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Neural correlates of individual 
variation in two‑back working 
memory and the relationship 
with fluid intelligence
Guangfei Li1,2,7, Yu Chen2,7, Thang M. Le2, Wuyi Wang2, Xiaoying Tang1,6* & 
Chiang‑Shan R. Li2,3,4,5*

Working memory has been examined extensively using the N-back task. However, less is known 
about the neural bases underlying individual variation in the accuracy rate (AR) and reaction time 
(RT) as metrics of N-back performance. Whereas AR indexes the overall performance, RT may more 
specifically reflect the efficiency in updating target identify. Further, studies have associated fluid 
intelligence (Gf) with working memory, but the cerebral correlates shared between Gf and N-back 
performance remain unclear. We addressed these issues using the Human Connectome Project 
dataset. We quantified the differences in AR (critical success index or CSI) and RT between 2- and 
0-backs (CSI2–0 and RT2–0) and identified the neural correlates of individual variation in CSI2–0, RT2–0, 
and Gf, as indexed by the number of correct items scored in the Raven’s Standard Progressive Matrices 
(RSPM) test. The results showed that CSI2–0 and RT2–0 were negatively correlated, suggesting that 
a prolonged response time did not facilitate accuracy. At voxel p < 0.05, FWE-corrected, the pre-
supplementary motor area (preSMA), bilateral frontoparietal cortex (biFPC) and right anterior insula 
(rAI) showed activities in negative correlation with CSI2–0 and positive correlation with RT2–0. In 
contrast, a cluster in the dorsal anterior cingulate cortex (dACC) bordering the SMA showed activities 
in positive correlation with CSI2–0 and negative correlation with RT2–0. Further, path analyses showed 
a significant fit of the model dACC → RT2–0 → CSI2–0, suggesting a critical role of target switching in 
determining performance accuracy. Individual variations in RT2–0 and Gf were positively correlated, 
although the effect size was small (f2 = 0.0246). RT2–0 and Gf shared activities both in positive 
correlation with the preSMA, biFPC, rAI, and dorsal precuneus. These results together suggest inter-
related neural substrates of individual variation in N-back performance and highlight a complex 
relationship in the neural processes supporting 2-back and RSPM performance.

Working memory, an executive function that supports higher-level cognition (e.g., fluid intelligence), has been 
extensively examined using the N-back task, often with brain imaging to investigate the underpinning neural 
processes1–4. Typically, blocks with memory load (e.g., 2-back), in which participants are required to track and 
remember the sequence of stimuli, and blocks of 0-back, in which participants are required to detect a pre-
specified target, are inter-mixed5,6. As 2-back requires both attentional monitoring and working memory to keep 
track of the stimuli while 0-back requires only attentional monitoring of the target, a contrast of brain activation 
during 2-versus 0-back would highlight regional responses specific to working memory. Investigators quantify 
the accuracy rate (AR) and reaction time (RT) to evaluate individual performance, with a higher AR and shorter 
RT during correct responses of 2-relative to 0-back indicating superior working memory. However, whereas 
abundant research has characterized the regional responses to N-back memory, relatively little is known about 
the neural processes supporting individual difference in AR2–0 or RT2–0 or whether these neural processes are 
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inter-related. Earlier work showed that activations of bilateral premotor and/or lateral prefrontal cortex (PFC) 
during 3- vs. 1-back or fixation were associated with higher 3-back accuracy across subjects7,8. A more recent 
study demonstrated that the linear slope of load-related activity (from 1- to 6-back) of the left lateral PFC was 
associated with individual accuracy in target identification3. No studies to our knowledge have examined the 
neural correlates of RT or addressed whether or how the neural correlates of AR and RT may be inter-related 
in the N-back task.

Distinguishing the neural mechanism subserving individual variation in AR2–0 and RT2–0 is of conceptual 
interest in understanding the psychological constructs of working memory. On one hand, successful performance 
requires both maintenance of the stimuli in the memory (keeping track of the 1-back stimulus when the 2-back 
stimulus represents a potential target) and focus switching (updating the target identity with the appearance of 
each new stimulus)9. Thus, a high AR reflects superior capacity in maintenance and updating, whereas a short 
RT more narrowly reflects the ability in target switching/updating. Individuals with neuropsychiatric condi-
tions typically perform worse compared to healthy controls by showing diminished AR and prolonged RT in 
the N-back task10. On the other hand, with few exceptions (e.g.11, the great majority of N-back studies have not 
purposely constrained the RT by imposing a response window; hence, participants may slow down to optimize 
AR. In other words, it is possible that participants are slower but more accurate in identifying the target, result-
ing in a ceiling effect on the AR and rendering the RT of correct responses a more sensitive metric of individual 
performance12,13. Examining the potentially distinct neural underpinnings of the AR and RT (i.e., AR2–0 and 
RT2–0) would facilitate research of working memory and how working memory relates to higher-level cognition 
such as fluid intelligence (Gf).

Working memory is strongly related to Gf. As one of the primary predictors of Gf, working memory contrib-
utes to Gf via the process of central executive or cognitive control14–18. Moreover, training on working memory 
appears to improve Gf19,20. The close link between working memory and Gf may result from shared underlying 
neural mechanisms. For instance, bilateral prefrontal and parietal cortical activity accounts for a significant 
proportion of the shared variance in working memory and Gf21. Nevertheless, it remains unclear whether or 
how individual variation in Gf is reflected in the AR or RT of the N-back task and how regional brain activation 
inter-links Gf and the performance measures.

The current study aimed to address these issues by using a large data set curated from the Human Con-
nectome Project (n = 949). We contrasted brain activities between the 2- and 0-back blocks to control for the 
effects of attentional monitoring within subjects. We computed a critical success index (CSI) to reflect AR and 
the RT of correct trials for individual subjects. We performed a whole-brain regression of 2- vs. 0-back each 
against the block differences (i.e., 2- minus 0-back) in CSI2–0 and in RT2–0, with age, sex and years of education 
as covariates, to identify the regional correlates. We also performed a whole-brain linear regression against the 
PMAT24_A_CR, the number of correct responses in the Raven’s Standard Progressive Matrices, to identify 
regional responses to Gf. We hypothesized that individual variations in CSI2–0 and RT2–0 are associated with both 
distinct and shared regional activities and that some of these regional processes reflect individual variation in Gf.

Materials and methods
Data set.  We employed the 1200 Subjects Release (S1200) data set, including behavioral and 3 T MR imag-
ing data of 1206 healthy young adults collected from 2012 to 2015, for this study. Of all 1206 subjects, 124 did 
not participate or participate fully in the N-back task. Further, 133 subjects who had head movements greater 
than 2 mm in translation or 2 degrees in rotation or for whom the images failed in registration to the template 
were excluded. As a result, a total of 949 (493 women; 22–37 with mean ± SD = 28.8 ± 3.7 years) were included in 
the current study. Individuals were without documented history of psychiatric, including developmental (e.g., 
autism), neurological (e.g., Parkinson’s disease), or medical (e.g., diabetes) disorders known to influence brain 
function. Twins/non-twins born prior to 34/37 weeks of gestation were excluded. The HCP included smokers, 
alcohol drinkers and users of illicit substances as long as they did not experience severe symptoms (e.g., inability 
to stop using; substance abuse despite health consequences) or receive treatment for substance use, so that the 
data collected of the study reflected the broader populations22. We have obtained permission from the HCP to 
use the Open and Restricted Access data. Participants provided written informed consent and all aspects of 
the study, including subject recruitment, experimental procedures were conducted according to a protocol in 
accordance with the Declaration of Helsinki and approved by the Washington University Institutional Review 
Board (IRB #201204036; title: “Mapping the Human Connectome: Structure, Function and Heritability”).

The Raven’s Standard Progressive Matrices (RSPM) is a 60-item test of abstract reasoning, a nonverbal esti-
mate of fluid intelligence (Gf). All HCP participants were evaluated with the Form A, an abbreviated version 
of the RSPM with 24 items and 3 bonus items, arranged in order of increasing difficulty23. Participants were 
instructed to complete all items or until they made 5 incorrect responses in a row. The total number of correct 
responses was coded as PMAT24_A_CR, which we employed as an index of Gf in the current work.

N‑back task.  Each subject completed two runs each of eight blocks (four 0- and four 2-back) of the N-back 
task in a fixed order (first run: 2,0,2,0,2,2,0,0; second run: 2,0,2,0,0,2,0,2). Four categories of stimuli (body part, 
face, place, tool) were used in individual blocks. The first run was shown in Fig. 1A. In each block a cue was 
presented for 2.5 s to indicate the current task (0- or 2-back, including target for 0-back) at block start. In 0-back 
participants were to identify the specified target and in 2-back blocks participants identified the target, a cue that 
was the same as the one that appeared two time steps back. A “null” block of 15 s was inserted every two blocks 
in the task. There was a total of 10 trials in each block, of which 2 were targets and 2–3 were non-target lures (i.e., 
same items in wrong n-back position, either 1-back or 3-back). In each trial, the stimulus was presented for 2 s, 
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followed by an inter-trial interval of 0.5 s. Before undergoing MR scans, participants were engaged in a practice 
session in a mock scanner to become familiar with the task and acclimated to the environment22.

We used the Critical Success Index (CSI) to evaluate N-back performance. A modified estimate of percent 
accuracy, the CSI was defined as: hits number (correct intentional responses) divided by the sum of hits, false 
alarms (incorrect intentional responses), and misses (incorrect intentional non-responses)24,25. Because correct 
intentional non-responses (“rejections”) could not be discriminated from correct unintentional non-responses, 
the CSI was preferred over standard percent accuracy. That is, percent accuracy as computed conventionally 
resulted in overinflated accuracy estimates, especially for designs with a high percentage of non-response tri-
als, as in the present study (∼ 80% of trials). Thus, the CSI provided a performance measure less biased by the 
ambiguity of non-response trials24,25.

For linear regression between CSI and RT, CSI and Gf, RT and Gf, the effect sizes were quantified by Cohen’s 
f2 = r2/(1 − r2) and interpreted following the convention: 0.02 ~ small, 0.15 ~ medium, 0.35 ~ large26.

Imaging protocol and data preprocessing.  In the HCP imaging protocol27, MRI scanning was done 
using a customized 3 T Siemens Connectome Skyra using a standard 32-channel Siemens receiver head coil and 
a body transmission coil. T1-weighted high-resolution structural images were acquired using a 3D MPRAGE 
sequence with 0.7  mm isotropic resolution (FOV = 224 × 224  mm, matrix = 320 × 320, 256 sagittal slices, 
TR = 2400 ms, TE = 2.14 ms, TI = 1000 ms, FA = 8°) and used to register functional MRI data to a standard brain 
space. N-back fMRI data were collected using gradient-echo echo-planar imaging (EPI) with 2.0 mm isotropic 
resolution (FOV = 208 × 180 mm, matrix = 104 × 90, 72 slices, TR = 720 ms, TE = 33.1 ms, FA = 52°, multi-band 
factor = 8, 405 frames, ~ 4 m and 51.6 s/run).

We followed the same published routines in our earlier studies28,29. Imaging data were preprocessed using 
SPM8. Images of each individual subject were first realigned (motion corrected). A mean functional image vol-
ume was constructed for each subject from the realigned image volumes. These mean images were co-registered 
with the MPRAGE image and then segmented for normalization with affine registration followed by nonlinear 
transformation. The normalization parameters determined for the structural volume were then applied to the 
corresponding functional image volumes for each subject. Finally, the images were smoothed with a Gaussian 
kernel of 4 mm at Full Width at Half Maximum.

Imaging data modeling and statistics.  We modeled the BOLD signals to identify 2-back and 0-back 
responses. We followed our previous routine in image data modeling28,29. A statistical analytical block design was 
constructed for each individual subject, using a general linear model (GLM) by convolving the canonical hemo-
dynamic response function (HRF) with a boxcar function in SPM. Realignment parameters in all six dimensions 
were entered in the model as covariates. The GLM estimated the component of variance that could be explained 
by each of the regressors.

In the first-level analysis, we constructed for each individual subject a statistical contrast “2- minus 0-back” 
for second-level, group analyses. In group analyses, we conducted a one-sample t test of the contrast “2- minus 

Figure 1.   N-back task and the correlation of CSI2–0 (%) and RT2–0 (ms) with Gf. (A) Block sequence of the first 
run of the N-back task. Linear regression of (B) the difference in critical success index (CSI) vs. the difference 
in reaction time (RT) of correct trials between 2- and 0-back: CSI2–0 vs. RT2–0 (r = -0.350, Cohen’s f2 = 0.140, 
p = 1.1588 × 10–28); (C) Gf, as indexed by PMAT24_A_CR vs. CSI2–0 (r = 0.006, Cohen’s f2 = 3.6 × 10–5, p = 0.847); 
and (D) PMAT24_A_CR vs. RT2–0 (r = 0.155, Cohen’s f2 = 0.0246, p = 0.000002), with age, sex, and years of 
education as covariates. Each data point represents one subject. B, C and D were generated by SPSS Statistics 
22.0 (https://​www.​ibm.​com/​suppo​rt/​pages/​spss-​stati​stics-​220-​avail​able-​downl​oad).

https://www.ibm.com/support/pages/spss-statistics-220-available-download
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0-back” to identify regional responses to working memory. In addition to the T maps, effect size maps were 
computed using tools available in CAT12 toolbox (http://​www.​neuro.​uni-​jena.​de/​cat/), by approximating Cohen’s 
d26 from the t-statistics using the expression d =

2t√
df

 as employed in30. To examine how regional brain activa-
tions to working memory varied across subjects in relation to accuracy and RT, we conducted whole-brain 
multiple regressions each on the contrast (2- minus 0-back) against differences in critical success index (2- minus 
0- back; CSI2–0) and differences in RT (2- minus 0-back; RT2–0) of correct trials only as the regressor, with age, 
sex and years of education as covariates. We performed another whole-brain multiple regression on the contrast 
(2- minus 0-back) against PMAT24_A_CR with the same covariates.

We evaluated the results at voxel p < 0.05, corrected for family-wise error (FWE) of multiple comparisons, 
on the basis of Gaussian random field theory, as implemented in SPM. We identified brain regions using the 
Data Processing & Analysis of Brain Imaging toolbox (DPABI)31 and an atlas32, if the peak was not identified 
by the DPABI.

Path analyses.  We employed path analysis to evaluate how CSI2–0, RT2–0, and the neural correlates (see 
“Results”) were inter-related. Model fit was assessed with standard fit indices which included the Root Mean 
Square Estimation of Approximation (RMSEA, < 0.08 for an acceptable fit), Chi-square (χ2/df, < 3), Comparative 
Fit Index (CFI, > 0.9), and Standardized Root Mean Square Residual (SRMR, < 0.06)33–35.

Results
Behavioral performance and its relationship to fluid intelligence.  Subjects averaged at a CSI of 
73.9 ± 22.3 (mean ± S.D.) % in 0-back and 58.0 ± 19.6% in 2-back, and a RT (correct trials only) of 790 ± 138 ms 
in 0-back and 989 ± 137 ms in 2-back. The CSI was significantly lower in 2- than in 0-back (t = − 21.695, Cohen’s 
d = -1.14, p = 4.6532 × 10–85, paired-sample t test) and the RT was significantly longer in 2- than in 0-back 
(t = 49.217, Cohen’s d = 3.20, p = 2.3886 × 10–263, paired-sample t test). Across subjects, the differences in CSI 
between 2- and 0- back, i.e., CSI2–0, was negatively correlated with the differences in RT between 2- and 0- back, 
i.e., RT2–0 (r = -0.350, Cohen’s f2 = 0.140, p = 1.1588 × 10–28, Pearson regression with age, sex and years of educa-
tion as covariates, Fig. 1B). That is, higher CSI2–0 was associated with smaller RT2–0.

Across subjects, the Gf, as indexed by the PMAT24_A_CR, was not correlated with CSI2–0 (r = 0.006, Cohen’s 
f2 = 3.6 × 10–5, p = 0.847, Fig. 1C) but positively correlated with RT2–0 with a small effect size (r = 0.155, Cohen’s 
f2 = 0.0246, p = 0.000002, Fig. 1D) in Pearson regression with age, sex and years of education as covariates.

Regional activations to 2‑ vs. 0‑back.  Figure 2 shows the results of one-sample t test of 2- vs. 0-back 
in a whole-brain analysis. Two- vs. 0-back involved higher activation in bilateral superior/middle/inferior fron-
tal cortex, bilateral inferior parietal cortex, medial frontal cortex in the area of pre-supplementary motor area 
(preSMA), extending to an area just anterior to the dorsal anterior cingulate cortex (dACC), bilateral caudate/
lentiform nucleus, anterior thalamus, anterior insula, superior parietal lobule, including the dorsal precuneus. 
Conversely, 0- vs. 2-back involved higher activation in the dACC, middle/posterior cingulate cortex, bilateral 
somatomotor cortex, paracentral lobule, ventral precuneus, frontopolar cortex, and thalamus in the area of 
pulvinar and habenula. Many of these brain regions were contiguous to form larger clusters, as summarized in 
Supplementary Table S1.

Figure 2.   One-sample T-test of the contrast 2- minus 0-back. Voxel p < 0.05, FWE corrected. Voxels showing 
higher activity during 2- vs. 0-back and 0- vs. 2-back are shown in warm and cool colors, respectively. BOLD 
contrasts are overlaid on a structural image in axial sections from z = − 16 to + 64 with 8 mm gaps. Color bars 
show voxel T values and the corresponding Cohen’s d scores. Neurological orientation: right = right. The inset 
shows a mid-sagittal section of the clusters. Figures 2, 3, 4, 5A and 7A were generated by DPABI_V4.0_190305 
(http://​rfmri.​org/​dpabi).

http://www.neuro.uni-jena.de/cat/
http://rfmri.org/dpabi
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Regional activations to 2‑ vs. 0‑back in correlation with CSI2–0 and RT2–0.  Whole-brain linear 
regression against CSI2–0 shows regional activations in Fig. 3 (clusters summarized in Table 1). Briefly, CSI2–0 
was correlated positively with activation of a small cluster located in the dorsal anterior cingulate cortex (dACC) 
bordering the supplementary motor area (SMA) and negatively with activation of the preSMA, bilateral fron-
toparietal cortex (biFPC), and right anterior insula (rAI). Figure 4 shows regional activations to 2- vs. 0-back in 
correlation with RT2–0 (clusters summarized in Table 2). RT2–0 was positively correlated with activation in biFPC, 
preSMA, rAI, caudate head and dorsal precuneus, and negatively correlated with activation of a large cluster 
extending from the midcingulate cortex to paracentral lobule, ventral precuneus, bilateral primary motor cortex, 
middle/posterior insula, and right superior temporal sulcus.

A number of clusters showed positive correlation with CSI2–0 and negative correlation with RT2–0 (CSI + RT −; 
dACC) or negative correlation with CSI2–0 and positive correlation with RT2–0 (CSI − RT +; preSMA, biFPC, and 
rAI) (Fig. 5). These shared regional activities may represent the neural substrates interlinking accuracy and RT 
in the N-back task. Thus, we performed path analyses to examine the inter-relationship between the shared cor-
relates (CSI + RT − or CSI − RT +), CSI2–0, and RT2–0. For the sake of completeness, we evaluated all 12 models, 
although the models with CSI + RT − and CSI − RT + as dependent variables were conceptually unlikely. The 
results of path analyses showed the model CSI + RT- → RT2–0 → CSI2–0 with the best fit (Fig. 6), suggesting that 
the dACC may facilitate target switching during the stimulus stream and target identification accuracy. Supple-
mentary Table S2 shows the statistics of all other models (Supplementary Fig. S2). In contrast, the counterpart 
CSI − RT +  → RT2–0 → CSI2–0 or any other models did not show a significant model fit.

Regional activations to 2‑ vs. 0‑back in correlation with Gf (PMAT24_A_CR).  Figure 7 shows 
regional activation in positive correlation with PMAT24_A_CR, with age, sex and years of education as covari-
ates. Summarized in Table 3, these clusters involved biFPC, preSMA, dorsal precuneus, and rAI. Almost all of 
the clusters overlapped with those with activities in positive correlation with RT2–0 as highlighted in magenta 
in Fig. 5A. No clusters showed activation in negative correlation with PMAT24_A_CR. Because the correlation 

Figure 3.   Whole-brain multiple regression against CSI2–0 with age, sex, and years of education as covariates. 
Voxel p < 0.05, FWE corrected. Voxels in warm/cool colors show positive/negative correlations. Color bars show 
voxel T values and the corresponding Cohen’s d scores. The inset shows a mid-sagittal section of the clusters.

Table 1.   Clusters showing correlation with CSI2–0 (Critical Success Index), with age, sex, years of education as 
covariates. ACC​ anterior cingulate cortex, R right, L left.

Region Cluster size (k) Peak voxel (T)
Cluster FWE
P-value

MNI coordinate 
(mm)

X Y Z

Positive

Dorsal ACC* 60 5.95 0.000 − 2 − 2 46

Negative

Frontal_Sup_Medial 1246 − 8.53 0.000 4 26 46

Precentral_L 275 − 7.08 0.000 − 42 8 42

Angular_R 153 − 6.86 0.000 44 − 54 40

Insula_R 111 − 6.40 0.000 34 18 2

Parietal_Inf_L 41 − 5.63 0.000 − 36 − 54 42
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between PMAT24_A_CR and RT2–0 showed a very small effect size (Cohen’s f2 = 0.0246), we did not follow up 
with path or mediation analyses on these variables.

To determine if the working memory-specific neural correlates engaged during the n-back task and predicting 
working memory performance also reflect Gf, we computed the beta values of the clusters and ran a regression 
of the beta value against PMAT performance scores (Gf). The results showed that the beta value of (CSI + RT −; 
dACC) was not correlated with Gf (r = − 0.013, p = 0.698, Cohen’s f2 = 0.000169). The beta value of (CSI − RT + ; 
preSMA, biFPC, and rAI) was only weakly correlated with Gf (r = 0.130, p = 0.000062, Cohen’s f2 = 0.01719).

Discussion
Bilateral superior/middle/inferior frontal cortex, bilateral inferior parietal cortex, dorsomedial prefrontal cortex 
(in the area of the pre-SMA), bilateral caudate head, thalamus, and anterior insula showed higher activation 
during 2- vs. 0-back, in accord with earlier findings14,36–44. In the aims to characterize individual variation in 
behavioral performance and the neural correlates, we showed that, first, CSI2–0 was negatively correlated with 
the RT2–0, suggesting that “taking time to identify the target” did not improve the accuracy in 2- vs. 0-back; 
participants who performed with higher accuracy were also faster in identifying the target. The dACC showed 
activities during 2- vs. 0-back both in positive correlation with CSI2–0 and negative correlation with RT2–0. 
Further, path analyses showed a most significant fit of the model dACC → RT2–0 → CSI2–0, suggesting a critical 

Figure 4.   Whole-brain multiple regression against RT2–0 (correct trials only) with age, sex, and years of 
education as covariates. Voxel p < 0.05, FWE corrected. Voxels in warm/cool colors show positive/negative 
correlations. Color bars show voxel T values and the corresponding Cohen’s d scores. The inset shows a mid-
sagittal section of the clusters.

Table 2.   Clusters showing correlation with RT2–0 (correct trials only), with age, sex, years of education as 
covariates. R right, L left, SMA Supplementary Motor Area, biFPC bilateral frontoparietal cortex, rAI right 
anterior insula, dPCu dorsal precuneus

Region Cluster size (k) Peak Voxel (T)
Cluster FWE
P-value

MNI coordinate 
(mm)

X Y Z

Positive

SMA/preSMA/biFPC/
rAI/Caudate_R 7970 13.64 0.000 − 6 16 48

Parietal_Inf_L/Pari-
etal_Inf_R/dPCu 2220 12.60 0.000 − 35 − 54 42

Caudate_L 158 7.69 0.000 − 16 0 20

Negative

SupraMarginal_R 396 − 9.09 0.000 52 − 28 26

Cingulum_Mid 1792 − 8.74 0.000 − 2 − 6 46

Cingulum_Post 422 − 8.39 0.000 − 2 − 52 26

Rolandic_Oper_L 350 − 8.34 0.000 − 38 − 16 20

Frontal_Sup_Medial_L 50 − 7.35 0.000 − 10 48 40

Postcentral_R 240 − 7.09 0.000 38 − 20 46

Postcentral_L 128 − 6.66 0.000 − 44 − 14 34
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Figure 5.   (A) A number of clusters showed positive correlation with CSI2–0 and negative correlation with 
RT2–0 (CSI + RT −), highlighted in green, or negative correlation with CSI2–0 and positive correlation with RT2–0 
(CSI − RT +), highlighted in magenta. The CSI + RT − cluster comprised solely of the dACC. Linear regression of 
(B) beta estimates of green cluster (CSI + RT −) vs. the difference in CSI between 2- and 0-back: CSI + RT − vs. 
CSI2–0; (C) beta estimates of green cluster (CSI + RT −) vs. the difference in RT of correct trials between 2- and 
0-back: CSI + RT − vs. RT2–0; (D) CSI − RT + vs. CSI2–0; and (E) CSI − RT + vs. RT2–0. Note that the scatter plots 
show the residuals, after age, sex, and years of education were accounted for. (B–E) were generated by SPSS 
Statistics 22.0 (https://​www.​ibm.​com/​suppo​rt/​pages/​spss-​stati​stics-​220-​avail​able-​downl​oad).

https://www.ibm.com/support/pages/spss-statistics-220-available-download
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role of target switching and the dACC in determining performance accuracy. Individual variations in RT2–0 and 
Gf were positively correlated, though only with a small effect size, whereas CSI2–0 and Gf were not significantly 
correlated. We highlighted the main findings in discussion.

Individual variation of CSI2–0 and RT2–0 in the N‑back task.  Individuals differ markedly in working 
memory performance, as reflected in the accuracy and RT (Supplementary Fig. S1). Here, the CSI2–0 was nega-
tively correlated with the RT2–0, indicating that participants who were more accurate were also faster in identify-
ing 2- vs. 0-back target. Conventionally, accuracy is emphasized without specific constraint on response time 
in the N-back task, which can lead to a ceiling or near-ceiling effect13,45. That is, individuals may intentionally 
slow down to optimize accuracy. However, we observed here that the CSI2–0 and RT2–0 were negatively correlated 
across subjects, suggesting that prolonging RT did not confer an advantage in achieving higher accuracy.

In whole-brain linear regressions we identified the correlates of individual variation in CSI2–0 and RT2–0. CSI2–0 
was correlated with higher activation of a small cluster on the border of dACC and SMA and with lower activation 
of the preSMA, bilateral FPC and right AI. Despite a more limited coefficient of variation (CV = SD/mean; 0.61 for 
RT2–0 vs. 2.04 for CSI2–0), RT2–0 was associated with a wider swath of regional responses, in the preSMA, biFPC, 
thalamus, basal ganglia, dorsal precuneus, rAI, and cerebellum in positive correlation and in the dACC, middle 
and posterior cingulate, ventral precuneus, bilateral somatomotor cortex in negative correlation. This finding 
may suggest RT as a more sensitive index of regional responses to support working memory13 and individual 
variation reflecting not only differences in memory capacity but also the efficiency in utilizing the memory46,47. 
The preSMA showed higher activation in correlation with RT2–0, consistent with its role in decision making and 
controlled actions48,49. In contrast, somatomotor cortex showed higher activities in support of speedier responses 
during 2- vs. 0- back, consistent with earlier reports of motor cortical activities in relation to RT50,51.

It is possible that CSI2–0 may be determined with a number of different neural processes, including encoding, 
maintenance and target-updating during stimulus presentation, with each engaged to different degrees across 
subjects that altogether accounted for the individual variation in CSI2–0. In contrast, RT2–0 may more specifically 
reflect the process of target updating and identification, allowing its neural correlate to reveal in group regres-
sion. This contrast is reminiscent of earlier findings from the stop signal task52–54. Whereas individuals exhibited 
behavioral slowing following both stop success (SS) and stop error (SE) trials, a direct contrast between post-SE 
and post-go trials identified right hemispheric ventrolateral PFC activation but one between post-SS and post-go 
trials failed to demonstrate regional activities. We similarly argued that post-SS likely involved more complex 
mental processing, including motor hesitation, which differed too extensively across subjects to yield a consist-
ent pattern of regional responses53.

Neural processes inter‑relating CSI2–0 and RT2–0.  The dACC showed lower activation during 2- vs. 
0- back blocks (Fig. 2), as also demonstrated in an earlier study55, seemingly in contrast with the role of the ACC 
in cognitive control. However, we observed across the whole-brain regressions dACC activity in positive cor-

Figure 6.   The model of CSI + RT − → RT2–0 → CSI2–0, which showed the best fit of all 12 models, is shown with 
path coefficients, covariates and covariance structures. Figure was generated by IBM SPSS Amos 22 (https://​
www.​ibm.​com/​suppo​rt/​pages/​downl​oading-​ibm-​spss-​amos-​22).

https://www.ibm.com/support/pages/downloading-ibm-spss-amos-22
https://www.ibm.com/support/pages/downloading-ibm-spss-amos-22
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Figure 7.   (A) Whole-brain multiple regression against PMAT24_A_CR with age, sex, and years of education as 
covariates. Voxel p < 0.05, FWE corrected. The clusters are summarized in Table 3. Clusters in warm color show 
higher activation during 2- vs. 0-back blocks in positive correlation with PMAT24_A_CR. Color bars show 
voxel T values and the corresponding Cohen’s d scores. The inset shows a mid-sagittal section of the clusters. 
The voxels (almost all) with activation in positive correlation with both Gf and RT2–0 are highlighted in magenta. 
Linear regression of (B) beta estimates of the magenta clusters (Gf + RT +) vs. Gf (PMAT24_A_CR): Gf + RT + vs. 
Gf; and (C) Gf + RT + vs. RT2–0. Note that the scatter plots show the residuals, after age, sex, and years of 
education were accounted for. B and C were generated by SPSS Statistics 22.0 (https://​www.​ibm.​com/​suppo​rt/​
pages/​spss-​stati​stics-​220-​avail​able-​downl​oad).

Table 3.   Clusters showing correlation with PMAT24_A_CR, with age, sex, years of education as covariates. R 
right, L left.

Region Cluster size (k) Peak Voxel (T)
Cluster FWE
P-value

MNI coordinate 
(mm)

X Y Z

Positive

Parietal_Inf_R 90 6.50 0.000 44 − 46 44

Parietal_Inf_L 35 6.41 0.000 − 45 − 38 44

Supp_Motor_Area 302 6.37 0.000 − 2 10 48

Frontal_Mid_R 133 6.29 0.000 30 8 54

Parietal_Sup_L 61 5.86 0.000 − 28 − 58 48

Frontal_Mid_L 47 5.58 0.000 − 22 10 60

Precuneus 45 5.49 0.000 − 4 − 62 48

Insula_R 34 5.39 0.000 34 28 2

https://www.ibm.com/support/pages/spss-statistics-220-available-download
https://www.ibm.com/support/pages/spss-statistics-220-available-download
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relation with CSI2–0 and negative correlation with RT2–0. Thus, less diminution of dACC activity during 2- vs. 
0- back is associated with more efficient response and higher accuracy. These findings together suggest that while 
dACC is overall less engaged during 2- vs. 0- back, a greater extent of dACC engagement during 2-back would 
facilitate target identification. An extensive body of work demonstrated that the dACC responds to saliency and 
set switching56–60. For instance, in the monetary delay incentive task, pupil dilations were linked to increased 
activity in the dACC, which may trigger an increase in arousal to enhance task performance61. It is likely that 
the dACC was more engaged in 0- vs. 2- back because 0-back required simply target detection and focused, 
moment-to-moment attention whereas 2-back required attention to be distributed over the sequence of stimuli. 
On the other hand, higher dACC activity in switching the target identity would facilitate N-back performance. 
Notably, without clearly distinguishing the subregions, studies have reported higher activation of the medial 
prefrontal cortex to 2- vs. 0-back, but a closer examination revealed that the clusters, with Z coordinates ranging 
from + 40 to + 44, appeared to be largely in the preSMA44,62, as we also observed here.

A number of brain regions, including the preSMA, biFPC and rAI showed activation during 2- vs. 0-back in 
negative correlation with CSI2–0 and positive correlation with RT2–0. As described earlier, the preSMA is widely 
implicated in volitional, controlled action and decision making. For instance, the preSMA monitored conflict 
and facilitated slowing of motor response as a result of expected conflicts49. Bilateral FPC likewise is known 
for its role in restraining impulsive responses63,64, consistent with the current findings. While also considered 
as part of the salience network61,65–68, the AI showed higher activation during 2- vs. 0-back, suggesting that 
saliency alone cannot account for these regional activities. A recent study showed that the rAI increased in 
activity monotonically as a function of cognitive load in a backward masking majority function task41, broadly 
in accord with the current finding of higher response during 2- vs. 0-back. The AI has also been implicated in 
higher demand of effort across many other behavioral paradigms69–71. Together, these considerations highlight 
the multiple component processes involved in working memory; how areal activations are dedicated specifically 
to these component processes remain to be investigated.

Importantly, we showed in path analyses the model with the most significant fit: dACC activ-
ity → RT2–0 → CSI2–0, suggesting that, by way of enhancing target switching, the dACC decreases the RT and 
facilitates accuracy during 2- vs. 0- back. In contrast, the preSMA, biFPC and rAI did not significantly form 
paths with RT2–0 → CSI2–0. These findings support a central role of the dACC in supporting N-back performance, 
whereas the CSI − RT + clusters—preSMA, biFPC, and rAI—did not appear to partake specifically in relating 
RT2–0 to CSI2–0.

Working memory and the Gf.  Gf was not significantly correlated with CSI2–0 and only correlated with 
RT2–0 with a small effect size. Thus, Gf did not appear to be well reflected in individual N-back performance. 
On the other hand, both Gf and RT2–0 shared activations in positive correlation in the preSMA, bilateral but 
predominantly right FPC, rAI and the dorsal precuneus. These findings suggest that Gf was at best marginally 
captured by individual differences in RT2–0 and, to the extent these variances could be accounted for by regional 
brain activities, the activities reflect slower and perhaps more cautious responding during 2- vs. 0-back. While 
these results appear to be consistent with an earlier literature associating Gf with activities of the cognitive con-
trol network72–74 and with the parieto-frontal integration hypothesis of human intelligence75–77, a large propor-
tion of the variance in Gf was notably not explained by RT2–0 or shared regional activities.

The same brain regions showed higher activations proportionally to the extent to which participants antici-
pated conflict and slowed down in the stop signal task49,56,78. This finding suggested that individuals with higher 
Gf were more inclined to strategize their RT and the preSMA, right FPC and AI support these behavioral pro-
cesses. Post-conflict slowing reflects cognitive control. In the cognitive control model of human intelligence, 
cognitive control serves as a core component of working memory and intellectual abilities, especially the Gf, and 
drives the relationships between these constructs14. Regional activations in behavioral paradigms other than the 
N-back task may better capture individual differences in Gf.

Limitations of the study and conclusions.  A few limitations need to be considered. First, in the HCP 
N-back task, the stimulus was presented for 2 s, followed by an inter-trial interval of 0.5 s, in each trial, which 
allowed participants plenty of time (2.5 s in total) to respond to the target. However, the mean RTs were 989 and 
790 ms for 2- and 0-back, respectively, suggesting that the majority of participants responded well before the trial 
ended most of the time. We reviewed 18 studies from the literature and noted that this appeared to be typically 
the case (Supplementary Table S3). Although we cannot speculate whether or how participants were engaged 
in the decision about speed-accuracy trade-off on the basis of these data, it is likely that regional brain activities 
were dictated by these task parameters and performance metrics, and the current findings should be considered 
as specific to the HCP. A study that systematically manipulates the task constraints within the same group of 
participants would be needed to thoroughly investigate how task parameters influence speed and accuracy and 
the neural processes underlying individual speed-accuracy trade-off in the N-back task. Second, although work-
ing memory is central to fluid intelligence, to what extent the N-back performance reflects Gf, as evaluated by 
the RSPM, represents a potential issue6 and suggests the need to consider the current findings on Gf as specific 
to RSPM. Third, the voxels that showed overlap between two sets of regressions were not identified on the basis 
of a statistical procedure. However, to our knowledge, there are no formal statistical approaches to assessing the 
significance of “overlap” between two sets of regressions (i.e., two different models). Conjunction or disjunction 
analyses, as implemented in SPM, could only be performed for different contrasts within the same GLM. Finally, 
although the HCP aimed to recruit “healthy populations,” the participants were heterogeneous in clinical charac-
teristics, including many with history of or current substance use. Whereas we did not control for these variables, 
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in the hope that, as true to the HCP, the data may reflect a broader population, the influences of the variables on 
the current findings remain to be clarified.

In conclusion, our findings highlight the key neural correlates of N-back performance metrics. The findings 
suggest the RT as a more sensitive measure of N-back performance and a key role of the dACC in supporting 
efficient target identification during 2- vs. 0-back.
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