see [32,33] for criticism). In a similar vein, changing

topological relations in geographic events (e.g., the motion of a

hurricane relative to a peninsula) are, next to non-topological

features, used for their categorization [31,53]. How such changes

map onto phase flow patterns remains to be seen, however.

Regardless, visual perception have been shown to exhibit

characteristics pertaining to attractor dynamics (such as multi-

stability and hysteresis, [54,55]). The corresponding perceptual

stability has been shown to depend on (biophysical) processes that

stabilize the activation of individual neurons in ensembles of

detectors and excitatory and inhibitory interactions among them

[54]. In other words, while the question whether topologies

represent visual primitives can presently neither be firmly

confirmed nor refuted, there are strong indications that visual

processing adheres to nonlinear dynamical principles, and thus

lends itself naturally for an interpretation within the present

framework.

Functional architectures
We implemented specific realizations of the processes (as

scenarios) for the prototypical architectures. Each scenario in

principle allows for the implementation of infinitely many other

flows (be it of the same or a higher dimension) than those here

utilized. The corresponding topology, however, invariably grants

the system with threshold-like properties (via the presence of a

separatrix; as in Scenario 1); may reveal a dependency on a

competition or switching parameter s (as in Scenario 3). In other

words, while quantitative aspects of the flows may vary, the

additional (operational) influences that are required so as to

perform a complex process, if any, is independent thereof for a

given topology. That is, while the phase flow complexity may to a

minor degree depend on the flow details, and, similarly, the ss’

entropy as well as its correlation with the system’s output on task

specifics, the degree of efficiency of the various scenarios will be

largely independent thereof. We tested this argument computa-

tionally by creating large numbers of phase flows with varying

topologies for a given scenario. In all instances the measures of

complexity provided the same results.

Numerous examples of the architectures here illustrated can be

found in the literature. For instance, equilibrium point control

[11,37–40] as well as Bullock et al.’s handwriting architecture [5]

can be viewed as instantiations of Scenario 2. While in both cases

the time scale of the operational signal s(t) and the evolving

trajectory may not match exactly (one issue pertaining to

equilibrium point models is the speed at which the equilibrium

point is set), under both models the system’s evolution is largely

determined by the repetitive resetting of the equilibrium point

[37,38] or GO signal in [5]. Examples of the slow operation of a

competition or switching parameter s relative to the functional

modes’ dynamics pervade the perceptual literature [2,41,42] and

are likely to be involved in many cognitive processes. The

existence of very brief impacts on flows (as in Scenario 1) is known in

the motor control literature [13,51,52], where they are sometimes

interpreted in terms of a ‘clock’ mechanisms [56,57]. The simplest

and minimal example of autonomous processes (Scenario 4) is

purely oscillatory processes (i.e., processes governed by limit

cycles), exemplars thereof abound in the motor control literature.

We outlined a framework for two-layered hierarchies; the

number of layers, however, can easily be expanded (see also [2]),

and will, in all likelihood, exceed two layers in complex processes,

as for instance in language production and perception. Language

is a hierarchical system containing multiple levels ranging from

phonetics to meaning (of words, sentences, text, etc. [58,59]). It is

known that phonemes, the entities at the lower end of the linguistic

hierarchy underlying communication, can be conceived of as

dynamic meaningful categories [4]. Word recognition, a process

which arguably takes place on one level above phonemes

processing, has also been modeled in terms of attractor dynamics

[60]. Both levels, as well as the higher ones, may very well be

architecturally related as exemplified in Scenario 3 (see also [2,61].

Indeed, as functional modes are typically associated with

elementary processes, it is likely that the more complex a process,

the more layers are implicated.

Finally, we conceptualized functional modes and the additional

effects thereon as operating independently. Obviously, this need

not be the case; it may well be that, at least in some cases, both

architecture ingredients are (uni- or bi-directionally) coupled. For

instance, the instantaneous s(t) pulses could well be constrained to

occur with differential probability in different parts of phase space.

This issue is, however, beyond the scope of the present study.

Efficiency and Learning
The distinction between the dynamic repertoire and the

operational signals allowed us to quantify the functional modes’

complexity as well as the operational signals’ entropy and

correlation with the output. In other words, it allowed us to

evaluate the different architectures’ efficiency. Our results, in that

regard, clearly showed a trade-off between the degree of (external)

operation required and the complexity of the functional modes:

the more complex the mode’s topology the less the dependency on

the operational signal. The mechanisms associated with Scenario 1

came to the fore as most effective: the complexity of a functional

mode’s phase flow is moderate (at least relative to the extremes of

Scenario 2 & 4) while requiring little external operation. The

latter, in that regard, owes to the multistability (due to the presence

of the separatrix) of the associated systems.

Similarly but inversely to their efficiency, the architectures’

flexibility also goes approximately hand in hand with the

operational effects required, at least, under the assumption that

phase flow-governed movements cannot be (easily) stopped once

initiated. Everyday experience is open to interpretation along these

lines: who of us does not know the feeling of being unable to
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terminate an ongoing but erroneous movement? The price for the

liberation from operational influences is paid in terms of a

flexibility loss, while, inversely, flexibility comes at the costs of high

external influences. Which architecture is best utilized will thus be

context dependent: unpredictable contexts demand for high

flexibility—do not even allow for complex functional modes,

while the utilization of architectures whose functionality heavily

depends on operational signals would be wasteful for the

performance of repetitive and standardized actions.

The possibility of accomplishing a task via different architec-

tures sheds a novel light on motor equivalence, that is, the

phenomenon that task achievement can be achieved via various

motor means [9]. For instance, writing can be performed with the

right and left hand, as well as with a pen held between the lips or

toes [9]. We demonstrate that task accomplishment, next to its

realization via different end-effectors (in the context of motor

behavior), can also be realized via distinct functional architectures.

Our approach opens up new avenues for the learning of

function too. In dynamical approaches to motor behavior,

perception and cognition, the learning of a particular task is

generally viewed in terms of the creation of a new attractor and/or

stabilization of an existing one [62] and corresponding dimen-

sionality changes [63,64], that is, as enduring changes at the level

of existing functional modes. The present framework embraces

these conceptions, but additionally predicts that skill acquisition

may be extended to the learning of novel functional modes as well

as architectures. An important question, in that regard, is whether

the learning of multiple architectures using particular functional

modes would transfer to, or at least facilitate learning a task in

which different modes need to be used.

The learning of novel functional modes can, tentatively, be linked

to a particular instance of learning referred to as ‘chunking’.

Chunking is a process commonly believed to play a role in

perceptual, motor, and cognitive sequence learning during which

multiple (functional) elements are integrated into one larger ‘chunk’

[65–68]. While chunking is generally believed to be a process in

which the smaller units are somehow linked together, it may well be

that the newly formed chunks are fundamentally (topologically)

different from the basic units. That is, while in the former case the

individual units (modes) remain traceable; in the latter case the

process underlying the function fundamentally changes (cf. [61]).

From our perspective, simply linking basic units will hardly, if at all,

diminish the control (or otherwise processing) demands, which

requires a fundamentally different chunk organization. In line with

this intuition, recent work in artificial intelligence suggests that

‘horizontal learning’ (re-using existing capabilities at every learning

step) is associated with computationally less efficient than ‘vertical

learning’ (in which new capabilities are created; [6]. In that regard,

the process of reorganizing the architecture underlying a particular

skill may well provide a new complementary window into the

automatization of motor behavior during learning [9,69].

Neural support for the representative architectures
The functional architectures here outlined are per definition

abstract, that is, one may well ask if their existence is supported by

neuro-scientific data. As for the functional modes, it has recently

been formally shown that networks composed of firing rate

neurons are able to generate phase flows with distinct topologies

[70]. Similarly, networks of spiking neurons [71] are able to

generate so-called heteroclinic cycles (i.e., low dimensional orbits

in higher dimensional space; see also [72]). In biological systems, it

is well known that populations of neurons may be active in a

coordinate fashion, which effectively reduces the population’s

dynamics. Significantly, the dynamics of neurons constituting

central pattern generators are typically constrained so as to

produce a limit cycle dynamics, which is reflected in the ensemble

dynamics phase space [73]. In other words, dynamical models as

well as biological data indicate that the ensemble dynamics of

populations of neurons may effectively reduce to a structured flow

in phase space, that is, a functional mode.

The time scale separation as exemplified in Scenario 3 resembles

the one as reported by Kiebel et al. [2]. These authors argued that

the time scale separation found in environmental events is

reflected in the hierarchical organization of the nervous system,

in particular the cortex. Structurally, the hierarchy is formed via

convergence and divergence of forward and backward connec-

tions, while their differential functionality introduces a temporal

(and spatial) separation of scales of operation. Presumably,

processes in the primary areas occur faster than the modular

influences thereon from the higher levels. Assuming that the

functional modes are generated in the primary (and/or secondary)

areas, Kiebel et al. arguments may well be consistent with the

(closely-associated) architecture here exemplified in Scenario 3.

Evidence favoring biological realism for the different architec-

tures has been found (or suggested) in various contexts. For instance,

the operational signals s(t) pertaining to Scenario 2-like architectures

can be associated with equilibrium points in the corresponding

models [11,37–40], which are inherently physiologically motivated.

In these models, a limb’s equilibrium position is defined by the

flexor and extensor’s length-tension functions, and movements are

made by shifting the length-tension functions (see [11] for an

extension beyond paired agonist-antagonist interpretations). The

adjustments of the length-tension curves are brought about via the

a-(motor) neurons solely (the a-model [37,38] or in conjunction with

c-system and muscle spindle feedback (the l-model [74–76]).

The instantaneous signals s(t) have previously been associated

with timing mechanisms (‘clocks’) [13,51]. In fact, the notion of

brief pulses initiating timed movements is well established in the

psychological literature [56,57], and is accompanied by a

plentitude of neuro-imaging studies aiming to identify the timing

mechanism’s anatomical substrate (for a review, see [77]). The

cerebellum [78–80], and basal ganglia [77] have been forwarded

as candidate structures, in that regard. This brief overview readily

indicates that there are multiple indications in favor of both the

neural generation of functional modes as well as the existence of

the various operational signals in the nervous system.

Conclusion
We outlined a general framework for functional architectures

controlling complex behavioral processes that contains two

functionally distinct elements that (potentially) operate on different

time scales. Our analysis offers a theoretical justification for the

fact that complex behavioral processes are composed of functional

subunits. This conceptualization opens a new theoretical window

into the control of complex processes, learning and automatization

as well as chunking. From a more applied perspective, our insights

may have offshoots to robotics and related fields (where some of

the here utilized primitives are already implemented [14,24–27]),

learning and rehabilitation.
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