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Abstract

Background: Genomic screens generally employ a single-locus strategy for linkage analysis, but
this may have low power in the presence of epistasis. Ordered subsets analysis (OSA) is a method

for conditional linkage analysis using continuous covariates.

Methods: We used OSA to evaluate two-locus interactions in the simulated Genetic Analysis
Workshop 14 dataset. We used all nuclear families ascertained by Aipotu, Karangar, and Danacaa.
Using the single-nucleotide polymorphism map, multipoint affected-sibling-pair (ASP) linkage
analysis was performed on all 100 replicates for each chromosome using SIBLINK. OSA was used
to examine linkage on each chromosome using LOD scores at each 3-cM location on every other
chromosome as covariates. Two methods were used to identify positive results: one searching
across the entire covariate chromosome, the other conditioning on location of known disease loci.

Results: Single-locus linkage analysis revealed very high LOD scores for disease loci DI through
D4, with mean LOD scores over 100 replicates ranging from 4.0 to 7.8. Although OSA did not
obscure this linkage evidence, it did not detect the simulated interactions between any of the locus
pairs. We found inflated type | error rates using the first OSA method, highlighting the need to
correct for multiple comparisons. Therefore, using "null chromosome pairs" without simulated

disease loci, we calculated a corrected alpha-level.

Conclusion: We were unable to detect two-locus interactions using OSA. This may have been
due to lack of incorporation of phenotypic subgroups, or because linkage evidence as summarized
by LOD scores performs poorly as an OSA covariate. We found inflated type | error rates, but
were able to calculate a corrected alpha-level for future analyses employing this strategy to search

for two-locus interactions.

Background independently from any other locus. Such an approach is
Genomic screens such as those simulated for the Genetic ~ quite effective for detecting linkage to loci with strong
Analysis Workshop 14 (GAW14) dataset generally  effects, but may have low power in the presence of epi-
employ a "single-locus" search for linkage, in which link-  static or heterogeneous effects. Two-locus [1,2] and condi-
age to a particular marker or set of markers is considered  tional [3] linkage analyses were developed to consider
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such heterogeneity or epistasis. These methods differ
somewhat in their approach, but both attempt to evaluate
whether linkage at one locus is influenced by linkage to
another. In both cases, there is a need to determine if evi-
dence for linkage under the two-locus or conditional
model is stronger than that under the single-locus model.
Empirical p-values generated by simulation have been
used to evaluate results of conditional linkage analysis
[3.4].

Ordered subsets analysis (OSA) [5] is a method for condi-
tional linkage analysis using continuous covariates. When
evidence for linkage at a second locus is used as the cov-
ariate, the method tests whether there is a statistically sig-
nificant increase in linkage evidence at the first locus
conditional on evidence at the second locus. OSA uses a
similar approach to that proposed by Cox and colleagues
[3], except that the evidence for linkage is maximized over
subsets of families rank-ordered by the covariate. We
explored the use of OSA as a method for two-locus condi-
tional linkage analysis. We analyzed 300 nuclear families
(100 each from Aipotu, Karangar, and Danacaa) for each
of the 100 replicates. Having examined the answers prior
to beginning our analysis, we focused on six chromo-
somes harboring disease loci (1-3, 5, 9, 10) and two chro-
mosomes with no disease loci (4, 6).

Methods

Dataset

We used all available nuclear families ascertained by three
groups: Aipotu, Karangar, and Danacaa. Affection status
was determined using the criteria defined by each site; to
better approximate a real world post-hoc pooled analysis
of three genomic screens, we made no attempt to impose
standardized diagnostic criteria. Given there was no
genetic heterogeneity in the dataset other than that
defined for the three phenotypes, this decision should
have introduced some variability in the strength of the
main effects to our combined dataset. Introduction of this
variability should thereby have attenuated the main
effects, allowing weaker epistatic interactions to be detect-
able. We analyzed each of the 100 replicates. We used the
single-nucleotide polymorphism (SNP) linkage map (560
markers spaced at 3 cM on chromosomes 1-3, 5, 9, and
10; and 200 markers spaced at 3 cM on chromosomes 4
and 6). No follow-up markers were ordered.

Analysis

Multipoint affected sib pair (ASP) linkage analysis was
performed using SIBLINK [6]. A grid of ASP LOD scores
was generated for each family at 3-cM intervals across each
chromosome and used to create a covariate file for use in
OSA. OSA initially orders families by family-specific LOD
scores at one locus (covariate chromosome). OSA then
calculates LOD scores across a second chromosome (anal-

ysis chromosome) by summing the family-specific LOD
scores at the analysis chromosome, in order of their rank-
ing based on the covariate chromosome. Specifically, for
each family i a matrix of linkage statistics Zi(d,y) is
required as input, where d represents the disease location
parameter and represents the genetic model, and the max-
imum ordered subset statistic for each family is calculated
at a set of values for d and y. OSA begins by ordering N
number of families by the covariate chromosome family-
specific LOD score value xi, both in an ascending and a
descending order, where Z;(d,y) is the linkage statistic
matrix for ordered family j. The maximum LOD score is
calculated for the jt family, as well as the estimates of d;
and ;) at which the maximum occurs. Then, element-wise
addition is used to add the matrix for the next ordered
family Z,,)(d,y) to the matrix for family 1 through j. In
summary, the jth partial sum is created by adding each ele-
ment of the linkage statistic matrix for each family up to
and including ordered family j. Addition of each of the N
families results in a set of maxima for each partial sum of
the linkage statistic (Z!(d?, y1). . . ZN(dN, yN)), ordered by
the family-specific covariate value. The final OSA output
includes an overall LOD score calculated using all fami-
lies, a maximum subset LOD score (representing the high-
est LOD score using subsets of families with the highest
covariate chromosome LOD scores), and an estimate of
the disease location on the analysis chromosome.

OSA was used to examine linkage on each chromosome
with disease loci (analysis chromosome) using LOD
scores at each 3-cM location on every other chromosome
with disease loci ("covariate" chromosome) as covariates
(30 pair-wise evaluations with approximately 100 covari-
ates each). We also performed these same analyses on
"null chromosome pairs", using four pairs of chromo-
somes in which one or both members of the pair did not
harbor any disease loci. Families were rank-ordered by
decreasing LOD scores on the covariate chromosome in
order to highlight potential epistatic interactions. Empiri-
cal p-values for the increase in the LOD score in the subset
of families identified by OSA over baseline LOD scores for
the entire dataset were generated, using a minimum of 20
and maximum of 1,000 permutations for pair-wise com-
parisons of chromosomes with disease loci, and a maxi-
mum of 10,000 permutations for the null chromosome
pairs. Two methods were used to identify positive OSA
results. The first method searched over the entire analysis
chromosome for the single most significant OSA LOD
score (minimum p-value). From the 100 replicates, the
number of times that the minimum p-value at any posi-
tion on the analysis chromosome was below 0.01 and
0.05 was calculated. Because we observed a highly inflated
type 1 error rate for the 0.01 and 0.05 significance levels,
we calculated a corrected alpha-level for controlling the
global type I error rate using OSA results for the null chro-
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Table I: OSA analysis using peak locations on chromosomes with disease loci as covariates

Chromosome Proportion of replicates w/
empirical p-values less than
Analysis Covariate OSALOD  DeltaLOD? Proportion OSA Position of True 0.01 0.05
(locus) (cM) [Mean (SD)] [Mean (SD)] of familiesin analysis Siblink max position
OSA subset chromosom LOD score (cM)p
[Mean (SD) e position (cM)
(cM) [Mean (SD)]
[Mean (SD)]
1 (DI) 3 (297) 74 (2.7) 0.4 (0.5) 0.93 (0.11) 168.0 (3.9) 167.8 (4.3) 167.9 0 0.03
9 (6) 7.6 (2.7) 0.5 (0.7) 0.92 (0.16)  164.8 (23.0) 0.01 0.04
2 (D6) 5 (6) 1.9 (0.6) 1.4 (0.7) 0.28 (0.30) 163.2(91.2) 143.2 (9.0) 14.8 0.01 0.04
9 (6) 1.9 (0.6) 1.5 (0.7) 0.28 (0.31)  149.5 (86.9) 0 0.01
3(D2) 2 (15) 8.2 (2.5) 0.4 (0.5) 092 (0.12) 297.0(1.7) 296.4 (1.6) 297.7 0.01 0.05
5 (6) 8.3 (2.6) 0.5 (0.6) 0.92 (0.13)  297.1 (1.7) 0.01 0.08
4 3(297) 1.8 (0.6) 1.3 (0.7) 0.38 (0.29)  165.7 (86.5) N/A 0.03 0.05
5 (6) 1.9 (0.6) 1.4 (0.8) 0.26 (0.29)  144.5 (85.6) 0.03 0.07
5 (D3) 2 (15) 4.7 (1.8) 0.7 (0.8) 0.79 (0.29) 15.3 (39.9) 7.9 (21.6) 6 0.01 0.04
3(297) 4.6 (1.8) 0.6 (0.7) 0.80 (0.26) 12.3 (34.9) 0.01 0.07
6 3(297) 1.8 (0.7) 1.2 (0.7) 0.34 (0.31) 1657 (93.2) N/A 0 0.03
5 (6) 2.0 (0.9) 1.8 (0.9) 0.20 (0.23)  166.1 (92.7) 0 0.03
9 (D4) 1 (168) 4.5 (2.0 0.7 (0.8) 0.79 (0.31)  27.0 (62.7) 13.9 (42) 5.6 0 0.02
5 (6) 4.6 (2.0) 0.8 (0.9) 0.76 (0.31)  38.0 (78.7) 0.01 0.03
10 (D5) 3 (297) 1.8 (0.7) 1.1 (0.7) 041 (0.34) 81.4(552) 82.4(53.6) 67 0 0.02
5 (6) 2.0 (0.9) 1.4 (0.8) 0.28 (0.31)  88.1(50.9) 0.03 0.07

aChange in SIBLINK LOD using OSA.
bTrue disease locus position on analysis chromosome.

¢ Chromosome pairs in bold reported to have epistatic or genetic modifying interactions.

mosome pairs. The second method conditioned on the
exact location of the disease locus on the covariate chro-
mosome and did not suffer from severe type I error infla-
tion. From the 100 replicates, we again calculated the
number of times that the OSA empirical p-value was
below 0.01 and 0.05, and the mean position of the maxi-
mum subset-based LOD score on the analysis chromo-
some.

Results

To our great surprise, nonparametric multipoint ASP anal-
ysis with SIBLINK generated very high LOD scores for D2
on chromosome 3 (297 ¢M), ranging from 3.2 to 18.1
across the 100 replicates with a mean LOD score of 7.8.
Single-locus LOD scores for D3 on chromosome 5 (at 6
cM) were also high, ranging from 1.3 to 9.0, with a mean
of 4.1. LOD scores were likewise high for D1 on chromo-
some 1 (range 1.9-18.6, mean LOD 7.1) and D4 on chro-
mosome 9 (range 0.96-11.4, mean LOD 4.0). As
expected, the presence of such strong single-locus results
made it difficult to detect significant LOD score increases
in family subsets. Lower overall LOD scores were obtained
for D5 (chromosome 10, range 0-4.2, mean LOD score
1.0) and D6 (chromosome 2, range 0.1-2.3, mean LOD
score 0.8), both of which are disease-modifying genes

affecting penetrance of the disease. To simulate a real-
world scenario, in which one has no a priori knowledge of
the disease gene location or of epistatic relationships
between loci, we first used the OSA strategy of searching
across the entire covariate chromosome for evidence of
heterogeneity in the family-specific LOD scores using p-
value thresholds of 0.01 and 0.05. The proportion of rep-
licates with empirical p-values less than 0.01 ranged from
0.19 to 0.52, suggesting a grossly inflated global type I
error rate. A Bonferroni correction based on approxi-
mately 100 covariate positions analyzed per analysis chro-
mosome (corrected p-value: 0.0005) resulted in a more
reasonable proportion of replicates with significant
results, ranging from 0.02 to 0.18. There appeared to be
no relationship between the proportion of replicates with
significant results and chromosome pairs reported to har-
bor epistatically interacting loci (D2 x D3 for P2 and P3
phenotype, D3 x D4 for P2 phenotype, D1 x D4 for P3
phenotype). There was likewise no relationship between
the true disease locus position on the covariate chromo-
some and the position highlighted as significant when
using the above p-value thresholds. There was little devia-
tion between the position on the analysis chromosome
where the OSA LOD score was maximized and the true
analysis chromosome disease locus position.
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Table 2: OSA analysis of chromosomes without disease loci

Chromosome
Analysis Covariate OSA LOD Delta LOD?
[Mean (SD)] [Mean (SD)]
4 6 4.1 (0.8) 3.9(0.7)
6 4 4.2 (0.8) 3.9(0.7)
4 5 43(0.7) 4.0 (0.6)
5 4 6.6 (1.9) 3.5(1.3)

aChange in SIBLINK LOD using OSA.

Table 1 displays representative results of the targeted OSA
analysis, where we only used ASP LOD scores at the true
gene locations on chromosomes with disease loci as OSA
covariates. When we used the best LOD scores on chro-
mosomes with disease loci as covariates for chromosomes
4 and 6, neither of which harbor disease loci, evidence for
linkage was found slightly more frequently than the sig-
nificance level, indicating that type I error was slightly
inflated even using a targeted approach to conditional
linkage analysis. However, more replicates are required to
evaluate the distribution of these lower p-values. For D1
and D2 (with the highest overall multipoint LOD scores),
the OSA LOD score was maximized at (or very close to)
the true location of the disease locus, regardless of the cov-
ariate chromosome used. For D3, D4, and D5, there was
larger variability in the analysis chromosome position,
with OSA maximizing the LOD score in general 10-20 cM
distal to the actual disease locus. For locus D6, OSA failed
to maximize the LOD score at or near the actual disease
locus. This is not surprising because D6 is a modifying
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OSA results: chromosome 3 conditional on chromosome 5,
replicates with p-values < 0.0006.

Proportion of replicates w/empirical
p-values less than

Proportion 0.0006 0.01 0.05
families in OSA
subset
[Mean (SD)]
0.27 (0.15) 0.03 0.40 0.92
0.26 (0.15) 0.05 0.35 0.88
0.27 (0.15) 0.02 0.51 0.97
0.79 (0.16) 0.07 0.36 0.89

locus that affects penetrance, and our analyses were
restricted to affected individuals only.

Because our targeted analysis is not feasible for real data
in which the true disease gene locations are unknown, we
focused on calculating a p-value threshold (alpha level) to
properly correct for testing multiple chromosome pairs
with many OSA covariates. To this end, we analyzed four
pairs of chromosomes in which one or both members of
the pair did not harbor any disease loci (Table 2). This
resulted in 400 available replicates of "null chromosome
pairs" for calculating the corrected p-value at which the
global type I error rate would be no larger than 5%. These
calculations resulted in a corrected alpha level of 0.0006,
very similar to a Bonferroni correction despite the fact that
the OSA covariates (ASP LOD scores calculated every 3
cM) are presumably correlated with each other.

Conditional linkage analysis did not identify any signifi-
cant two-locus linkage effects between chromosomes

Covariate chrom (6) position
(cM)
o
o

0 ‘ ‘ ‘
0 100 200 300 400

Analysis chromosome (4) position (cM)

Figure 2
OSA results: chromosome 4 conditional on chromosome 6,
replicates with p-values < 0.0006.
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modeled to have epistatic relationships. As shown in Fig-
ure 1, significantly increased conditional LOD scores were
distributed equally across the covariate position on chro-
mosome 5, implying lack of evidence for an influence of
linkage to the D3 region of chromosome 5 on linkage to
chromosome 3. A similar pattern existed for results on
other disease loci harboring chromosomes (data not
shown). The increases in LOD score detected by OSA were
not related to linkage at the other disease locus, but rather
due to finding random subsets that generated greater LOD
scores. When evaluating linkage to chromosome 4 condi-
tional on linkage to chromosome 6 (neither of which con-
tain disease genes), there was random scattering by
chromosome and covariate position (Figure 2). A similar
random pattern was observed when analyzing linkage to
chromosome 6 conditional on chromosome 4.

Discussion

There are several potential reasons for our failure to detect
the epistatic interactions in this dataset. First, family-spe-
cific LOD scores as a statistical measure of linkage evi-
dence are likely to be poor surrogates for underlying
genotypes with epistatic interactions, and probably have
much less variability than measured phenotypic covari-
ates, especially in small nuclear families. Second, we
chose to combine the three definitions of Kofendrerd Per-
sonality Disorder used by the respective ascertainment
sites, but this apparently did not introduce sufficient het-
erogeneity for OSA to identify genetically (and phenotyp-
ically) more homogeneous subsets of families. It may
have been more appropriate to incorporate the pheno-
typic heterogeneity into our analyses and test whether
OSA had been able to detect it, or to analyze P1, P2, and
P3 separately in order to detect the phenotype-specific
epistatic interactions. Third, the strong single-locus effects
modeled in the data, the magnitude of which was
unknown to us when we embarked on this study, may
have diminished our ability to detect the weaker epistatic
effects. Table 1 demonstrates that for most interactions,
the proportion of families included in the OSA subset was
high, suggesting little genetic heterogeneity in the dataset.
For the loci with the strongest evidence for linkage, there
was little variability in the family-specific LOD scores that
could have been used to detect the epistatic interactions.
The OSA methodology is best suited for dissecting hetero-
geneity; in this case, the lack of genetic heterogeneity may
be the primary cause of failure of OSA. Furthermore, the
delta LOD scores were small because of the strong under-
lying single-locus effects and compounded by the small
size of the dataset, suggesting a lack of power to detect
weaker two-locus effects. Given that epistatic interactions
existed between loci that themselves had strong evidence
for linkage, OSA was not the ideal method to dissect the
underlying weaker epistatic effects. However, this issue is
likely also generalizable to other methods. Although such

strong main effects are unlikely in most complex diseases,
the issue is one that investigators should bear in mind.
Regardless, our null chromosome analyses were useful in
providing data on type I error, and for computing a cor-
rected p-value for use in future analyses.

In summary, OSA as a method for conditional linkage
analysis did not obscure the readily detected linkage evi-
dence on chromosomes known to harbor disease loci.
However, it did not detect any of the simulated epistatic
interactions in the GAW14 dataset, nor did it refine the
previously well defined locations for the disease genes,
primary due to the strong single-locus effects and little
genetic heterogeneity modeled in the dataset. OSA
remains an important potential tool to evaluate epistatic
interactions. Our analyses were useful in allowing us to
comment on type I error. In a genome-wide OSA analysis,
type I error rates are inflated, indicating that a correction
for multiple testing is very important in order to avoid fol-
low-up of false-positive results. By analyzing simulated
null chromosomes, we found our corrected alpha level to
be 0.0006, which was very similar to a Bonferroni correc-
tion for approximately 100 covariate positions evaluated
on each analysis chromosome. Thus, if OSA were used on
real genome screen data to identify epistatic interactions,
this would be a reasonable p-value threshold for control-
ling the global type I error rate.

Conclusion

Although we failed to identify epistatic interactions using
OSA for conditional linkage analysis, potentially due to
strong single-locus effects and failure to incorporate KPD
endophenotypes, we were able to calculate a corrected
alpha level to control the global type I error when con-
ducting such analyses in a genome screen.
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