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Abstract: Background: There is a need to better understand the association between sleep and
chronic diseases. In this study we developed a natural language processing (NLP) algorithm to mine
polysomnography (PSG) free-text notes from electronic medical records (EMR) and evaluated the
performance. Methods: Using the Veterans Health Administration EMR, we identified 46,093 PSG
studies using CPT code 95,810 from 1 October 2000–30 September 2019. We randomly selected
200 notes to compare the accuracy of the NLP algorithm in mining sleep parameters including total
sleep time (TST), sleep efficiency (SE) and sleep onset latency (SOL), wake after sleep onset (WASO),
and apnea-hypopnea index (AHI) compared to visual inspection by raters masked to the NLP output.
Results: The NLP performance on the training phase was >0.90 for precision, recall, and F-1 score
for TST, SOL, SE, WASO, and AHI. The NLP performance on the test phase was >0.90 for precision,
recall, and F-1 score for TST, SOL, SE, WASO, and AHI. Conclusions: This study showed that NLP is
an accurate technique to extract sleep parameters from PSG reports in the EMR. Thus, NLP can serve
as an effective tool in large health care systems to evaluate and improve patient care.

Keywords: polysomnography; natural language processing; sleep parameters

1. Introduction

Polysomnography (PSG) uses multiple parameters to evaluate and diagnose sleep
disorders [1]. PSG is considered the gold standard for diagnosing sleep disorders and
includes the measurement of several physiological activities, such as brain waves via
electroencephalography (EEG), heart rate via electrocardiogram (EKG), eye movements via
electrooculogram (EOG), muscle movements via electromyography (EMG), nasal and oral
airflow via thermistor/thermocouple and through nasal pressure changes, respiratory effort
via abdominal and thoracic bands, and blood oxygen saturation via pulse oximetry [2].
The PSG reports document several components such as patient demographic information,
technical detail regarding the physiological records (e.g., number of electrodes), sleep
continuity (e.g., total sleep time), sleep stages architecture (e.g., NREM Stage 1), respiratory
indices (e.g., apnea hypopnea index [AHI]), and periodic limb movements (e.g., PLMI) [3].
The PSG report’s components are typically stored as a free-text note in the electronic
medical record (EMR), which is not readable, processable, or computable and is considered
unstructured data [4].
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To convert unstructured data into structured data that is readable, processable, and
computable data, researchers use various methods [5–7]. These methods include a tradi-
tional approach via manual reviewing of notes and converting them into the structured
data. The manual method is time-consuming, not feasible for a large quantity of notes, and
prone to human error [8]. More recently, the use of novel machine learning techniques,
such as natural language processing (e.g., NLP) algorithms, has been proposed to solve the
shortcomings of manual data extractions. NLP has been successfully implemented within
the Veterans Health Administration (VHA) EMR to extract data from clinical notes for
ejection fraction and heart failure [9–11]. There are several other clinical studies using NLP
algorithm on the VHA EMR database [12–15]. Few studies have reported the use of NLP to
convert unstructured data from PSG reports into structured data [16,17]. Investigators used
regular expression matching techniques to extract total sleep time (TST) with an accuracy
of 80%; however, they did not provide detail on validation information in the published
study. In addition, they did not extract the part of text to analysis the data and it limited
the performance of their algorithm.

The aim of the present study was to develop an NLP algorithm based on prior
work [18] to extract sleep continuity parameters including total sleep time (TST), sleep
efficiency (SE), sleep onset latency (SOL), wake after sleep onset (WASO), and respira-
tory index (AHI) from PSG reports in the VHA EMR and to test the accuracy of the NLP
algorithm compared to annotators/raters masked to NLP output.

2. Methods

In this study, we used the Corporate Data Warehouse [19]. The study protocol was
approved by the Research & Development Committee of the Michael E. DeBakey VA
Medical Center and Baylor College of Medicine Institutional Review Board (IRB# H-35366).

2.1. Cohort

This is a retrospective study utilizing the VHA EMR from 1 October 1999, through 30
September 2020. We included patients who had any International Classification of Disease,
9th edition (ICD-9) or 10th edition (ICD-10) sleep disease, Supplementary Table S1. The
VA EMR is also known as the VHA’s Corporate Data Warehouse (CDW). It is a relational
database that collects veterans data from all VHA facilities from October 1999 to the
present [20].

2.2. Database

The cohort was selected from 4,237,444 patients. We limited the results to the patients
who had the following Current Procedural Terminology (CPT) procedure codes: 95810 and
95811. We included patients’ notes that were associated with visits with the CPT codes
had “%poly%” OR “%PSG%” in the title of notes; had “%PSG%” OR “%polysomno%” in
the body of notes; and did not have “%titrat%” OR “%split%” in the body of text, which
represented split-night studies.

For the remaining notes, we developed a document quality score, which we refer to as a
document quality index (DQI). The DQI is a score ranging from zero to seven. Zero referred
to no sleep parameter phrases used in the note, and seven referred to full documentation
of the sleep parameters. The DQI was calculated by summing seven components, and
each component related to a sleep parameter. We assigned zero to each component if the
sleep parameter of interest was not documented. The components were as follows: (1) TST,
“%TST%” or “%total sleep time%”; (2) SoL, “%SoL%” or “%onset latency%”; (3) SE, “%SE%”
or “%sleep efficiency%”; (4) WASO, “%WASO%” or “%wake after sleep onset%”; (5) rapid
eye movement (REM), “%REM%”; (6) sleep stage 1 (N1), “%N1%”; (7) AHI, “%AHI%” or
“%apnea%index%”. After consulting with the team of sleep board-certified physicians (AS
and RA) providing them with samples of notes with the scores greater than 3, the medical
team recommended using a cut of 4 or greater. We had 46,093 notes from 42,991 patients.
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2.3. Sampling Strategy for the NLP Development and Reference Standard

We applied the exact power calculation method to determine the minimum required
sample size for the validation of the NLP algorithm using the recommend sampling
strategy [21]. With assumption of effect size of 0.3, alpha of 0.05, power of 80, and degree
of freedom of 5, the minimum number of notes for each variable was 143. However,
the annotators reviewed 200 randomly selected notes, with 160 notes for the training
performance and 40 notes for the validation performance of the NLP algorithm. Two
board-certified sleep medicine specialists reviewed and labeled the sampled generated
data for validation of the NLP algorithm (AS and RA). In case of discrepancy, the final
decision was judicated liberally by adding another SN as final voter. The two raters were
blinded from each other. During the judication process of discrepancy, the raters informed
about their labels. Additionally, we used the Cohen’s κ, Intraclass correlation coefficient
(ICC) [22,23] to understand the level of reviewers’ agreement. The ICC ranges from zero (no
agreement) to one (perfect agreement). The ICC was interpreted as: poor (<0.5), moderate
(0.5–0.7), good (0.75–0.9), and excellent (≥0.9).

2.4. NLP Algorithm Development for the Extraction of the Sleep Parameters

We developed an NLP algorithm for each sleep parameter of interest. Therefore, the
following NLP algorithm for extracting the sleep continuity parameters was repeated for
each sleep parameter, Figure 1. The NLP algorithm receives the PSG reports as input
texts and generates the sleep parameter associated with the respected quantity along with
the patient’s identification and visit date to a structured output format. We divided the
NLP algorithm into five steps (Figure 1). The algorithm was developed with the Python
programming language [24]. We used the Natural Language Toolkit (NLTK), which is a
suite of libraries and program to process human language data [25].

1. Reading: Read the PSG reports and store in the memory.
2. Tokenizing: Tokenize the PSG reports.
3. Locating: Identify the location of the sleep parameter of interest.
4. Mining: Identify the related quantity associated with the sleep parameter of interest.
5. Storing: Store the sleep parameter and associated quantity to a csv file.
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Reading: We imported the PSG reports using the NLTK text reading function. The
imported text data were stored for the next step.

Tokenizing: We used the NLTK tool to parse the PSG note into sentences and lines,
respectively. Such parsing helped to locate the sleep parameters for the extraction and
association with the quantity respectively (Figure 1).
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Locating: We developed a set of regular expressions to extract the sleep parameters
from the corresponding lines received from the NLTK toolkit. These regular expression sets
were developed based on the annotated notes by our sleep specialist team. For instance,
the TST has been expressed entirely or its abbreviated form, i.e., TST, or a different format
completely in some PSG reports (Supplementary Table S2). However, we developed regular
expressions to capture common possible formats of the sleep parameters documented in
the PSG reports (Supplementary Table S2). The following string patterns were used for
each concept: TST: ‘total sleep time’, ‘slept for’, ‘monitored for’, ‘spent for, ‘Total Sleep Time
(TST)’; SOL: ‘sleep onset latency’, ‘sleep onset’, ‘latency for’, ‘Sleep Onset Latency (SOL); SE:
‘sleep efficiency’, ‘sleep efficiency for’, ‘Sleep Efficiency (SE)’; WASO: ‘wake after’, ‘wake
time after’, ‘total wake’, ‘WASO’, ‘Wake After Sleep Onset (WASO); AHI: ‘apnea hypopnea
index’, ‘apnea/hypopnea index’, ‘AHI for’, ‘Apnea Hypopnea Index (AHI)’.

Mining: The nearest neighbor based quantification step extracts the associated quan-
tity for each of the extracted sleep parameters [26]. In some PSG reports, the quantities
precede the sleep parameter and vice versa (Supplementary Table S2). The nearest neighbor
algorithm selects the nearest quantity as the associated quantity for the sleep parameter of
interest, while selecting the second nearest for some cases (Supplementary Table S2). The
successive operations of both locating and mining steps associate the sleep parameter of
interest with its corresponding quantity [27]. All the information retrieved in this step is
forwarded to the next step.

Storing: In this step, the sleep parameter, the associated quantity, patient identifiers,
and visit date were stored to a csv file, aka structured data.

2.5. Performance of the NLP Algorithm

The performance of the NLP algorithm has been measured by the accuracy, precision,
recall, and F-1 score [28], as this is a standard for performance analysis of the information
retrieval algorithm [29]. The accuracy defines the fraction of the relevant information
retrieved from all the documents (accuracy = true positive + true negative/total number of
notes). The precision defines the fraction of retrieved documents that are in fact relevant
(precision = true positive/(true positive + false positive)). The recall defines the fraction of
relevant documents that are retrieved by the algorithm (recall = true positive/(true positive
+ false negative)). The F-1 score measures the combined performance of the recall and
precision (F-1 score = 2 × precision × recall/(precision + recall)) [30].

3. Results

In this study, we collected 407,730 PSG notes from 4,237,444 patients who used
the VHA for medical sleep advises (88.3% male, 26.3% age ≥ 65 years, 57.7% obese,
BMI ≥ 30 Kg/m2), Supplementary Table S3 and Supplementary Figure S1. Of 407,730
notes, 46,093 (11.3%) met the DQI criteria ≥ 4, Figure 2.
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Figure 2. The strobe diagram for collecting patients’ polysomnography reports with CPT codes of
‘95810’, and ‘95811’ who visited veteran health administration (VHA) from 1 October 1999 to 30
September 2020.

3.1. Reliability Analysis

The reliability between annotators ranged from 0.51 to 0.89, Table 1. We observed the
highest ICC value in SOL (0.89) and the lowest value in WASO (0.51). The ICC values for
SE, WASO, and AHI were considered moderate, while the ICC values for TST and SOL
were good.

Table 1. The agreement between two raters measured by inter class correlation (95% confidence
intervals) on sleep notes.

Sleep Parameter * N (%) ICC (95% CI)

TST 195 (97.5) 0.83 (0.78, 0.87)
SE 196 (98.0) 0.59 (0.49, 0.68)

SOL 194 (97.0) 0.89 (0.86, 0.92)
WASO 184 (92.0) 0.51 (0.40, 0.61)

AHI 192 (96.0) 0.62 (0.52, 0.70)
* TST = total sleep time, SE = sleep efficiency, SOL = sleep onset latency, WASO = wake after sleep onset. ICC = inter
class correlation.

3.2. Performance Analysis

We provided the performance analysis for the training and validation datasets in
Table 2. In the training phase, the NLP algorithm showed accuracy of 0.91 across all sleep
parameters. The highest performance was observed in the SE and WASO, and the lowest
performance was observed in the TST (accuracy, 0.91). In the validation phase, SE had the
highest performance, i.e.,1.00. The accuracy and recall level of SOL was the lowest (0.90).
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Table 2. Performance analysis of the NLP algorithm.

Sleep Parameter Accuracy Precision Recall F-1 Score

Training

TST 0.91 0.98 0.93 0.95
SOL 0.91 1.0 0.91 0.96
SE 0.98 1.0 1.0 0.99
WASO 0.98 1.0 0.98 0.99
AHI 0.96 0.99 0.96 0.98

Validation

TST 0.95 1.0 0.95 0.97
SOL 0.90 1.0 0.90 0.95
SE 1.0 1.0 1.0 1.0
WASO 0.95 1.0 0.95 0.97
AHI 0.95 1.0 0.95 0.97

4. Discussion
4.1. Methods and Results of the NLP Algorithm

In this study, we developed and validated an NLP algorithm to extract sleep param-
eters from PSG reports stored in the EMR as free-text notes. Additionally, we developed
a quality metric to assess whether the PSG report was sufficient quality to be included in
data extraction by consulting with a sleep medicine-certified group of physicians (A.S. and
R.A.). This is one of the first published studies that used NLP to extract sleep continuity
parameters and a respiratory index (AHI) and transform them from unstructured data to
structured data.

In the process of preparing the notes for the NLP algorithm, we excluded notes that
reported split nights and performed titration studies. In the split-night PSG, two nights’
recordings are combined into a single overnight observation. The split-night PSG does
not provide adequate sleep architecture data for a complete night [31]. We developed
an inclusion metric, DQI, that ensured the quality of documentation of the PSG reports.
The DQI was developed in-house based on the clinical experiences of our certified sleep
medicine physicians (A.S. and R.A.). It provides an additional inclusion layer to ensure
quality of the PSG report prior to processing and extracting PSG sleep parameter data.
Next, we randomly selected 200 PSG reports to compare accuracy of the NLP algorithm
to extract correct sleep parameter data compared to visual inspection by multiple masked
raters (JR and MR). We reported moderate-to-good ICC among raters, which originated
from variation of expressions in documenting sleep parameter (Supplementary Table S2).
Because of variation in documentation, the performance of the NLP also varies. For
example, the SE has a regular pattern of number and percentage association that helps
to achieve the highest performance (SE sentences in Supplementary Table S2). However,
the performance degrades for the anomalies, with either the sleep parameter statement
expressed as a different expression or subsequent expression of another sleep parameter
(TST, SOL in Table 2). Clinical interpretation and research of PSG reports could benefit
by creating a standardized template for sleep reports. Compared to a previous study
with average performance of 80% [17], the overall performance of the algorithm to extract
sleep parameter is greater than 90%. The previous study developed based on a regular
expression approach, while we used a more sophisticated algorithm to extract the sleep
parameters [17].

4.2. Strength and Weakness

There are several limitations of this study. First, we limited the notes to those with
proper documentation of PSG reports; and we excluded notes that related to split-night
study or home sleep tests. We did this to reduce the variability that may introduce noise
when developing and testing the NLP algorithm to extract sleep parameters. However,
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by doing so we acknowledge we limited the number of notes reviewed. A separate NLP
algorithm is warranted to mine the home sleep test notes and extract home sleep test
sleep-related respiratory parameters such as AHI and blood oxygen saturation level (SaO2)
versus the sleep continuity variables typically found in PSG reports. PSG reports were
selected from the VA EMR. Generalizability of the NLP algorithm to extract PSG sleep
parameters from other facilities remains to be tested. Finally, future work should develop
and test NLP algorithms to extract sleep architecture (Stage N1, REM) and other indices
(RDI, Sp02, PLMI).

5. Conclusions

We developed and validated an NLP algorithm for systematic extraction of the sleep
continuity parameters and a respiratory index (AHI) from the PSG reports. The algorithm
has >90% performance in all the performance metrics in both training and validation
stages. In recent years there has been a rapid emergence of artificial intelligence (AI) in the
field of sleep medicine. AI refers to the capability of computer systems to perform tasks
conventionally thought to require human intelligence, such as speech recognition, decision
making, and visual recognition of patterns and objects. Additionally, a new advanced
machine learning based NLP algorithm such as Bidirectional Encoder Representations from
Transformers (BERT) has been introduced developed by Google [32]. Another study is
warranted to develop an NLP based on BERT to extract sleep parameters.

Sleep medicine is well positioned to benefit from advances that use big data to create
artificially intelligent computer programs. Leveraging longitudinal data accumulated
within EMR, sleep medicine is primed to benefit from AI. As a greater number of sleep
studies occur each year within and outside the VHA, utilizing AI and advanced machine
learning becomes more appealing to automate data extraction from the EMR [33]. AI
techniques will allow clinicians and investigators to examine the wealth of rich, longitudinal
real-world data that is housed within the EMR, currently in the form of free-text notes.
By using AI techniques, investigators can leverage “big data” to offer new insights into
sleep physiology, improve the accuracy of diagnosis of sleep disorders, predict response
and adherence to treatment, and use sleep parameters as predictors of future physical and
mental health, leading to treatment optimization and personalization.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/healthcare10101837/s1, Table S1: list of International Classification
of Diseases Clinical Modification (ICD) ninth and tenth edition and Current Procedural Terminology
(CPT) code; Table S2: Examples of TST, SE, AHI, WASO, SOL sentences found in the PSG reports;
Table S3: Patients' characteristics and demographics; Figure S1: The distribution of sleep report
quality aka document quality index (DQI). The DQI is a score ranged from zero to seven. Zero
referred to no sleep parameters phrases used in the note and seven referred to full documentation of
the sleep parameters. The DQI is calculated by summing seven components and each component
related to a sleep parameter as follows: 1) total sleep time, sleep onset latency, sleep efficiency
(SE), wake after sleep onset (WASO), Rapid eye movement (REM), sleep stage 1 (N1), and Apnea
Hypopnea Index (AHI).
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