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Abstract: To say that beauty is in the eye of the beholder means that beauty is largely subjective so
varies from person to person. While the subjectivity view is commonly held, there is also an objectivity
view that seeks to measure beauty or aesthetics in some quantitative manners. Christopher Alexander
has long discovered that beauty or coherence highly correlates to the number of subsymmetries or
substructures and demonstrated that there is a shared notion of beauty—structural beauty—among
people and even different peoples, regardless of their faiths, cultures, and ethnicities. This notion of
structural beauty arises directly out of living structure or wholeness, a physical and mathematical
structure that underlies all space and matter. Based on the concept of living structure, this paper
develops an approach for computing the structural beauty or life of an image (L) based on the number
of automatically derived substructures (S) and their inherent hierarchy (H). To verify this approach,
we conducted a series of case studies applied to eight pairs of images including Leonardo da Vinci’s
Mona Lisa and Jackson Pollock’s Blue Poles. We discovered among others that Blue Poles is more
structurally beautiful than the Mona Lisa, and traditional buildings are in general more structurally
beautiful than their modernist counterparts. This finding implies that goodness of things or images
is largely a matter of fact rather than an opinion or personal preference as conventionally conceived.
The research on structural beauty has deep implications on many disciplines, where beauty or
aesthetics is a major concern such as image understanding and computer vision, architecture and
urban design, humanities and arts, neurophysiology, and psychology.

Keywords: life; wholeness; figural goodness; head/tail breaks; computer vision

After careful experimentation, I believe a measure of simplicity, coupled with levels of
scale, which counts occurrences of the void, inner calm, and gives more weight to levels
of scale, ought to be incorporated, and would produce a measure that predicts life with a
higher degree of accuracy.

Christopher Alexander (2002–2005)

1. Introduction

Beauty is commonly conceived to be in the eye of the beholder, which means that
perceptions of beauty are subjective and vary from person to person. However, this
commonly held view on beauty has long been challenged by researchers who sought to
measure beauty in some quantitative manners [1–3]. In philosophy, beauty has started to
be recognized as an objective concept [4]. The most notable researcher among others is
probably Christopher Alexander, who devoted his entire career in pursuit of true beauty
in our gardens, buildings, streets, and cities, as well as in artifacts [5–10]. He found
through human perception experiments that beauty or coherence correlates very well to
the number of subsymmetries or substructures [11,12]. In his life’s work The Nature of
Order, Alexander [7] demonstrated that beauty lies in the deep structure, so our feelings on
beauty are largely shared regardless of our faiths, cultures, and ethnicities. It is essentially
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the deep structure—or living structure—that evokes a sense of beauty in the human mind
and heart.

A living structure has numerous substructures or subsymmetries with an inherent
hierarchy that retains two distinct properties: far more smalls than larges across the
hierarchical levels (or scales), while more or less similar on each level (or scale) of the
hierarchy. For example, a tree as a living structure has far more small branches than large
ones, while the branches on each scale (or each level of its hierarchy) are more or less
similar sized. The concept of living structure means structurally living, not necessary to be
biologically alive, so a dead tree can be a living structure as long as these two properties
remain. These two properties—far more smalls than larges across the hierarchy, and more
or less similar on each level of the hierarchy—constitute, respectively, two fundamental
laws of living structure: scaling law [13] and Tobler’s law [14]. Beauty is therefore—first
and foremost—about the physical and mathematical structure that pervasively exists in
things or their images (see Section 2 for more detail) and then the structure can be well
reflected in the human heart and mind to have a sense of beauty. In other words, it is
largely the underlying living structure that triggers the perception or cognition of beauty
in the human mind and deep psyche. This paper is an attempt to develop a computational
approach for assessing the goodness or beauty of an image based on the living structure.

An image is conventionally represented as a large set of uniform pixels (e.g., 1024 ×
1024 pixels), but our perception of the image is hardly pixel-based. Instead, any meaningful
image (which is not a noise image) can be perceived as a coherent whole or living structure,
which consists of far more small substructures than large ones. These substructures with
their inherent hierarchy are perceived as a coherent whole or living structure (see Figure 1
for an illustration). The most salient substructures at the top of the hierarchy receive the
highest visual attention, while the least salient ones at the bottom of the hierarchy receive
the lowest visual attention. Thus, under the perspective of living structure, an image is
viewed as an iterative system that consists of the structure of the structure of the structure
and so on. To further clarify this point, consider the same example of a tree consisting of
trunks, big branches, middle branches, small branches, and numerous leaves, so the tree
is with five hierarchical levels (or scales). In other words, the notion of far more smalls
than large recurs four times, while things are more or less similar on each of these five
scales. From the point of view of human perception, the trunks receive the highest visual
attention, while leaves receive the lowest visual attention; alternatively, the leaves (due to
its largest amount or the highest density) receive the highest attention, while the trunks
receive the lowest attention. It is the living structure view that motivates us to develop the
computational approach to the goodness or beauty of an image.

This paper is further motivated by the research effort for better understanding images
and human perception of beauty across a range of disciplines such as artificial intelligence
(AI), computer vision, psychology, neurophysiology, and cognitive science. Related re-
search questions in the effort include: What are the salient features or objects of an image?
What is the mental image of a city? How can different images be ranked and compared in
terms of their aesthetics? A commonly used approach to these questions is to use human
subjects to assess a series of images on their goodness to reach a kind of inter-subjective
agreement among people. The basic assumption of the conventional research approach
is that beauty is in the eye of the beholder. This commonly used method is essentially a
black-box method by taking the majority of the responses as the answer, albeit without ask-
ing why an image is beautiful. As a matter of fact, it is the living structure that lies behind
the goodness or beauty of images, or it is the living structure that evokes a sense of beauty
in the human mind and heart [7]. The goodness or beauty of images can be effectively
evaluated through the so-called mirror-of-the-self experiment. Given two images side by
side, the human subject is asked to pick one that better mirrors him/herself, or with the
image the person has a higher degree of wholeness [7,15,16]. The mirror-of-the-self experi-
ment is to seek the objective existence of living structure rather than the inter-subjective
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agreement, so it differs fundamentally from human perception tests that are commonly
used in psychology and cognitive science.

The contribution of this paper is fourfold: (1) an organic and holistic way of under-
standing an image, which is perceived as the figure (conspicuous part of an image) of the
figure of the figure and so on with respect to the figure-ground perception [17]; (2) the
degree of structural beauty or life (L) measured by the multiplication of substructures (S)
and the inherent hierarchy (H), thus making it possible to rank different images in terms of
their goodness or structural beauty; (3) finding among others that Jackson Pollock’s Blue
Poles is more structurally beautiful than Leonardo da Vinci’s Mona Lisa; and (4) discussions
on the potential application and implication of structural beauty in a variety of sciences,
and digital humanities and art.

The remainder of this paper is structured as follows. Section 2 introduces the concept
of living structure and its fundamental laws—scaling law and Tobler’s law—using a
human face image as a working example. Section 3 presents the computational approach
to the goodness of an image, and in particular the measure of structural beauty or life
as the multiplication of substructures and their inherent hierarchy. Section 4 verifies
the computational approach and reports our experiment and the results of case studies
applied to 16 images including Blue Poles and the Mona Lisa. Section 5 further discusses the
implications and applications of the approach in a variety of disciplines in both science
and art. Finally, Section 6 concludes the paper and points to future work.

2. Living Structure and Its Governing Laws: A Human Face Image as a Working
Example

As mentioned above, human perception of an image is not based on individual pixels,
but rather on the overall gestalt of the whole image, the overview, the broad nature of
the image, according to Gestalt psychology [18]. This overall gestalt is a de facto living
structure that consists of many substructures or subsymmetries with far more smalls than
larges. To illustrate the concept of living structure, let us take a gray image for example
(Figure 1a). The gray image has 512 by 512 (262,144) pixels, each of which is with a gray
scale between 0 and 255. The image can be converted into a binary one (Figure 1b) through
the average pixel value 123, calculated from all the pixel values; this means that all the
pixels darker than the average pixel (123) are set to black, while all the pixels lighter
than the average pixel (123) are set to white. The binary image has 120,324 black pixels
(46%) and 141,820 white pixels (54%), as shown in Figure 1b. The black and white pixels
respectively constitute the figure (conspicuous part of an image) and ground of the binary
image [17]. The figure consists of 779 individual pieces or segments, which are formally
called substructures or subsymmetries. Interestingly, there are far more small substructures
than large ones (Figure 1c); more specifically, 1 largest substructure (red), 3 second largest
(yellow), 10 third largest (light blue), and 765 fourth largest (or the smallest in blue). In other
words, there are four hierarchical levels for the figure as a living structure, perceived at
the four levels of salience. It is the living structure—or, more specifically, the substructures
with an inherent hierarchy of far more smalls than larges—which evokes a sense of beauty
in the human mind and heart.

The notion of living structure, seen from the above working example, is supported
by two laws: scaling law across the four scales (or hierarchical levels) ranging from the
smallest (blue) to the largest (red), and Tobler’s law on each scale or level (of the four).
These two laws are the fundamental laws of living structure. They are complementary
to each other in many aspects, as shown in Table 1. For example, the ratio of smalls to
larges is dispositional across scales: (1) large substructures are very large, while the small
substructures are very small; and (2) the number of smalls is far greater than the number of
larges. Along with the two laws, there are two design principles, namely, differentiation
and adaptation [7,19]; the substructures can be said to be differentiated from the whole
structure, yet they are well adapted to each other to constitute a cohere whole or living
structure.
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Figure 1. (Color online) Illustration of the living structure of an image. (Note: A gray image (a)
is—through the average pixel value—converted into a binary one (b) that constitutes the figure (as a
living structure) of the image. The living structure consists of our levels of substructures indicated
the four colors (c) one largest substructure (red), many smallest substructures (blue), and two levels
of substructures (yellow and light blue) between the largest and smallest. Apparently, there are far
more small substructures than large ones across the four scales (scaling law), while on each of the
four scale substructures are more or less similar (Tobler’s law).

Table 1. Two fundamental laws of living structure or of structural beauty. (Note: Scaling law is available
across scales ranging from the smallest to largest, while Tobler’s law is on each of the scales [20]).

Scaling Law Tobler’s Law

There are far more small substructures than large
ones There are more or less similar sized substructures

across all scales, and available at each scale, and

the ratio of smalls to larges is disproportional
(80/20). the ratio of smalls to larges is proportional (50/50).

Globally, there is no characteristic scale, so exhibiting Locally, there is a characteristic scale, so exhibiting a

Pareto distribution, or a heavy-tailed distribution Gauss-like distribution

due to spatial heterogeneity or interdependence,
indicating

due to spatial homogeneity or dependence,
indicating

complex and non-equilibrium character simple and equilibrium character

Any living structure has a certain degree of beauty or livingness, which can be charac-
terized by many substructures and their inherent hierarchy. Thus, a useful rule regarding
the degree of beauty is the more substructures, the more beautiful, and the higher hierarchy
of the substructures, the more beautiful [19]. As mentioned earlier, the living structure of
the human face image has 779 substructures, which can be put into four hierarchical levels.
It becomes less beautiful if the lowest level (all the blue substructures) is removed, because
the number of substructures is dramatically reduced, while the level of the hierarchy is de-
creased from four to three. This rule on beauty constitutes the major criterion for comparing
and ranking the goodness of images. The living structure provides an objective measure to
quantify structural beauty. This is the foundation of the computational approach to the
goodness of an image to be developed in this paper.

Underlying the notion of living structure is wholeness, which stresses that things or
images in particular should be viewed holistically rather than analytically, because the
whole is more than the sum of the parts. Ever since Gestalt psychology [18] was developed,
the general idea of wholeness has been extensively studied in philosophy and in a variety
of sciences such as quantum physics, biology, neurophysiology, medicine, cosmology, and
ecology [7,21]. Alexander was the first to turn the general idea of wholeness into a physical
and mathematical concept in some precise mathematical language. He discovered that
the holistic way of seeing things—unconsciously or subconsciously—is more correct [22],
although most people tend to see things analytically as fragmented pieces.

The theory of living structure was initially conceived and developed to create beautiful
buildings and cities, but also to help explain many symmetry-breaking phenomena [7,23].
Living structure exists pervasively to some degree or other in any space and matter. The
degree of living structure or structural beauty is real and measurable, very much like
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temperature; the living structure is to beauty what temperature is to warmth. However, at
the time when his life’s work was published [7], no mathematical models could capture his
definition of living structure, so he used hundreds of pictures, paintings, and drawings to
clarify his theory and design thoughts. Recently, Jiang [24] has developed a mathematical
model of living structure that is able to address not only why a structure is beautiful, but
also how beauty the structure is. In summary, living structure is a physical phenomenon
that exists pervasively in our surroundings, and can be defined mathematically, and can be
well reflected in the human mind and heart psychologically.

3. A Computational Approach to the Goodness or Structural Beauty of an Image

The computational approach to be introduced is based on the figure of an image rather
than the image itself for computing its goodness or structural beauty. Before introducing
the approach, we need to first introduce head/tail breaks [25], a classification scheme for
data with a heavy-tailed distribution. The computational approach is, to a large extent, an
application of head/tail breaks into an image.

3.1. Head/Tail Breaks for Deriving the Underying Living Structure

Head/tail breaks is a recursive function to derive the inherent hierarchy of a dataset. A
dataset as a whole is divided into two parts: the head for those greater than the average, and
the tail for those less than the average. The head as a subwhole is again divided around the
new average of the subwhole into the head and the tail, and this process continues until the
remaining data is no longer heavy-tailed or the head percentage is greater than 40%. Eventually,
the dataset is considered as an iterative system, i.e., the head of the head of the head and so on.
All the tails and the last head constitute individual classes or hierarchical levels of the dataset.

Let us use the dataset containing 10 numbers [1, 1/2, 1/3, . . . , 1/10] that exactly
follows Zipf’s law [26] to show how the dataset can be classified (Figure 2) by the head/tail
breaks, and why this dataset is more living than another dataset. The average of the 10
number is about 0.29, which partitions them into two sets: the head for those greater than
the average [1, 1/2, 1/3] and the tail for those less than the average [1/4, 1/5, . . . , 1/10].
For the three numbers in the head as a subset, the average is about 0.61, which further
partitions the head into the head [1] and the tail [1/2, 1/3]. Thus the dataset has three
classes or hierarchical levels, which are termed as the ht-index ([27]): [1], [1/2, 1/3], [1/4,
1/5, . . . , 1/10]. Alternatively, the data can be considered to be composed of the head of
the head of an iterative system: [1], [1, 1/2, 1/3], [1, 1/2, 1/3, . . . , 1/10]. On the other
hand, the second dataset consists of the 10 numbers [1, 2, 3, . . . , 10], which is without any
inherent hierarchy or violates scaling law. Thus, the first dataset is move living—or more
structurally beautiful—than the second dataset.

Figure 2. Head/tail breaks and why one dataset is more living than another. (Note: The average of
the 10 number [1, 1/2, 1/3, . . . , 1/10] is about 0.29, which partitions the 10 numbers into the head [1,
1/2, 1/3] and the tail [1/4, 1/5, . . . , 1/10], so with far more smalls than larges. The average of the
three numbers in the head [1, 1/2, 1/3] is 0.61, which further partitions the head into the head [1]
and the tail [1/2, 1/3], so again with far more smalls than larges. Thus, the 10 numbers have three
inherent hierarchical levels: [1], [1/2, 1/3], and [1/4, 1/5, . . . , 1/10]. The dataset [1, 1/2, 1/3, . . . ,
1/10], because of its inherent hierarchy of 3, is more living than the other dataset [1, 2, 3, . . . , 10]
that is without any inherent hierarchy or violates the notion of far more smalls than larges, so called
scaling law).
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3.2. The Computational Approach to Structural Beauty

The computational approach aims to capture structural beauty, so it currently works
with gray images. A color image must first be transformed into a gray image in order to
conduct the computation of the structural beauty or goodness. This transformation is based
on the commonly used formula; that is, Gray = 0.299×Red+ 0.587×Green+ 0.114×Blue [28].
While applying the head/tail breaks to the pixels of an image, we disregard the 40%
threshold. Usually according to the black and white percentages, the one with less than
50% is considered as the figure, while the other is considered as the ground (cf. Figure 1
for an example). However, for some images, this rule based on the percentage of dark and
light pixels should not be taken for granted. For the human face image shown in Figure 3,
the dark percentage is 52%, while the light percentage is 48% (Table 2), but we still take the
dark pixels as the figure, which is consistent with human perception of the image. In this
paper, we simply used the average cuts to recursively derive the figures or subwholes at
different levels of hierarchy. As shown in Figure 3, the gray image is dichotomized into the
figure (for dark pixels in the head with pixel values less than the average) and the ground
(for light pixels in the tail with pixel values greater than the average). The original gray
image is binarized and vectorized into its living structure; the figure and ground are then
respectively represented by black and white pixels, and the black pixels are vectorized to
constitute a living structure of the image.

Figure 3. (Color online) Illustration of an image as an iterative system and the computational
approach. (Note: The darker pixels of the human face image (a0) constitute the figure or subwhole
(b0), whose darker pixels constitute the figure or subwhole (c0), whose darker pixels constitute the
figure or subwhole (d0); the recursive process is called dichotomization. The subwholes (b0–d0)
may reflect the mental images while one gazes the human face image (a0). The corresponding living
structures out of the whole and subwholes through binarization are presented in Panels (a1–d1).
The detailed statistics on the whole and subwholes and living structures are shown in Table 2. The
computational approach can be summarized by the three processes including dichotomization (a,b),
binarization (b,c), and vectorization (c,d). The original image (a0,a) © Yarbus [29]).
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Table 2. Statistics about whole, subwholes, and their living structures. (Note: As a supplement to
Figure 3, this table provides detailed statistics about the human face image, its subwholes at different
levels of hierarchy, and the corresponding living structures.).

Whole or Subwhole (Gray) a0 b0 c0 d0

Number of pixels 262,740 135,588 74,136 35,879
Average cut value 151 102 83 74

Living Structure (binary) a1 b1 c1 d1
Percentage on the subwhole 52% 55% 48% 45%

Percentage on the whole 52% 28% 14% 6%
Number of substructures 3082 4492 3830 3926

An image is viewed as an iterative system that consists of the figure, the figure of the
figure, and the figure of the figure of the figure and so on at different levels of hierarchy.
These figures are also called the subwholes of the image, which is the whole. The above
process of deriving a living structure from the image itself can be recursively applied to
these different subwholes. In other words, instead of the entire image, we take the figure
as a subwhole to get its average pixel value, which is used to derive the figure of the figure,
and the figure of the figure of the figure and so on. Subsequently, their living structures
can be derived in the same way as the living structure of the image itself (Figure 3). The
derived living structures have two parameters: (1) the number of substructures, and (2) the
hierarchy of the substructures based on the head/tail breaks. Eventually, structural beauty
is based on these two parameters.

According to the previous studies on living structure, it was found that the more
substructures, the more beautiful, and the more hierarchical levels of the substructures, the
more beautiful. Thus, structural beauty (L) can be formally defined by

L = S × H (1)

where S is the number of substructures, while H is the number of hierarchical levels of the
substructures calculated by the head/tail breaks.

The computational approach aims to mimic the human vision system to capture the
wholeness of an image [18]. Inspired by the wisdom of crowds thinking [30]—or, more
specifically, the head/tail breaks—the computational approach can derive the underlying
living structure of an image. That is, let the image decide an average cut to distinguish
the figure from the ground in terms of figure–ground perception [17] and the figure can
be used to derive the underlying living structure. We conjecture that the living structure
reflects our mental image while gazing an image. For example, the largest substructure
(either for the first or the second round) is the most salient feature of the image.

4. Experiment and Results

We applied the computational approach to eight pairs of images to compute the
degree of goodness or structural beauty. All of the images have the same number of pixels
(262,144), but the length and width ratio may vary from one to another (Figure 4). The
primary goal of the experiment was to compare the goodness or structural beauty of images
one from another. We first report on our overall results on the eight pairs of images in
terms of their goodness or structural beauty and based on the computed score L, and
then take a look at three pairs to show that (1) Blue Poles is more structurally beautiful
than the Mona Lisa, (2) the Tower of the Wild Goose is more structurally beautiful than
the modernist house (or in general traditional buildings are more beautiful than their
modernist counterparts), and (3) the weather-beaten face is more structurally beautiful
than the posed model. We also show that the average cut is better than all other alternative
cuts for the computation.
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Figure 4. (Color online) Two groups of the images and their living structures. (Note: For each pair
of the images (P1–P8), the left is more living than the right, which is shown through their living
structures (L1–L8). The first four pairs (P1–P4 to the left) were previously studied by Alexander [7],
so they have the information on which one is more beautiful than the other, which is consistent with
our computational result. The second four pairs (P5–P8) are without a ground truth, but according to
our computation, the left is more beautiful than the right).

4.1. Overall Results

The eight pairs of images are divided into two groups. The first group of images were
taken from earlier studies by Alexander [7], so there is already information that one image
is more beautiful than the other for the first four pairs. The first group of images, to a large
extent, can help us verify the computational approach. The second group of images comes
from different sources and lacks information about which one is more beautiful than the
other. The old man’s face, the woods, and pond came from Alexander [7], the Lena face
and two Kodak Mountains and Island were obtained freely from the image processing
community, and Blue Poles and the Mona Lisa were taken from Wikipedia. Our experiment
was to verify first that the computational result for the first group is consistent with that of
the previous studies by Alexander [7], i.e., the traditional buildings are more structurally
beautiful than modernist ones. After the verification, the approach is applied to the second
group of images.

Figure 4 demonstrates the eight pairs of images (P1–P8), and their corresponding
living structures (L1–L8) on which the score L was calculated for all these images. For each
pair, the left one is more structurally beautiful than the right one, so the score L of one
image is larger than the other (Table 3). In addition to the computed score L, all the living
structures demonstrate very striking power laws (Figure 5). These computed results are
achieved through many rounds of experimenting, particularly with respect to different
cuts. For example, we experimented on several different cuts, including 60%, 50%, 45%,
40%, and even 20%, but none of them outperformed the average cut. Table 4 shows the
results by the 45% and 40% cuts, which are apparently less convincing than those by the
average cut in Table 3. Based on the above results, let us further take a close look at the
three pairs and discuss on their goodness or structural beauty.

4.2. Blue Poles Is More Beautiful Than the Mona Lisa

The above computation shows that Blue Poles is more structurally beautiful than the
Mona Lisa. This fact is clearly seen from Table 3. Blue Poles has 9423 substructures with a
hierarchy of 6, whereas the Mona Lisa has 2673 substructures with the hierarchy of 4. Thus,
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the score L of Blue Poles is nearly five times as big as that of the Mona Lisa. Interestingly,
Blue Poles is the most beautiful among the 16 images as shown in the column Rank.

Table 3. (Color online) Computational results for the 16 images for their degree of livingness. (Note:
Green indicates that two images can be differentiated. NA = not available).

Image
Pair

Image Name Page Average
Cut

Cut
Value

Figure
Color

Living Stucture

S H L Rank
P1 Greek Monastery 329 36% 188 dark 6248 6 37,488 3
P1 Detroit Appartments 329 45% 127 light 7241 4 28,964 4
P2 Slum 58 48% 154 light 3799 6 22,794 5
P2 Postmodern Façade 59 47% 185 dark 362 4 1448 15
P3 The Tower of the Wild Goose 230 48% 151 light 2687 4 10,748 9
P3 The X House 231 44% 159 light 498 3 1494 14
P4 Traditional House 133 48% 178 light 3524 5 17,620 6
P4 Postmodern House 133 43% 161 light 534 3 1602 13
P5 Weatherbeaten Face 281 46% 163 dark 2012 5 10,060 11
P5 Lena Face NA 46% 123 dark 376 3 1128 16
P6 Blue Poles NA 48% 112 dark 9423 6 56,538 1
P6 Mona Lisa NA 46% 73 light 2673 4 10,692 10
P7 Kodak Mountains NA 40% 107 light 2261 5 11,305 7
P7 Kodak Island NA 50% 103 dark 1053 3 3159 12
P8 Woods 35 48% 120 light 7193 6 43,158 2
P8 Pond 34 46% 126 light 2816 4 11,264 8

Table 4. (Color online) Computational results for the same images based on the 45% and 40% cuts.
(Note: Green indicates that two images can be well differentiated, while yellow means that two
images cannot be differentiated, and red shows an invalid or contradictory result. This table is
intended to contrast with Table 3 to show why the average cut is the best).

45% Cut 40% Cut

Image
Pair

Cut
Value

Living Structure Cut
Value

Living Structure

S H L Rank S H L Rank
P1 203 1213 3 3639 12 194 6971 6 41,826 3
P1 127 7241 4 28,964 3 140 8397 5 41,985 2
P2 165 3962 6 23,772 4 182 4141 4 16,564 7
P2 177 346 4 1384 15 150 364 4 1456 15
P3 166 2701 4 10,804 8 183 2561 4 10,244 9
P3 157 506 3 1518 13 165 2285 3 6855 12
P4 181 3502 5 17,510 5 187 3360 5 16,800 6
P4 156 494 3 1482 14 170 667 3 2001 14
P5 160 1977 5 9885 9 143 3742 5 18,710 5
P5 121 372 3 1116 16 113 426 3 1278 16
P6 105 9279 4 37,116 2 90 8947 5 44,735 1
P6 74 2637 3 7911 11 83 2631 3 7893 10
P7 102 2244 5 11,220 6 107 2261 5 11,305 8
P7 98 2274 4 9096 10 91 1005 3 3015 13
P8 124 7086 6 42,516 1 131 7034 5 35,170 4
P8 127 2770 4 11,080 7 137 2345 3 7035 11

It may not be that hard to understand why Blue Poles is the most beautiful structurally
(Figure 6). The painting has many levels of intricate substructures, which are well reflected
by the six hierarchical levels (the highest among all the studied images). The high ht-
index [27] indicates also that the painting is fractal, which was studied earlier through
computing its fractal dimension [31]. As a matter of fact, fractals are de fact living structures
under the third definition of fractal: a set or pattern is fractal if the notion of far more small
things than large ones recurs at least twice [32]. There is little wonder that fractals are in
general structurally beautiful. The painting Blue Poles was purchased by the National
Gallery of Australia in 1973 and has become one of the most popular exhibits in the gallery.
The painting is now worth AUD 350 million—a 300-fold increase on the AUD 1.3 million
when it was first purchased.
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Figure 5. (Color online) Power laws for the substructures of the figures of the images. (Note: All
substructures demonstrate a power law distribution for all the figures of the images. This is only an
example for the two pairs of images: Blue Poles and the Mona Lisa (a), the Tower of the Wild Goose
and X House (b)).

Figure 6. (Color online) The Mona Lisa is less structurally beautiful than Blue Poles. (Note: The
Mona Lisa (a) is less structurally beautiful than Blue Poles (e), based on their gray-scale images (b,f),
which are converted into figures (c,g) and living structures (d,h)).

4.3. The Tower of the Wild Goose Is More Structurally Beautiful Than the Modernist House

The Tower of the Wild Goose is more beautiful than the modernist X house, according
to the previous studies by Alexander [7]. From their two images (Figure 7a,d), we derived
their figures (Figure 7b,e) and their living structures (Figure 7c,f), which appears to capture
very well what human beings perceive about these two images. Eventually, the calculated
score L shows that the tower is 10748/1494 = 7.2 times more structurally beautiful than the
modernist X house. This result conforms Alexander’s initial judgement, although he did
not point out exactly the number of times more beautiful one than the other.
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Figure 7. The Tower of the Wild Goose is more beautiful than the X house. (Note: The Tower of the
Wild Goose (a) and the X house (d), their figures (b,e) and their living structures (c,f). The Tower of
the Wild Goose © F.W. Funke).

4.4. The Weather-Beaten Face Is More Structurally Beautiful Than the Posed Model

The above results demonstrate that all the modernist buildings are less structurally
beautiful than their traditional counterparts. Not only modernist buildings, but also most
modernist art (probably except for Blue Poles) is far less structurally beautiful. Let us
take a close look at the pair of the old man and young lady (Figure 8). The former looks
weather-beaten and natural without making up, while the latter is deliberately made up
and illuminated. The living structures from these two images seem to capture well what
humans perceive about these two images, but the score L of the images indicate that the
old man’s face is more structurally beautiful than that of the young lady. The score L for
the old man is 10060/1128 = 9 times that of the young lady.

Figure 8. The weather-beaten face is more structurally beautiful than the posed model. (Note: The
weather-beaten face (a) and the posed model (d), their figures (b,e) and their living structures (c,f)).

Throughout the experiment we have verified the computational approach with the first
four pairs of the images, and we have also discovered that Blue Poles is more structurally
beautiful than the Mona Lisa, and the weather-beaten face is more structurally beautiful than
the posed model. The experiment and results prove that the computational approach works
very well for differentiating two images according to their structural beauty. Additionally,
we have ranked all 16 images in terms of their goodness or structural beauty.
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5. Implications of the Computational Approach and Future Work

The computational approach developed in this paper works very well for measuring
structural beauty and further differentiating two images in terms of their goodness or
structural beauty. The approach is very much in line with Alexander’s vision about the
mathematics of beauty or life as cited in the epigraph. To be more specific, the levels of
scale property Alexander mentioned is a de facto inherent hierarchy of substructures, or
the recurring notion of far more small substructures than large ones. The void property can
be viewed as the largest or the most salient substructures, while the inner calm property
refers to each level of scale (or hierarchy) in which substructures are more or less similar
sized. This section further discusses the computational approach and its implications in a
larger context.

The computational approach is developed under the third view of space or the new
organismic cosmology, in which space is neither lifeless nor neutral, but a living structure
capable of being more living or less living [7,33]. Under the new organismic view of space,
an image is viewed as a living structure that consists of far more small substructures
than large ones, and a painting in its course of making can become more living or less
living, but ultimately towards the most living. All individual substructures of an image are
naturally and organismically defined based on the average cuts. This way of representing
an image or painting mimics our perception but differs fundamentally from the pixel-
based representation that is essentially a nonliving structure under the mechanistic world
view [34]. Different from the pixel-based representation, the living structure can capture
visual hierarchy of an image, which well reflects human perception of the image holistically.

Structural beauty has many synonyms, including living structure, wholeness, life,
organized complexity [35,36], and fractal [37], all of which focus on the structural aspect.
This structural aspect has been previously studied in the literature, albeit without explicitly
referring to the notion of living structure, simply because it did not yet exist. For example,
the hierarchical model that underlies the central place theory [38], is essentially about the
kind of structural beauty over a country among all the settlements at different levels of
hierarchy. Not only the settlements as a whole, but also an individual settlement (or city)
demonstrates the kind of structural beauty, because there are far more small substructures
than large ones in the city. It is the living structure or structural beauty that helps shape the
mental image of the city [39]. In this regard, the computational approach also provides an
effective and efficient measure for computing the image of the city.

The measure of structural beauty (L), as defined by S (substructures) times H (hier-
archy), reminds us of the classic work on aesthetic measure [1]. The classic work had the
same motivation as our computational approach; it was aimed to quantity the degree of
beauty by disregarding colors and materials, as well as human aspects such as cultures,
education, and ethnicities. The aesthetic measure (M) considers the two notions of order
(O) and complexity (C) and combines them together into a single formula: M = O/C. The
formula shows an inverse relationship between the degree of beauty and that of complexity,
M ∝ 1/C, which is against the notion of organized complexity. Eysenck [2] changed the
initial formula to M = O × C, which makes better sense, at least from the point of organized
complexity because the more complex something is, the more beautiful it is. The biggest
problem of the classic measure is that it has never been verified by any psychological
study [40]. On the other hand, the degree of beauty based on living structure is well
supported by the mirror-of-the-self experiments mentioned above.

The research on structural beauty has many applications and implications on various
disciplines where beauty or aesthetics is a major concern, such as landscape, architecture
and urban design [41–43], mathematics [1,3], humanities and arts [31,44,45], neurophys-
iology [46], psychology [47], philosophy, and more recently on AI, big data, and image
understanding and computer vision. The work has provided hard evidence of the trend
in philosophy that beauty has started to be accepted as an objective concept [4]. Artificial
neural networks have been used to train a massive number of crowdsourced images for
assessing their goodness or scenicness [48–50]. The result developed by Seresinhe and
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her colleagues on scenicness of areas, although harvested from subjective judgement of
individual people, is consistent with our results from the previous section. For example,
large flat areas of greenspace, such as ‘grass’ and ‘athletic field’, are associated with lower
scenicness, while the areas or images tagged with ‘mountain’, ‘water’, and ‘castle’ are
associated with higher scenicness. Apparently, the areas with lower scenicness lack detailed
intricate substructures like modernist buildings, whereas areas with natural scenes possess
intricate details, like Blue Poles. The objective nature of beauty has enormous impacts in
many design fields, because the goodness of a design is no longer considered to be an
opinion, but a matter of fact. The computational approach provides an organic or living
structure means for understanding computer vision and conducting image processing,
because it mimics our perception of images.

6. Conclusions

Structural beauty, as defined and computed in this paper, presents a radical mindset
change from subjective to objective beauty, thus significantly contributing to the effort on
aesthetic measures and image understanding. We develop the computational approach to
structural beauty or goodness of an image based on the living structure, a new way of image
understanding. An image is commonly represented mechanically by many individual
pixels, but human perception of the image is hardly pixel-based and is instead oriented
towards a coherent whole (e.g., the figure of the figure of the figure and so on) or living
structure. As a natural and organic representation, a living structure derived from an image
constitutes the backbone or configuration of the image from a holistic perspective. It is
governed by two fundamental laws: scaling law and Tobler’s law, which are respectively
available across different levels and at each level of the hierarchy. There are far more small
substructures than large ones, according to scaling law, whereas substructures are more
or less similar in terms of Tobler’s law. These two laws of living structure underlie the
computational approach to the goodness or structural beauty of an image. The living
structure of an image is composed of many substructures with the inherent hierarchy
of far more smalls than larges. The figure of the image can be further composed of
many substructures with the inherent hierarchy of far more smalls than larges. Therefore,
structural beauty or life (L), given as S (the number of substructures) times H (the number
of hierarchical levels), is computed based on the rule that the more substructures, the more
beautiful, and the higher hierarchy, the more beautiful. The measure of structural beauty
or the computational approach in general is shown to be simple, effective, and efficient for
ranking different images.

Seen from the recursive perspective, an image can be perceived as an iterative system
that consists of the figure of the figure of the figure and so on. In this connection, the
computational approach resembles very much—in spirit, but not in detail—the head/tail
breaks that represents a heavy-tailed dataset as the head of the head of the head and so on.
This recursive way of understanding images is probably the most significant contribution
of this paper. Based on the computational approach, we (re-)discovered that (1) traditional
buildings are more structurally beautiful than their modernist counterparts, (2) Blue Poles
is more structurally beautiful than the Mona Lisa, and (3) the weather-beaten face is more
structurally beautiful than the posed model. These findings may sound controversial, but
they are purely based on the structural point of view without considering cultural, social,
racial, and other biophilic factors. Our future work will seek to integrate these other factors
into our model.
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