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Abstract

Most data sets consist of interlaced-distributed samples from multiple classes and since

these samples always cannot be classified correctly by a linear hyperplane, so we name

them nonlinearly separable data sets and corresponding classifiers are named nonlinear

classifiers. Traditional nonlinear classifiers adopt kernel functions to generate kernel matri-

ces and then get optimal classifier parameters with the solution of these matrices. But com-

puting and storing kernel matrices brings high computational and space complexities. Since

INMKMHKS adopts Nyström approximation technique and NysCK changes nonlinearly sep-

arable data to linearly ones so as to reduce the complexities, we combines ideas of them to

develop an improved NysCK (INysCK). Moreover, we extend INysCK into multi-view appli-

cations and propose multi-view INysCK (MINysCK). Related experiments validate the effec-

tiveness of them in terms of accuracy, convergence, Rademacher complexity, etc.

Introduction

Background

In real-world applications, most data sets consist of interlaced-distributed samples from multi-

ple classes. If samples cannot (can) be classified correctly with a linear hyperplane, we name

them nonlinearly (linearly) separable samples. As we know, linear classifiers including HK,

MHKS, and SVM [1] are feasible to process linearly separable samples. While for nonlinearly

ones which are ubiquitous, nonlinear classifiers including NCC [2], FC-NTD [3], KMHKS [4],

KSVM [5] are more suitable. One kind of nonlinear classifiers is kernel-based ones including

MultiV-KMHKS [6], MVMHKS [7], RMVMHKS [8], DLMMLM [9], UDLMMLM [10], etc

[11–13] and they adopt kernel functions to generate kernel matrices firstly and get optimal

classifier parameters after the solution of these matrices. Here, for convenience, we summary

full names and abbreviations for some terms in Table 1.

Problem and previous solutions

Most kernel-based classifiers cost an O(n3) computational complexity to decompose matrices

and an O(Mn2) space complexity to store them where n is number of samples and M is number

of used kernel functions. But the complexities are too high for most real-world classification

problems. Fortunately, some classifiers including NMKMHKS [14], INMKMHKS [11], and

NysCK which is developed on the base of cluster kernel (CK) [15] are developed to reduce
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complexities. (1) NMKMHKS selects s samples from n ones and uses Nyström approximation

technique to get approximation form for each kernel matrix. With NMKMHKS, computa-

tional complexity can be reduced to O(Mns2) and space complexity can be reduced to O(n2).

While since the numbers and parameters of used kernel functions should be initialized before-

hand and s is set in random, the performance of NMKMHKS maybe poor when comes to

noise cases and is sensitive to s. (2) INMKMHKS adopts clustering technology to guide the

generations of kernel functions and approximation matrices. This operation can solve the

defects of NMKMHKS and keep a lower complexity. (3) NysCK decomposes each kernel

matrix K by K = FFT where each row in F represents a linearly separable sample and then non-

linearly separable samples can be changed to linearly ones. [15] has validated that those linearly

ones correspond to the original ones and they can be classified by linear classifiers with a high

accuracy.

Table 1. Full name and abbreviation for some used terms.

Full name Abbreviation

Ho-Kashyap algorithm HK

Ho-Kashyap algorithm with squared approximation of the misclassification errors MHKS

support vector machine SVM

nonlinearly combined classifiers NCC

fuzzy clustering with nonlinearly transformed data FC-NTD

kernelized modification of MHKS KMHKS

kernel SVM KSVM

multi-views KMHKS MultiV-KMHKS

multi-view learning developed from single-view patterns with Ho-Kashyap linear classification

strategy

MVMHKS

regularized MVMHKS RMVMHKS

double-fold localized multiple matrix learning machine DLMMLM

Universum based DLMMLM UDLMMLM

Nyström approximation matrix with multiple KMHKSs NMKMHKS

improved NMKMHKS INMKMHKS

cluster kernel CK

Nyström CK NysCK

improved NysCK INysCK

multi-view INysCK MINysCK

multi-view L2-SVM MSVM

multiple graph regularized generative model MGGM

multi-view least squares support vector machines MV-LSSVM

multi-view and multi-feature learning MVMFL

semi-supervised multi-view maximum entropy discrimination approach SMVMED

multi-view low-rank sparse subspace clustering MLRSSC

kernel MLRSSC KMLRSSC

multi-view kernel spectral clustering MVKSC

matrix-pattern-oriented MHKS with boundary projection discrimination BPDMatMHKS

regularized weighted least square support vector classifier rWLSSVC

novel dissimilarity learning NDL

locality constrained dictionary learning LCDL

scale-invariant feature transform SIFT

singular value decomposition SVD

radial basis function RBF

https://doi.org/10.1371/journal.pone.0206798.t001
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Motivation and novelty

Since INMKMHKS avoids the setting of s and kernel parameters and NysCK changes the non-

linearly separable samples to linearly ones, we combine them in together to develop improved

NysCK (INysCK) to reduce complexities further. Moreover, multi-view data set which consists

of samples with multiple views and each view consists of multiple features is a widely used one

in real world and many corresponding multi-view classifiers are developed [16–18]. Since

INysCK has not an ability to process multi-view data sets, thus we extend INysCK into multi-

view applications and propose multi-view INysCK (MINysCK).

Since INMKMHKS (NysCK) was developed in 2015 (2017), thus ideas and innovations of

them are still new at some extends. What’s more, to the best of our knowledge, until now,

there is no method combines their ideas in together. In other words, the idea of our methods is

novel and it is the first trial for this. In our methods, for the original data set, we first adopt the

ideas of INMKMHKS to generate several kernel functions and get the corresponding Nyström

approximation matrices. Then on the base of these matrices, we adopt the ideas of NysCK to

get F. In F, each row represents a linearly separable sample which corresponds to an original

sample. Then we can classify these linearly separable samples with linear classifiers. This opera-

tion is similar with the one of classifying the original samples with some nonlinear classifiers.

Moreover, this operation won’t influence the classification results.

Contribution

Contributions of our work are (1) provide a new idea to process nonlinear classification prob-

lems and needn’t to initialize many parameters beforehand; (2) keep low computational and

space complexities; (3) first time to process multi-view problems with such an idea.

Related work

Nyström approximation technique

For a kernel-based classifier, whether the solution is feasible or not depends on the eigende-

composition of kernel matrix and in general, the eigendecomposition needs a O(n3) computa-

tional cost where n is number of samples. In order to cut down the computational cost, [19]

develops Nyström approximation technique to speed up the eigendecomposition. Simply

speaking, one selects s samples from the whole data set to approximate the kernel matrix, then

computational complexity can be reduced to O(ns2). Recently, Nyström approximation tech-

nique has been applied into multiple different fields. For example, [20] uses this technique to

get approximate infinite-dimensional region covariance descriptor which significantly outper-

forms the low-dimensional descriptors on image classification task; [21] introduces Nyström

into kernel subspace learning and reduces the time and space complexities; [22] combines

Nyström method with spectral clustering algorithm to decrease the computation complexity

of the spectral clustering with a high clustering accuracy kept.

NysCK

Suppose there is a nonlinearly separable data set X = [Xl, Xv], Xl consists of l labeled samples,

Xv consists of v unlabeled samples, l< v, n = l + v. Objective of NysCK is changing nonlinearly

separable samples to linearly ones with Nyström approximation technique and predicting

class labels of those unlabeled ones. For these n samples, NysCK constructs a kernel matrix

K firstly and then selects s samples from Xl to decompose K with K ¼ W K12
K21 K22

� �

and
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C ¼ W
K21

� �

where W 2 Rs�s corresponds to the s samples. After that, NysCK carries out

SVD on W and gets the Nyström approximation matrix of K, i.e., ~K ¼ CWy

kC
T � K where

Wy

k denotes the pseudo-inverse of Wk which is the best rank-k approximation of W. Finally,

NysCK decomposes ~K with ~K ¼ FFT where F ¼ Fl
Fv

� �

represents n linearly separable sam-

ples. Each row of F corresponds to an original sample, i.e., Fl corresponds to Xl while Fv corre-

sponds to Xv. Finally, we can train a linear classifier on Fl and classify Fv. According to [15],

computational and space complexities are O(n(nd + k2)) and O(n(d + k)) respectively where d
is the dimension of each sample.

INMKMHKS

Procedure of INMKMHKS consists of four steps. (1) For a data set X with n samples,

INMKMHKS adopts kernel clustering to cover X with M clusters and samples in each cluster

have same class labels. Then INMKMHKS regards midpoint and width of each cluster as

parameters of a RBF kernel and as a result, M kernel functions are generated without setting

initial kernel parameters. (2) With usage of M kernel functions, INMKMHKS generates M ker-

nel matrices Kps and gets corresponding Nyström approximation forms~Kps without setting

initial s (p = 1, 2,. . ., M). (3) INMKMHKS calculates coefficient of each~Kp and constructs

ensemble kernel matrix G with ~Kps and corresponding coefficients. (4) INMKMHKS applies

G into the KMHKS-based process and gets the final discriminant function.

INysCK and MINysCK

INysCK

Generating kernel functions without setting initial kernel parameters. Suppose there

is a L-class data set X including l training samples Xl and v test samples Xv (n = l + v). Here

Xl = {X1, X2,. . ., XL} = {x1, x2,. . ., xl} and the class labels are Y = {y1, y2,. . ., yL}. For each class

Xc (c = 1, 2,. . ., L), it consists of nc samples, i.e., Xc ¼ fxc1; xc2; :::; xcncg. Here, nc is the number

of samples in Xc and l = n1 + n2 + . . . + nL. xcj is jth sample of Xc where j 2 {1, 2, . . ., nc}.
Then on the base of l training ones, we generate kernel functions with the following way.

For generating the first kernel function, we compute midpoint μ of all training samples, i.e.,

μ ¼

Xl

i¼1

xi
l and distance between xi and μ, i.e., dxi

. Distances are sorted in an ascending order,

i.e., dxð1Þ
� dxð2Þ

� . . . � dxðlÞ
and the corresponding samples are denoted as x(1), x(2),. . .,x(l). If

the class labels of x(1), x(2),. . .,x(u) are same while the label of x(u+1) is not same as the one of

x(u), then we let kernel parameters ðs; μ0Þ ¼ ðdxðuÞ
;μÞ (in our work, used kernel function is

RBF and its expression is kðxi; μ0Þ ¼ exp � kxi � μ
0k2

2s2

� �
). Then for this kernel function, we let cor-

responding samples x(1), x(2),. . .,x(u) be basic samples and u be basic number. What’s more, in

order to generate the second kernel function, we remove x(1), x(2),. . .,x(u) from Xl and repeat

previous steps. We repeat the steps again and again until each training sample belongs to basic

samples of one kernel function. After this generation way, we can get M new kernel functions,

i.e., k1(xi, xj),. . ., kp(xi, xj),. . ., kM(xi, xj) where p = 1, 2,. . ., M, we also get the corresponding M
σs and μ0s.

Improved linear classifier model with Nyström
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Constructing kernel matrices with Nyström approximation technique. (1) We con-

struct kernel matrices according to these M kernel functions. Suppose for pth kernel function,

its parameters are ðsp;μ
0
pÞ and basic samples are x(1),. . ., x(u). With all n samples, the corre-

sponding n × n kernel matrix is Kp = (k(xi, xj))n×n and its ith row and jth column element is

kðxi; xjÞ ¼ exp � kxi � xjk
2

2s2
p

� �
where i, j = 1,. . ., n. For convenience, in Kp, {x1,. . .,xl} corresponds

to l training samples and {xl+1,. . .,xn} corresponds to v test ones.

(2) We centralize and normalize Kp with Eqs (1) and (2) just for convenient calculation.

Here 1n×n is a n × n-dimensional identity matrix, trace indicates the trace of a matrix, and we

use Kp to denote the centralized and normalized matrix Ktrp for convenience.

Kcp ¼ Kp �
1

n
1n�nKp �

1

n
Kp1n�n þ

1

n2
1n�nKp1n�n ð1Þ

K trp ¼
K cp

traceðKcpÞ
ð2Þ

(3) For Kp, if both xi and xj are in the set {x(1),. . .,x(u)}, we combine these k(xi, xj)s together

and generate an u × u-dimensional matrix, i.e, Wp. If only one of xi and xj is in this set, we

combine these k(xi, xj)s together and generate a (n − u) × u-dimensional matrix, i.e, Kp21.

Then Kp12 ¼ KT
p21. If neither xi nor xj is in this set, we combine these k(xi, xj)s together

and generate a (n − u) × (n − u)-dimensional matrix, i.e, Kp22. The relative positions of those

k(xi, xj)s in Wp, Kp12, Kp21, and Kp22 are not changed. With above definitions, we decompose

Kp with Eq (3) and let s = u without initializing s.

Kp ¼
Wp Kp12

Kp21 Kp22

" #

and Cp ¼
Wp

Kp21

 !

ð3Þ

(4) We carry out SVD on Wp, i.e. Wp ¼ UpLpU
T
p . Here, Λp = diag(σp1, � � �, σpu). σpi is the ith

largest singular value. Up is composed of the eigenvectors of the Wp based on σpi and diag indi-

cates the diagonalization operation.

(5) We get the rank-k Nyström approximation matrix for Kp by

~Kp ¼ CpWpk

þ

CT
p ð4Þ

where Wþ

pk ¼

Xk

i¼1

s� 1
pi U

ðiÞ
p U

ðiÞT
p is the rank-k pseudo-inverse of Wp, k (k� u) is the rank of

Wþ

pk and U ðiÞp is ith column of Up.

(6) After repeating previous steps, we can get all~Kps and for each Kp, we have a corre-

sponding basic number u. Then we let largest u be s.
(7) According to [14] and Nyström approximation error between Kp and~Kp , we calculate

coefficient αp of each ~Kp by Eq (5).

xp ¼ k
~Kp � Kp kF and ap ¼

e� Zxp
Z

ð5Þ

Improved linear classifier model with Nyström
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where k.kF represents the Frobenius norm, η> 0 is a predefined parameter, Z ¼
XM

p¼1

e� Zxp is a

normalization factor which is used to set

XM

p¼1

ap ¼ 1.

(8) Finally, we get the ensemble kernel matrix G with the following equation.

G ¼
XM

p¼1

ap
~Kp ð6Þ

Getting corresponding linearly separable samples. (1) Once we get G, we let D = diag

(D11,. . ., Dnn) where element Dii ¼

Xn

j¼1

Gij and Gij represents the ith row and jth column ele-

ment of G (i, j = 1,. . ., n). Then we decompose G with Eq (7) where WG 2 R
s�s, G12 2 R

s�ðn� sÞ,

G12 ¼ GT
21, G22 2 R

ðn� sÞ�ðn� sÞ
, CG 2 R

n�s
. Since s is gotten with sub-step (6) in previous subsec-

tion and G is combination of multiple~Kp, so elements in WG, G12, G21, G22 are fixed here.

Since s< l, n − s = l + v − s> v, so v × v part in the lower right corner of G22 corresponds to v
test samples.

G ¼
WG G12

G21 G22

" #

and CG ¼
WG

G21

 !

ð7Þ

(2) We carry out SVD on WG, i.e. WGk ¼ UWG;k
ΣWG;k

UT
WG ;k

where WGk is the best rank-k
approximation of WG, SWG,k is a diagonal matrix and diagonal consists of first k approximate

eigenvalues, and UWG,k consists of the corresponding k approximate eigenvectors. Then we get

Nyström approximation matrix ~G of G with Eq (8) where Wy

Gk denotes the pseudo-inverse of

WGk.

CGW
y

GkC
T
G �

~G ð8Þ

(3) After that, we compute Sk and Uk using Eq (9) where ΣyWG;k
is the pseudo-inverse of SWG,k.

In terms of each element σi of Sk, we apply Eq (10) and get the~Σk ¼ diagðφðs1Þ; . . . ;φðskÞÞ.

Generally speaking, since v is larger than 9, so we use h = l + 9 is feasible.

Σk ¼
n
s

� �
ΣWG;k

and Uk ¼

ffiffiffi
s
n

r

CGUWG ;k

Py

WG;k
ð9Þ

φðsiÞ ¼

( ffiffiffiffi
si
p i < hð¼ lþ 9Þ

s2
i i � hð¼ lþ 9Þ

ð10Þ

(4) Once we get~Σk , we let ~L � D� 1=2Uk
~Σk U

T
kD
� 1=2 and then~L1=2 � D� 1=2Ukð

~Σk Þ
1=2

.

Then, we have~Dii ¼ 1=~Lii and get ~D ¼ diagð~D11; . . . ;~DnnÞ where~Lii is ith row and ith col-

umn element of ~L. Finally, we can get ~D1=2 and linearly separable data set F ¼ Fl
Fv

� �

by Eq

(11). According to [15] said, each row of F corresponds to an original sample, i.e., Fl

Improved linear classifier model with Nyström
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corresponds to Xl and Fv corresponds to Xv. Once F is gotten, we can adopt linear classifiers to

train and classify them. For convenience, Table 2 shows framework of INysCK.

F � ~D1=2~L 1=2 ð11Þ

MINysCK

Suppose there is a multi-view data set X ¼ fXgg
V
g¼1
¼ fxig

n
i¼1

where V is the number of views

and n is the number of samples. The gth view is Xg ¼ fxgi g
n
i¼1

and the ith sample is

xi ¼ fx
g
i g

V
g¼1

. xgi represents gth view of ith sample. For each view Xg, its dimension is dg which

indicates that this view consists of dg features. Now in the procedure of MINysCK, we conduct

INysCK on each view Xg and get the corresponding F, i.e., Fg. Then for V views, we get V
groups F. For the X, its linear form is F = {F1,F2,. . .,FV}. Finally, we can adopt some multi-view

classifiers to process F. Table 3 shows framework of MINysCK.

Computational complexity and space complexity

According to [15], the computational complexity and space complexity of NysCk are O(n(nd +

k2)) and O(n(d + k)) respectively where d is the dimension of each sample. Then compared

with NysCk, the main added steps of INysCK are the generation of kernel functions and matri-

ces. Thus, the added computational complexity is O(Ml2) and the added space complexity is O

Table 2. Algorithm: INysCK.

Input: L-class data set X = [Xl, Xv]. Xl consists of l training samples and Xv consists of v test samples. Here, n = l + v
1. Generate M kernel functions.

2. For p = 1,2,. . .,M do

3. Construct kernel matrix Kp with pth kernel function.

4. Centralize, normalize, and decompose Kp with Eqs (1) and (3).

5. Carry out SVD on Wp and get the rank-k Nyström approximation matrix~Kp for Kp with Eq (4).

6. End for

7. Compute coefficient αp of each~Kp with Eq (5) and get ensemble kernel matrix G with Eq (6).

8. On the base of G, get D and decompose G with Eq (7).

9. Carry out SVD on WG and get Nyström approximation matrix ~G of G with Eq (8).

10. Compute Sk, Uk and get~Σk with Eqs (9) and (10).

11. Get ~L1=2 and ~D1=2 and obtain F with Eq (11).

Output: F ¼
Fl

Fv

" #

and Fl corresponds to Xl while Fv corresponds to Xv

https://doi.org/10.1371/journal.pone.0206798.t002

Table 3. Algorithm: MINysCK.

Input: multi-view data set X ¼ fXgg
V
g¼1
¼ fxig

n
i¼1

1. For g = 1,2,. . .,V do

2. Change Xg to corresponding Fg with INysCK.

3. End for

4. Obtain F = {F1,F2,. . .,FV}.

Output: F

https://doi.org/10.1371/journal.pone.0206798.t003

Improved linear classifier model with Nyström

PLOS ONE | https://doi.org/10.1371/journal.pone.0206798 November 5, 2018 7 / 18

https://doi.org/10.1371/journal.pone.0206798.t002
https://doi.org/10.1371/journal.pone.0206798.t003
https://doi.org/10.1371/journal.pone.0206798


(Ml2). Since in real-world applications, M� n and l� n, so computational complexity and

space complexity of INysCk are almost same as ones of NysCK. For MINysCK, the computa-

tional complexity is

XV

g¼1

Oðnðndg þ k2ÞÞ ¼ Oðnðnd þ k2ÞÞ, the space complexity is

XV

g¼1

Oðnðdg þ kÞÞ ¼ Oðnðd þ kÞÞ. Thus, we find that computational and space complexities

of INysCK and MINysCK are same as the ones of NysCK.

Experiments

Experimental setting

We adopt four multi-view data sets (NUS-WIDE, YMVG, DBLP, Cora) and four UCI machine

learning repository (UCI) [23] data sets (YCS, AA, BC, Arrhythmia) for experiments in niche

targeting. Among these data sets, half of them are large-scale and the left are small-scale. Infor-

mation of used UCI data sets is given in Table 4 and in terms of four multi-view ones, we

describe them as below where D denotes dimensionality. (1) NUS-WIDE is a web image data

set which consists of 269648 samples (images), 5018 classes, and 6 views [24]. The six views are

color histogram (Col-h, 64-D), color correlogram (Col-c, 144-D), edge direction histogram

(Ed-h, 73-D), wavelet texture (Wav, 128-D), block-wise color moments (Bw-cm, 225-D), and

bag of words based on SIFT descriptions (B-SIFT, 500-D); (2) YMVG [25] is the abbreviation

of YouTube multi-view video games and it consists of 120000 samples (videos) from 31 classes

(games). Each sample consists of 13 views. They are audio mfcc (A-m, 2000-D), audio sai

boxes (A-s-b, 7168-D), audio sai intervalgrams (A-s-i, 4096-D), audio spectrogram stream (A-

s-s, 1024-D), audio volume stream (A-v-s, 64-D), text description unigrams (T-d-u,

558936-D), text game lda 1000 (T-g-l, 1000-D), text tag unigrams (T-t-u, 422627-D), vision

cuboids histogram (V-c-h, 512-D), vision hist motion estimate (V-h-m-e, 64-D), vision hog

features (V-h-f, 647-D), vision hs hist stream (V-h-h-s, 1024-D), and vision misc (V-m,

838-D); (3) DBLP [26, 27] is abbreviation of digital bibliography and library project. Original

DBLP is very large and we select 5000 samples from 4 classes for experiments. Each sample has

two views, one is paper name (P-n, 6167-D) and the other is term (Te, 3787-D); (4) Cora [27,

28] is adapted from original Cora data set [29] and it consists of 12004 scientific articles (sam-

ples) from 10 thematic classes and for each sample, it has two views, i.e., content (Co, 292-D)

and relational (Re, 12004-D). What’s more, these data sets are third party ones and others

would be able to access these data in the same manner as what we have done. Moreover, we

confirm that we don’t have any special access privileges that others would not have.

Then we adopt CK, NysCK, INysCK, and MINysCK to change nonlinearly separable sam-

ples to linearly ones. If we use original data sets for experiments, we adopt ‘Null’ for

Table 4. Description of the used UCI data sets.

Data set No. dimensions No. classes No. samples

YouTube Comedy Slam (YCS) 2 2 1138562

Authorship Attribution (AA) 1000 50 93600

Breast Cancer (BC) 10 2 699

Arrhythmia 279 16 452

https://doi.org/10.1371/journal.pone.0206798.t004
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representation. Here, we treat CK as a baseline method and if we only compare with NysCK,

NysCK can be regarded as a baseline one.

We use classifiers shown in Table 5 for further processing and linear classifiers are only fea-

sible for linearly separable data sets while nonlinear classifiers are feasible for both nonlinearly

and linearly ones. Similarly, multi-view classifiers can process not only multi-view but also sin-

gle-view data sets while single-view classifiers are only feasible for single-view ones. We adopt

SVM and MSVM as two baseline classifiers in respective experiments.

What’s more, for each data set, 70% of samples are chosen in random as training samples

and the remaining are for test. In order to get the truly experimental results, we adopt 10-fold

cross validation strategy [10]. Moreover, one-against-one classification strategy is used for

multi-class problems here [30–33]. In order to get the average experimental results, we repeat

the experiments for 10 times. The computations are performed on Intel Core 4 processors

with 2.66GHz, 4G RAM DDR3, Win 7, and MATLAB 2014 environment.

Independent experiments

This part shows the performances of our proposed methods on different kinds of data sets.

Accuracy comparison on large-scale single-view data sets. First, we show effectiveness

of our INysCK on two large-scale single-view data sets YCS and AA. For fair comparison, we

select 8 single-view classifiers shown in Table 5 for experiments and adopt CK, NysCK,

INysCK to change samples into linearly separable ones. Moreover, as we know, accuracy, true

positive rate (acc+), true negative rate (acc−), positive predictive value (PPV), F-Measure,

G-Mean, etc. [44] are widely used to evaluate the classification performances. Here, we only

show the results about accuracy due to for other evaluation criteria, we draw similar conclu-

sions. Then the top two sub-figures of Fig 1 show the results. According to these two sub-fig-

ures, we can see that for large-scale single-view data sets, our INysCK brings a best accuracy

no matter which classifier is used. Specially, we find compared with CK and NysCK, for the

case AA with SVM, the improvement of INysCK is little while for other cases, the improve-

ment is more. In order to elaborate this phenomenon, we analysis the distributions of YCS

and AA. Since these two data sets are large-scale, so we won’t show the distributions of their

samples with figure and just describe the distributions in short. We find that for these two data

sets, their samples distribute with an interlaced way and a high nonlinearity. After carrying out

CK-related methods, most samples become linearly separable and compared with CK and

NysCK, with INysCK used, samples have a higher linearity. Moreover, since the sizes of YCS

and AA are large, so the advantages of linearities derived from INysCK are larger. Thus when

we use those single-view classifiers no matter nonlinear ones and linear ones to process the

changed samples, accuracies are higher. In terms of the case AA with SVM, we find with CK,

NysCK, INysCK used, the classification functions provided by support vectors are similar.

That’s why that our INysCK brings a little improvement for this case.

Table 5. Used classifiers.

nonlinear linear

single-view KMHKS [4], KSVM [5] SVM [1], MHKS [1]

NDL [34], LCDL [35] BPDMatMHKS [36], rWLSSVC [37]

multi-view MultiV-KMHKS [6], DLMMLM [9] MSVM [38], MLRSSC [39]

MGGM [27], MV-LSSVM [40]

MVMFL [41], SMVMED [42]

KMLRSSC [39], MVKSC [43]

https://doi.org/10.1371/journal.pone.0206798.t005
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Accuracy comparison on small-scale single-view data sets. Second, we adopt data sets

BC and Arrhythmia for experiments so as to validate effectiveness of INysCK on small-scale

single-view problems. Similarly with the above experiments, single-view classifiers shown in

Table 5, and CK, NysCK are adopted. Then bottom two sub-figures of Fig 1 show the results.

According to these two sub-figures, it is found that for small-scale single-view problems, our

INysCK still brings a best accuracy in average. But compared with the results given in above

experiments, on more cases, INysCK only brings a little improvement and we find for the case

Arrhythmia with KMHKS, NysCK outperforms INysCK. For this phenomenon, we also analy-

sis the distributions of BC and Arrhythmia. We find that with INysCK used, samples of these

two data sets are linearly separable. But since the sizes of them are small, so advantages of line-

arities derived from INysCK are not obvious even more not exist. Thus for some cases, the

improvement of INysCK is little and for the case Arrhythmia with KMHKS, INysCK performs

worse than NysCK due to the advantage of linearity derived from INysCK is not exist in terms

of KMHKS.

Accuracy comparison on large-scale multi-view data sets. Then, we use NUS-WIDE

and YMVG to show the effectiveness of proposed methods on large-scale multi-view prob-

lems. The used classifiers are multi-view ones shown in Table 5. Then here, we use CK,

NysCK, INysCK, and MINysCK to change samples. Although NUS-WIDE and YMVG are

multi-view data sets, in order to carry out CK, NysCK, and INysCK, we regard all views as a

whole view. The top two sub-figures of Fig 2 show the results. According to these two sub-fig-

ures, we find that as a multi-view method, our MINysCK brings a best accuracy in average and

the improvement is much more than the previous results, especially, for the cases NUS-WIDE

with MSVM (MultiV-KMHKS, DLMMLM, MGGM, MV-LSSVM, SMVMED, KMLRSSC)

and YMVG with MSVM (MultiV-KMHKS, MGGM). The main reason is that for multi-view

data sets, MINysCK is more feasible than the single ones including CK, NysCK, and INysCK.

What’s more, taking all views as a whole view to carry out CK, NysCK, and INysCK cannot

Fig 1. Accuracy with related classifiers and CK-based methods on used single-view data sets. CK-related method in italic represents baseline one and one in bold

denotes the proposed one. For classifiers, SVM is used as the baseline one and we just clarify this point in words rather than in font. In other figures and tables, we have

similar representations.

https://doi.org/10.1371/journal.pone.0206798.g001
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reflect the differences among views and this operation can only keep the linearity of samples

on the whole view and cannot promise linearity on respective view. That’s why MINysCK per-

forms best on NUS-WIDE and YMVG.

Accuracy comparison on small-scale multi-view data sets. Now we adopt DBLP and

Cora for the accuracy comparison on small-scale multi-view problems and other settings are

same as ones given in above experiments. The bottom two sub-figures of Fig 2 show the results.

From these two sub-figures, we can see that our MINysCK performs best on small-scale multi-

view data sets as well. But compared with the above experimental results in careful, we find

since the sizes of DBLP and Cora are more smaller than the ones of NUS-WIDE and YMVG,

so advantages of linearities derived from MINysCK are not obvious, as a result, the improve-

ment of MINysCK has a reduction.

Comparison about time cost. Besides the accuracy comparisons, we show the time cost

comparison here. As we said before, the computational complexity and space complexity of

INysCK and MINysCK are same as the ones of NysCK, i.e., O(n(nd + k2)) and O(n(d + k))

respectively where d is the dimension of each sample and all of these three NysCK-related

methods are used to change the nonlinearly separable samples to the linearly separable ones.

Here, we show the practice time of them on different data sets in Table 6 and from this table, it

is found that (1) since the procedures of INysCK and MINysCK are more complicate than

NysCK, so they both cost longer time in average while the increased time is acceptable; (2) for

multi-view data sets, MINysCK costs less time than INysCK, we think the main reason is that

we won’t regard the multiple views as a single whole view with some fusion techniques and

process each view in each small problem. This maybe brings a smaller total time cost.

Comprehensive experiments

This part shows average performances of our proposed methods on all used data sets.

Fig 2. Accuracy with related classifiers and CK-based methods on used multi-view data sets. CK-related method in italic represents baseline one and ones in bold

denote the proposed ones. For classifiers, MSVM is used as the baseline one and we just clarify this point in words rather than in font. In other figures and tables, we have

similar representations.

https://doi.org/10.1371/journal.pone.0206798.g002

Improved linear classifier model with Nyström

PLOS ONE | https://doi.org/10.1371/journal.pone.0206798 November 5, 2018 11 / 18

https://doi.org/10.1371/journal.pone.0206798.g002
https://doi.org/10.1371/journal.pone.0206798


Distributions of samples with different CK-related methods. Here, we use a two-

dimensional binary-class data set X to compare the performances of CK, NysCK, and INysCK

when they change nonlinearly separable data to linearly ones. The distributions of samples

before or after carrying out CK-related methods are shown in Fig 3. According to this figure, it

is found that (1) all CK-related methods can change nonlinearly separable samples to linearly

separable ones at some extends; (2) with INysCK used, for the same class, most samples locate

in an area centrally and only few samples locate far from this area. With calculation, we find

that with CK used, 20% samples locate in the area which belongs to different classes. For

NysCK, the ratio is 6.5% while for INysCK, the ratio is only 3.5%. This means with our meth-

ods used, samples have a higher linearity. What’s more, since it is always hard for people to

show a multi-view data set or multi-dimensional data set whose dimensionality is large than

two with a two-dimensional picture, thus we won’t show the distribution of samples with

MINysCK used and only use a two-dimensional data set for experiments here. But this won’t

influence our conclusion.

Convergence analysis. Convergence is an important criterion to assess the effectiveness

of a classifier and if a classifier can converge within limited iterations with a better classifica-

tion performance, we say this classifier is effective. What’s more, the distribution of samples

Table 6. Comparison about time (in seconds) cost for the three NysCK-related methods.

Data set NysCK INysCK MINysCK Data set NysCK INysCK MINysCK

YCS 43.405 44.642 / AA 146.672 154.527 /

BC 0.087 0.095 / Arrhythmia 1.577 1.634 /

NUS-WIDE 1380.392 1434.962 1406.573 YMVG 241078.011 249127.624 247240.890

DBLP 4.166 4.282 4.266 Cora 29.663 32.586 32.069

https://doi.org/10.1371/journal.pone.0206798.t006

Fig 3. Distributions of samples with different CK-related methods on a binary-class data set.

https://doi.org/10.1371/journal.pone.0206798.g003
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also affect the convergence and samples with a high linearity always accelerate the optimization

of a classifier. Here, we adopt an empirical justification given in [45] to measure the conver-

gence of classifiers with our methods used and Table 7 shows the results. Each cell in this table

denotes the average number of iterations of a classifier on all used data sets with a CK-related

method used. According to this table and combining the results given before, we know that

with our proposed INysCK and MINysCK used, the changed samples have a higher linearity

and these samples accelerate the optimization of classifiers which indicates a smaller numbers

of iterations. What’s more, since MINysCK is more feasible for multi-view data sets, so for the

multi-view classifiers, they can converge faster with MINysCK used.

Rademacher complexity analysis. As [14] and [11] said, Rademacher complexity is a

reflection about generalization risk bound and performance behavior of a classifier. A smaller

Rademacher complexity indicates a better performance of a classifier and a lower generaliza-

tion risk bound. Here, we adopt the same method given in [11] to compute Rademacher com-

plexity for classifiers with different CK-related methods used. Fig 4 shows the results and

according to this figure, we know (1) in terms of single-view classifiers, since samples with

INysCK used have a higher linearity, so classifiers have smaller Rademacher complexities; (2)

in terms of multi-view classifiers, since MINysCK is more feasible and it also makes the sam-

ples have a higher linearity, thus related Rademacher complexities are smaller.

Significance analysis. We adopt Friedman-Nemenyi statistical test [46] to validate the dif-

ference between our proposed methods and the previous work is significant. In terms of Fried-

man-Nemenyi statistical test, Friedman test is used to analyze if the differences between all

compared algorithms on multiple data sets are significant or not while Nemenyi test is used to

analyze if the differences between two compared algorithms on multiple data sets are signifi-

cant or not.

In order to carry out Friedman test, we treat each CK-related method as an ‘algorithm’ and

regard each classifier as a ‘data set’. Then according to the average accuracy of an ‘algorithm’

on a ‘data set’, Friedman test ranks the ‘algorithm’s for each ‘data set’ as shown in Table 8. (1)

For single-view cases, since we use 4 ‘algorithm’s and 8 ‘data set’s, we carry out Friedman test

and get w2
F ¼ 21:47 and FF = 59.37 (the computation equations of w2

F and FF can be found in

[46]). Further, with 4 ‘algorithm’s and 8 ‘data set’s, FF is distributed according to the F distribu-

tion with 4 − 1 = 3 and (4 − 1) × (8 − 1) = 21 degrees of freedom. The critical value of F0.05(3,

21) when α = 0.05 is 3.0725 and F0.10(3, 21) when α = 0.10 is 2.3649. As FF> 3.0725 and FF>
2.3649, we say for the single-view cases, the differences between all compared CK-related

methods on multiple classifiers are significant. (2) Similarly, for multi-view cases, with 5 ‘algo-

rithm’s and 10 ‘data set’s used, related w2
F ¼ 35:06, FF = 63.91, F0.05(4, 36) = 2.6335, and F0.10(4,

Table 7. The numbers of iterations comparisons.

single-view Null CK NysCK INysCK multi-view Null CK NysCK INysCK MINysCK

SVM 17.20 17.13 16.06 14.96 MSVM 17.57 16.35 14.72 14.44 13.43

MHKS 21.30 19.69 18.79 18.06 MLRSSC 29.18 26.60 24.44 23.26 22.05

BPDMatMHKS 22.94 22.94 22.29 21.89 MultiV-KMHKS 25.63 24.77 22.71 21.24 20.16

rWLSSVC 20.13 19.30 18.96 18.64 DLMMLM 28.91 27.10 25.68 24.84 23.18

KMHKS 20.82 18.98 17.55 17.13 MGGM 27.03 24.46 23.62 22.07 21.26

KSVM 17.03 16.60 15.53 15.29 MV-LSSVM 43.56 40.94 38.92 37.87 36.39

NDL 19.82 18.92 18.34 17.46 MVMFL 66.96 66.33 64.75 62.91 62.31

LCDL 22.42 21.81 19.92 19.26 SMVMED 37.19 33.95 31.37 29.06 27.69

KMLRSSC 32.69 32.65 32.00 30.33 28.16

MVKSC 26.78 25.55 23.48 21.46 20.70

https://doi.org/10.1371/journal.pone.0206798.t007
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36) = 2.1079. Since FF> 2.6335 and FF> 2.1079, we can draw a conclusion that for the multi-

view cases, the differences between all compared CK-related methods on multiple classifiers

are also significant.

Then we use Nemenyi test for pairwise comparisons. (1) For single-view cases, when

α = 0.05, the critical value q0.05 is 2.569 (see Table 9) and the corresponding CD is

2:569

ffiffiffiffiffiffiffiffiffiffi
4�ð4þ1Þ

6�8

q

¼ 1:66. When α = 0.10, the critical value q0.10 is 2.291 (see Table 9) and the cor-

responding CD is 2:291

ffiffiffiffiffiffiffiffiffiffi
4�ð4þ1Þ

6�8

q

¼ 1:48. Then according to the principle of Nemenyi test, since

1.84< 1.16 + 1.66 = 2.82< 3.84 and 1.84< 1.16 + 1.48 = 2.64< 3.84, so we say the differences

between INysCK and CK (NysCK) are (not) significant. (2) For multi-view cases, according to

Table 9, since q0.05 = 2.728 and q0.10 = 2.459, the corresponding CDs are 2:728

ffiffiffiffiffiffiffiffiffiffi
5�ð5þ1Þ

6�10

q

¼ 1:93

and 2:459

ffiffiffiffiffiffiffiffiffiffi
5�ð5þ1Þ

6�10

q

¼ 1:74 respectively. Then since 1.56< 3.34< 1.44 + 1.93 = 3.37 and

Fig 4. The average Rademacher complexity comparison.

https://doi.org/10.1371/journal.pone.0206798.g004

Table 8. Average rank comparisons for different CK-related methods and classifiers.

single-view Null CK NysCK INysCK multi-view Null CK NysCK INysCK MINysCK

SVM 3.25 3.75 1.75 1.25 MSVM 4.80 4.00 3.20 1.60 1.40

MHKS 3.00 4.00 2.00 1.00 MLRSSC 5.00 3.60 3.40 1.40 1.60

BPDMatMHKS 3.25 3.75 1.75 1.25 MultiV-KMHKS 5.00 3.60 3.40 1.60 1.40

rWLSSVC 3.25 3.75 1.75 1.25 DLMMLM 5.00 3.60 3.40 1.60 1.40

KMHKS 3.00 4.00 2.00 1.00 MGGM 4.80 4.00 3.20 1.60 1.40

KSVM 3.25 3.75 1.75 1.25 MV-LSSVM 5.00 3.60 3.40 1.60 1.40

NDL 3.25 3.75 1.75 1.25 MVMFL 4.60 4.20 3.20 1.60 1.40

LCDL 3.00 4.00 2.000 1.000 SMVMED 5.00 3.60 3.40 1.60 1.40

Average 3.16 3.84 1.84 1.16 KMLRSSC 4.80 3.80 3.40 1.60 1.40

MVKSC 4.80 3.80 3.40 1.40 1.60

Average 4.88 3.78 3.34 1.56 1.44

https://doi.org/10.1371/journal.pone.0206798.t008
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1.56< 1.44 + 1.74 = 3.18< 3.34, we say the differences between MINysCK and CK are signifi-

cant and the ones between MINysCK and NysCK are significant to a certain extent.

As a summary, we can draw a conclusion that according to Friedman-Nemenyi statistical

test, our proposed INysCK (or MINysCK) is an improvement on previous work CK (or

NysCK) statistically.

Influence of ratio of training samples. In the previous experiments, for each data set, we

randomly choose 70% of samples as training part and the remaining as test part. Here, we

change the ratio of training samples and show its average influence on accuracy with Fig 5.

According to this figure, it is found that with the increasing of the ratio of training samples,

the average accuracy also boosts.

Conclusions and future work

Conclusions

Traditional nonlinear classifiers are developed to process nonlinearly separable data sets and

they always use kernel functions to generate several kernel matrices. After the optimization of

these matrices, the optimal classifier parameters can be gotten. While one always costs high

computational and space complexities to compute and store these matrices, so in order to

reduce the complexities, people develop INMKMHKS which adopts Nyström approximation

technique and NysCK which changes nonlinearly separable samples to linearly ones. In this

work, we combine ideas of them in together to develop INysCK and MINysCK to reduce the

complexities further and process single-view data sets and multi-view data sets respectively. In

Table 9. Critical values for the two-tailed Nemenyi test.

No. algorithms 2 3 4 5 6 7 8 9 10

q0.05 1.960 2.343 2.569 2.728 2.850 2.949 3.031 3.102 3.164

q0.10 1.645 2.052 2.291 2.459 2.589 2.693 2.780 2.855 2.920

https://doi.org/10.1371/journal.pone.0206798.t009

Fig 5. Average influence of ratio of training samples on accuracy with INysCK and MINysCK and corresponding classifiers used.

https://doi.org/10.1371/journal.pone.0206798.g005
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order to validate the effectiveness of them, we use CK and NysCK for comparisons. Then we

adopt some large-scale, small-scale, single-view, multi-view data sets and single-view, multi-

view, nonlinear, linear classifiers for experiments in niche targeting. Corresponding experi-

ments about accuracy, time cost, convergence, Rademacher complexity, and so on have vali-

dated the effectiveness of INysCK and MINysCK.

According to experimental results, we can draw the following conclusions. (1) INysCK and

MINysCK can change nonlinearly separable samples to be linearly separable with higher line-

arities and the accuracies of corresponding classifiers boost. (2) Compared with NysCK,

INysCK and MINysCK both cost longer time in average while the increased time is acceptable.

(3) With INysCK and MINysCK used, classifiers can converge faster and their Rademacher

complexities are smaller. (4) INysCK (or MINysCK) is an improvement on previous work CK

(or NysCK) statistically.

Future work

Although our proposed methods perform better for nonlinear classification problems, accord-

ing to [47] said, Nyström approximation technique is data-dependent even though we adopt

the Nyström approximation technique used in INMKMHKS to avoid parameter setting prob-

lems. In [47], on the base of Hellinger’s kernel and χ2 kernel, scholars use two mapping func-

tions which are both data-independent to enhance the classification performance. Thus, in our

future work, we try to introduce the idea of [47] to our work. In other words, we will try to use

data-independent mapping functions to change the nonlinearly separable samples to the line-

arly separable ones. What’s more, besides what we have discussed in this work, there are some

other pattern recognition fields attract scholars to research, for example, unsupervised feature

selection [48, 49] and multi-label learning [50]. So in our future work, we will try to introduce

our methods into these fields.
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