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Abstract

The present study was aimed at determining the metabolic profile of PMNs in obese sub-

jects, and to explore its potential relationship with insulin resistance (IR). To achieve this

goal, a pilot clinical study was performed using PMNs from 17 patients with obesity and

IR, and 17 lean controls without IR, which was validated in an additional smaller cohort (con-

sisting of 10 patients and 10 controls). PMNs were isolated from peripheral blood and

nuclear magnetic resonance was used to perform the metabolomic analysis. A total of 48

metabolites were quantified. The main metabolic change found in PMNs was a significant

increase in 2-aminoisobutyric acid with a direct correlation with HOMA-IR (p<0.001), BMI

(p<0.000001) and waist circumference (p<0.000001). By contrast, a decrease of 3-hydro-

xyisovalerate was observed with an inverse correlation with HOMA-IR (p = 0.001), BMI (p =

0.001) and waist circumference (p = 0.0001). Notably, the metabolic profile in plasma was

different than that obtained in PMNs. In summary, our results suggest that the change in 3-

hydroxyisovalerate and 2-aminoisobutyric is the key metabolic fingerprint in PMNs of obese

subjects with IR. In addition, our methodology could be an easy and reliable tool for monitor-

ing the effect of treatments in the setting of precision medicine.

Introduction

Obesity represents a major public health problem and is associated with a significant economic

burden in the health systems of developed countries, mainly due to associated comorbidities

such as type 2 diabetes and cardiovascular disease [1,2]. Adipose tissue is considered an endo-

crine organ that regulates the innate and adaptive immune response by the production of adi-

pokines such as leptin and cytokines. One of the characteristics of obesity is its association
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with insulin resistance (IR), systemic low-grade inflammation and a deregulation of the

immune system [3,4].

The discovery of new biomarkers able to identify obese patients at risk of developing

comorbidities and the gaining of new insights into the complex relationships between the

factors contributing to the disease are crucial for the design of personalized medicine pro-

grams. In this regard, the study of polymorphonuclear cells (PMNs) could be very useful

because they are first immune cells that respond to inflammation by being recruited into adi-

pose tissue [5]. They could play a role in initialising the inflammatory cascade in response to

obesity by producing chemokines and cytokines, facilitating macrophage infiltration and

inducing IR [6]. There is evidence that insulin regulates glucose metabolism in PMNs and is

responsible for the activation of its main functions [7] which may be altered by the IR associ-

ated with either obesity or type 2-diabetes [8,9]. It should be noted that euglucemic hyperin-

sulinemic clamp performed in healthy subjects resulted in a significant increase of PMN

functions such as chemotaxis, phagocytosis and bactericidal capacities. Therefore, insulin

can modulate PMN functions not just by the attainment of better metabolic control [7]. This

finding supports the critical role of IR in neutrophil impairment, thus raising the question of

whether intracellular neutrophil metabolic changes could be a useful tool for research

purposes.

Omics techniques have become a powerful approach, widely adopted for clinical diagnos-

tics and with a crucial role in unravelling the molecular mechanisms involved in pathology

[10]. Unlike genes and proteins, whose functions are subject to epigenetic regulation and post-

translational modifications respectively, metabolites serve as direct signatures of biochemical

activity and are therefore easier to correlate with the phenotype [11]. Since blood is easily

accessible in routine clinical practise, the main focus of metabolomics has been based on the

analysis of circulating metabolites from plasma or serum, and several metabolites has been

identified as potential biomarkers of obesity [12,13]. However, much less is known regarding

metabolites contained within circulating blood cells in terms of increasing our understanding

of the pathophysiology of these cells in disease or in biomarker discovery. Neutrophils are the

most abundant PMN cells in human blood circulation, playing an essential role in the immu-

nological responses of the body in pathology.

Among all the possible techniques for detecting metabolites, nuclear magnetic resonance

(NMR) has proven to be a powerful tool for studying the metabolic alterations associated

with pathological conditions [14]. NMR data stand out for their high reproducibility, allow-

ing the generation of very robust models that can integrate data from different analytical plat-

forms and can be applied over longer periods of time [15]. Furthermore, NMR has the

advantage of providing complete structural information regarding compounds, so allowing

the identification of new or unexpected metabolites, which is crucial for the biochemical

interpretation of cellular metabolism. On the other hand, the relatively low sensitivity of

NMR spectroscopy, one of its main drawbacks, has been significantly improved in recent

years by the introduction of cold probes [16]. Although several studies based on mass spec-

trometry regarding the metabolic profiling of leucocytes in diseases unrelated to obesity have

recently been reported [17,18], to the best of our knowledge NMR spectroscopy, widely

applied for blood plasma and serum [19] has not previously been explored for the analysis of

leucocytes.

On this basis, the main aim of the present study was to perform the first global examination

of the metabolic profile of PMN cells in obese patients by NMR, and to explore its potential

relationship with IR.

Metabolic signature of insulin resistance in leucocytes
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Material and methods

Ethics statement

The study was conducted according to the guidelines laid down in the Declaration of Helsinki,

and the Ethics Committees of the University Dr. Peset Hospital (protocol number CEIC140/

14) and Vall d’Hebron University Hospital (protocol number PR(AG) 86/2013) approved all

procedures. Written informed consent was obtained from all the participants.

Study subjects

A case-control study was designed which included 17 morbid obese individuals (body mass

index [BMI]�37.50 Kg/m2) recruited at the Outpatient’s Department of the Endocrinology

Service of Dr. Peset University Hospital in Valencia. The control group consisted of 17 age-

matched non-smoking subjects with a BMI� 25 Kg/m2.

The study was conducted according to the guidelines laid down in the Declaration of Hel-

sinki, and the Ethics Committee of the Dr. Peset University Hospital (protocol number

CEIC140/14). Written informed consent was obtained from all the participants. Smokers and

patients with diabetes or previous cardiovascular events or other comorbidities were excluded

from the study. The reason to exclude diabetic patients was to study the relationship between

IR and the PMN metabolic profile without the background noise of hyperglycemia and all the

metabolic pathways related to diabetes. In order to validate the study, a smaller cohort of obese

(n = 10) and non-obese control subjects (n = 10) recruited in the Unit of Obesity at Vall

d’Hebron University Hospital were included. Written consent was obtained from all the par-

ticipants and the study was approved by the Ethics Committee of the Vall d’Hebron University

Hospital (protocol number PR(AG) 86/2013). Details about validation patients can be found

in the S5 Table.

Blood samples were collected under fasting conditions, stored at 4˚C and processed within

the first 2 hours. Several anthropometrical parameters and biochemical analyses including glu-

cose, high-density lipoproteins (HDL), low-density lipoproteins (LDL), triglycerides (TG), the

BMI, waist, insulin, and the homeostasis model assessment of insulin resistance (HOMA-IR)

were measured.

Isolation of PMN from peripheral blood

Ten mL of peripheral blood freshly extracted from obese and normal individuals were poured

into a quartz tube with 20 mL of Ficoll and left standing for 20 minutes until 2 phases sepa-

rated by gravity. The top ring consisted of a mixture of leucocytes and the bottom ring of

erythrocytes. The leukocyte ring was transferred in a tube with the same volume of Ficoll, care

being taken not to mix them, and centrifuged at 300 g and 20˚ C for 25 min to obtain a pellet

of PMN cells. To minimize the contamination of the PMN pellet with the remaining erythro-

cytes, it was treated with 1 ml of erythrocyte lysis buffer for 5 minutes and centrifuged at 300 g

and 20 ˚C for 5 min. Then, the resulting pellet was resuspended in the same volume of PBS,

centrifuged at 2000 g and 20 ˚C for 5 min, and the supernatant was discarded. This washing

operation was repeated. Cell counting was performed using Tuerk staining solution and the

purity was tested with CD15 by cytometry. For storage, 160 μL of ice-cold methanol were

added per 10 million cells and the samples frozen directly at -80 ˚C.

Extraction of polar metabolites

Metabolites were extracted following the methanol-chloroform-water protocol that was

recently optimized for PMN cells [20, 21]. Briefly, frozen samples were placed on ice and
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allowed to thaw for 5 min. 80 μL of chloroform at 4˚C were added (solvent volumes are indi-

cated for 10 million cells). After 10 min, the samples were homogenized with a vortex, resus-

pended with a pipette and transferred to a plastic tube. For uniform cell breakage, the samples

were placed in liquid nitrogen for 1 min and then allowed to thaw on ice for 2 min. This step

was repeated twice. Afterwards, 125 μL of distilled water and 125 μL of chloroform were added

and the sample vortexed. Then, the samples were centrifuged at 13000 g for 20 min at 4˚C to

separate the phases. The upper phase water/methanol was separated from the interphase and

lyophilized for 2 hours to remove water and methanol. Sample extracts were stored at -80 ˚C

until the preparation of the samples for NMR experiments. Before NMR analysis, frozen sam-

ples were placed on ice and allowed to thaw for 5 min. 550 μl of phosphate buffer (100 mM

Na2HPO4 pH 7.4, in D2O) containing 0.1 mM deuterated trimethylsilylpropanoic acid (inter-

nal standard) were added and samples were transferred to a 5 mm NMR tube. The samples

were stored at 4 ˚C until 15 min before analysis and analysed the same day.

Preparation of plasma samples for metabolomics analysis

Five mL of peripheral blood freshly extracted were transferred to plasma tubes and allowed

to stand for 30 min. The supernatant was then collected and stored at -80˚C until NMR

measurement. At the time of analysis, the plasma samples were thawed on ice. 300 μl of 10%

D2O buffer (5 mM TSP, 140 mM Na2HPO4, 0.04% NaN3, pH 7.4) were added to 300 μl of

plasma sample. After this, 550 μl of the mixture were transferred to a 5-mm NMR tube for

analysis.

Solvents and reagents

Unless otherwise indicated, the solvents and reagents employed were purchased from Sigma-

Aldrich (Madrid, Spain), Scharlab (Sentmenat, Spain), Falcon BD (Madrid, Spain), Labclinics

(Barcelona, Spain), or Eurisotop (Gif sur Yvette, France) and were used in the form in which

they were supplied. Gases were supplied by Air-Liquide (Valencia, Spain).

Nuclear magnetic resonance (NMR) experiments

NMR spectra were recorded at 27 ˚C on a Bruker AVI-600 using a 5 mm TCI cryoprobe and

processed using Topspin3.2 software (Bruker Biospin). For PMN extracts, 1H 1D NMR spectra

with water presaturation (25 Hz) and a noesy mixing time of 10 ms were acquired with 256

free induction decays (FIDs). 64k data points were digitalized over a spectral width of 30 ppm

for an optimal baseline correction. A 4s relaxation delay was incorporated between FIDs. The

FID was multiplied by an exponential function with a 0.5 Hz line broadening factor. For

plasma samples, a Carr–Purcell–Meiboom–Gill (CPMG) spin-echo pulse sequence, which

generates spectra edited by T2 relaxation times with reduced signals from high molecular

weight species and improved resolution of low molecular weight metabolite resonances, was

acquired with a total of 16 accumulations and 72 K data points over a spectral width of

16 ppm. A 4-second relaxation delay was included between FIDs and a water presaturation

pulse of 25 Hz was applied.

The parameters for 2D experiments were 512 increments in t1 and 32 FIDS for total corre-

lation spectroscopy (TOCSY) experiments with MLEV pulse sequence, and 256 t1 increments

and 96 FIDS for HSQC (Heteronuclear Single Quantum Correlation) experiments. Both

experiments had a relaxation delay of 1.5 s and were acquired in the phase-sensitive mode.

The mixing time for TOCSY spectra was set to 65 ms.

Metabolic signature of insulin resistance in leucocytes
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Data analysis

Signals in the 1HNMR spectra were assigned to the corresponding metabolites with the help of

2D Experiments, spectral databases HMBD (Human Metabolome Database) [22] and the Bio-

logical Magnetic Resonance Bank (BMRB) [23]. In ambiguous cases, the assignment was con-

firmed by spiking the spectra with reference compounds. Spectra were normalized to total

intensity to minimize the differences in concentration and experimental error during the

extraction process. Optimal integration regions were defined for each metabolite, an attempt

being made to select the signals without overlapping (S1 Table). Integration was performed

with Global Spectra Deconvolution (GSD) in MestreNova 8.1.

For multivariate analyses, metabolite tables generated from spectra integration were univar-

iate scaled (each value being divided by the standard deviation of each variable) and mean

centred for an easier interpretation of the data and to take the variation of small signals into

account. Principal component analysis (PCA) and projection on latent structure-discriminant

analysis (PLS-DA) analysis was performed with SIMCA-P 13.0 (Umetrics, Sweden). PLS-DA

models were validated by permutation and cross validation analysis. Random Forest and

receivers operating characteristic (ROC) curves were performed with Metaboanalyst web

server 3.0. ROC curves were performed with MonteCarlo cross-validation using balanced sub-

sampling and Random Forest was selected as the classification method.

For the correlation of metabolite concentrations with biochemical and anthropometrical

parameters, a Spearman’s rank correlation coefficient analysis was performed using R com-

mander (The R Foundation). Spearman’s rank correlation coefficients (rho) > 0.6 or < -0.6

and p� 0.001 were considered significant between variables.

For the biological interpretation of the results and the identification of metabolic pathways

the Kegg Data Base and MetPA (Metaboanalyst) were used.

Normality tests, t-tests and beeschwarm plots were performed with unscaled, normalized

concentration data in R (The R Foundation).

Results

Subjects

The main biochemical and anthropometrical clinical features of morbid obese patients and

age-matched controls are shown in Table 1 and S2 Table. As expected, the BMI, waist circum-

ference and HOMA-IR were significantly higher in the obese group than in normal controls

(Table 1). In addition, HDL-cholesterol was lower in the obese group and the atherogenic

index was higher in the obese individuals.

To detect potential outliers, principal component analysis (PCA) was performed of all indi-

viduals using as input variables age, BMI, waist, HDL, LDL, TG, insulin, HOMA-IR and glu-

cose. The PCA score and loading plot as well the Distance to Model X plot, revealed that no

outliers were present (S1–S3 Figs).

Metabolomic profile of PMN cells

PMN samples of the two cohorts were analysed following a recent approach described by our

group [21], represented in S4 Fig. Briefly, PMNs were first isolated from peripheral blood by a

double Ficoll-Paque gradient, with purity higher than 90% tested by flow cytometry being

obtained. The differences between samples were minimal and non-statically significant.

Metabolites were then extracted and the resulting samples analysed by NMR spectroscopy. A

representative spectrum of the aqueous extract obtained from PMN cells is shown in Fig 1,

where 48 different polar metabolites could be identified and assigned using NMR databases,

Metabolic signature of insulin resistance in leucocytes
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2D-NMR spectra and standards. These metabolites correspond to amino acids, sugars, organic

acids and nucleotides, among others (Fig 1, S2 Table).

Altered metabolic profile of PMN cells in obese patients

To gain new insights into the changes in the metabolic profile of obese subjects, NMR profiles

of all PMN samples were analysed using multivariate analysis (Normalized raw data can be

found in S3 and S4 Tables). PCA was used as a first approximation to identify clustering trends

between samples and outliers. Although no clear grouping between the cohorts was detected

Table 1. Comparison of anthropometrical and biochemical parameters of obese patients and healthy individuals.

Healthy individuals (n = 17) Obese individuals (n = 17) P�

Age 41±2 41±3 0.9862

BMI, kg/m2 22.37±0.61 45.5±1.42 8.57e-10

Waist, cm 86±2 129±3 1.02e-10

Glucose, mg/dL 95±4 96±3 0.5578

HDL, mg/dL 45±2 37±1 0.0272

LDL, mg/dL 113±9 112±8 0.5640

TG, mg/dL 106±11 138±13 0.2125

Atherogenic index 0.05±0.1 0.06±0.1 0.0173

Insulin, mg/dL 8.1±0.7 18.8±1.8 1.20e-05

HOMA 2.01±0.23 4.45±0.44 2.83e-05

BMI: body max index; HDL: high-density lipoproteins; LDL: low-density lipoproteins; TG: triglycerides; atherogenic index = logTG/HDL; HOMA: homeostatis model

assessment. Data are mean±SEM.

�P values were calculated with two tailed Mann-Whitney U-test. Alpha levels were set to 0.05.

https://doi.org/10.1371/journal.pone.0199351.t001

Fig 1. 1H NMR spectrum of PMN cells. 1H NMR spectrum of an aqueous extract of PMN cells from a normal

individual acquired at 27 ˚C with a 600 MHz spectrometer equipped with a cryoprobe. The most significant spectral

regions are shown: a) aliphatic region, b) aromatic region.

https://doi.org/10.1371/journal.pone.0199351.g001
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in the score plot of the first two principal components, a clear clustering could be observed in

the fourth component (S5 Fig), indicating that differences between the groups existed, but

were masked by the general variability between samples. Therefore, a supervised discrimina-

tion model was built with PLS-DA, with two components and high goodness of fit and predic-

tion values (R2Y(cum) = 0.812, Q2 (cum) = 0.547) (Fig 2A). A permutation test proved the

absence of overfitting (S6 Fig), and a good predictive capacity was confirmed by cross valida-

tion. This robust separation between cohorts provided evidence that the metabolic profile of

neutrophils from obese patients and individuals with normal weight was different. Random

Forest classification provided class errors of 0.059 for normal and 0.176 for obese subjects, cor-

responding to a sensitivity of 82% and a specificity of 94%.

Metabolites that were responsible for discrimination between PMN cells from obese and

normal individuals were identified in the corresponding loading plot (S7 Fig) and the fea-

tures selected by Random Forest analysis. The integration values of these metabolites were

subjected to Mann-Whitney non-parametric univariate analysis to confirm their significance

and represented as beeswarm-plots (Fig 2B). These analyses revealed that the metabolic pro-

file associated with obese patients was characterized by increased levels of 2-aminoisobuty-

rate, β-alanine, inosine and acetate, and decreased levels of 3-hydroxyisovalerate and glycine.

ROC curves based on random forest models gave AUC values of 0.93 (2-aminoisobutyric

acid), 0.92 (acetate), 0.91 (3-hydroxyisovalerate), 0.83 (glycine), 0.78 (β-alanine) and 0.7

(inosine).

To further test the correlation of the identified compounds with different biochemical

and anthropometrical parameters such as the BMI and waist circumference, as well as

HOMA-IR, non-parametric Spearman’s correlations were performed (Table 2). The results

revealed a direct correlation between 2-aminoisobutyric acid and HOMA-IR (rho 0.61,

p = 0.0004), BMI (rho = 0.79 p = 0.0000007) and waist circumference (rho = 0.75, p =

000000023). Acetate was also directly correlated with HOMA-IR (rho = 0.49, p = 0.007),

BMI (rho = 0.67, p = 0.00003) and waist circumference (rho = 0.63, p = 0.0001). By contrast

an inverse correlation was detected between 3-hydroxyisovalerate and HOMA-IR (rho =

-061, p = 0.000324), the BMI (rho = -0.59, p = 0.0003) and waist circumference (rho = 0.67,

p = 0.00004) (Table 2).

Glycine and β-alanine were related to the BMI and waist circumference but not with

HOMA-IR.

An integrative analysis of the results carried out with MetPa, a tool for pathway analysis

and visualization, revealed that the most affected metabolic pathways were ketone bodies, β-

alanine, glycine, serine, threonine, pyruvate and propionate metabolism (Fig 3).

Validation of PMN profiling

In order to confirm the metabolic differences detected in the pilot study, we performed an

external validation with a small set of samples collected from a new, independent cohort of

patients (n = 10). The clinical parameters of these patients can be found in S5 Table. The same

analysis and data treatment protocol was performed with these samples, and normalized con-

centration values of the previously detected significant metabolites (3-hydroxyisovalerate, β-

alanine, inosine, glycine, 2-aminoisobutyrate, acetate) were compared. Results are summarized

in S6 Table. Differences in 3-hydroxyisovalerate, 2-aminoisobutyrate and glycine could be

clearly reproduced, while changes in inosine, β-alanine and acetate were less significant. Thus,

even though these results need to be confirmed by studying bigger cohorts of samples, the first

three metabolites are the most promising biomarker candidates.
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Fig 2. a) Plots from PLS-DA and PLS analysis of the metabolite profile of PMN cells from cohorts. PLS-DA score plot

from PLS-DA analysis of the metabolic profile of PMN cells from samples of normal individuals (triangle) and obese

patients (circle). R2Y(cum) = 0.812, Q2 (cum) = 0.547. 2 components. p-value from cross validation ANOVA = 0.0005.

b) Significant Metabolites. Beeswarm plots for the most significant metabolites found in the comparison between obese

and normal individuals. Concentration values are normalized to total area. P values were calculated from the Man

Whitney t-test.

https://doi.org/10.1371/journal.pone.0199351.g002
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Alterations in the metabolic profile of plasma of morbid obese patients

As a complementary analysis, the metabolic profile of plasma samples from the same individu-

als was analysed, following standard NMR metabolomics procedures. This approach permitted

Table 2. Spearman’s correlation of PMNs metabolites with altered biochemical and anthropometrical parameters of the cohorts included in the study.

Waist HOMA-IR Insulin BMI HDL

3-hydroxyisovalerate rho -0.67 -0.61 -0.69 -0.59 0.36

p 4.34e-5 3.24e-4 2e-5 3.59e-4 4.27e-2

β-alanine rho 0.43 0.28 0.26 0.50 -0.15

p 1.49e-2 0.13 0.17 3.08e-3 0.40

inosine rho 0.27 0.24 0.22 0.33 -0.11

p 0.14 0.19 0.24 5.42e-02 0.55

glycine rho -0.46 -0.22 -0.31 -0.40 0.15

p 9.70e-3 0.23 8.81e-2 2.04 e-2 0.40

2-aminoisobutyric acid rho 0.75 0.61 0.61 0.79 -0.37

p 2.30e-7 4.20e-4 3.10e-4 7.0e-7 4.03e-2

acetate rho 0.63 0.49 0.52 0.67 -0.24

p 1.71e-4 7.106e-3 3.47e-3 3.20e-5 0.19

https://doi.org/10.1371/journal.pone.0199351.t002

Fig 3. Pathway analysis. Pathway analysis with MetPa showing an overview of the most significantly altered pathways.

https://doi.org/10.1371/journal.pone.0199351.g003
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us to examine whether our findings were a genuine metabolic fingerprint of obesity and IR

detected in PMN or, by contrast, a more generalized systemic effect.

Multivariate analysis confirmed the absence of outliers (S8 Fig). However, no robust separa-

tion could be obtained. Univariate analysis identified valine, phospholipids, and N-acetyl

groups of plasma proteins as metabolites that were significantly altered in obese individuals

(S5 Table). Spearman’s correlations were also performed to relate these metabolites with the

clinical parameters as assessed with PMNs. The results are summarized in Table 3. N-acetyl

groups of plasma proteins were directly correlated with HOMA-IR, the BMI and waist circum-

ference. By contrast phospholipids were inversely correlated with HOMA-IR, the BMI, waist

circumference and HDL-cholesterol.

Discussion

In the present study we have characterized for the first time the metabolic fingerprint of PMNs

obtained from morbid obese patients. The main metabolic change was a decrease in 3-hydro-

xyisovalerate and an increase in 2-aminobutyric acid in comparison with age-matched lean

controls. In addition, this metabolic signature was strongly correlated with IR, BMI and waist

circumference. These novel findings not only suggest that the metabolomics profile of PMNs

could be a useful biomarker of IR, but also open up a new avenue for the research of the com-

plex and bidirectional relationship between neutrophils and obesity.

3-hydroxyisovalerate, also named β-hydroxyisovalerate or 3-hydroxy-3-methylbutyric acid,

is a final product of leucine catabolism, which is not further degraded and, therefore, can be

contemplated as a useful biomarker. Leucine, isoleucine and valine are the three branched-

chain amino acids (BCAAs) which are catabolized by mitochondrial dehydrogenase and

branched-chain keto acid dehydrogenase (BCKADH) to fuel the Krebs cycle for ATP produc-

tion. Recent studies have shown the positive association between increased circulating BCAAs

and insulin resistance (IR) in obese or diabetic patients [24–27]. In addition, plasma BCCAs

have been associated with visceral adipose tissue (VAT) [28]. A hypothesized mechanism link-

ing increased levels of BCAAs and type 2 diabetes involved leucine-mediated activation of the

mammalian target of rapamycin complex 1 (mTORC1), which resulted in the uncoupling of

insulin signalling at an early stage [29]. In addition, defective BCAA catabolism might occur in

obesity, leading to a further accumulation of BCAAs and toxic intermediates [30]. In fact, it

seems more plausible to consider increased BCAA levels a biomarker of IR rather than them-

selves as being causative [29]. Insulin induces the expression and activity of BCKADH, the

rate-limiting enzyme in the BCAA degradation pathway [31]. Therefore, the lower levels of

3-hydroxyisolvalerate detected in obese individuals in comparison with lean subjects indicate

that a decreased catabolism of leucine occurs within the PMNs of obese individuals. In addi-

tion, the inverse relationship between 3-hydrovalerate and HOMA-IR suggest that an insulin

signalling impairment could participate in the reduction of leucine catabolism. To the best of

Table 3. Spearman’s correlation of plasma metabolites with altered biochemical and anthropometrical parameters of the cohorts included in the study.

Waist HOMA-IR Insulin BMI HDL

Valine rho 0.311 0.317 0.279 0.284 0.0541

p 0.108 0.115 0.168 0.136 0.789

N-acetyl groups of plasma proteins rho 0.385 0.442 0.478 0.399 -0.333

p 0.0429 0.0248 0.0135 0.0331 0.0896

Phospholipids rho -0.672 -0.581 -0.667 -0.589 0.602

p 9.12e-05 0.00223 0.000201 0.000973 0.000893

https://doi.org/10.1371/journal.pone.0199351.t003
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our knowledge, this is the first time that alterations in BCAA metabolism have been detected

in the PMNs of obese subjects, as well as their association with IR.

2-aminoisobutyric acid, also called α-aminoisobutyric acid, is a non proteinogenic BCAA

which results as the end product of pyrimidin metabolism. With the exception of a few bacte-

ria, it is non-metabolisable, and therefore very useful in bioassays. At present, we do not have

any robust explanation for the strong relationship between the increase of 2-aminoisobutyric

in the PMN and the levels of HOMA-IR or BMI and waist circumference.

Overall, we have developed a tool for assessing the insulin resistance directly in PMNs. This

could give us complementary information that is currently obtained by HOMA and might

respresent a new strategy for measuring the direct effect of diets and drugs for the treatment of

diabetes at cellular level.

The consequences of the metabolic changes observed in the neutrophils from obese patients

require elucidation. Classically, neutrophils have been considered the “kamikaze” cells that

arrive first at the site of injury and immolate themselves while killing the invading pathogens

with a variety of mechanisms [32]. However, a growing body of evidence is challenging this

view, suggesting that neutrophils may exert a more complex role interacting with other com-

ponents of the innate and adaptive immune system [33]. Although the functional conse-

quences of the metabolic abnormalities in PMNs here reported need to be investigated, it is

possible that our findings are related with the increase of infectious diseases reported in obese

patients (such as surgical-site infections, nosocomial infections, periodontitis and skin infec-

tions [34]. In addition, the potential effect of detected metabolic changes on the migration

capacity of PMNs, favoring their deposition in visceral adipose tissue or the vascular wall, also

need to be examined.

It is worth mentioning that the metabolic profile in plasma was different than that obtained

in PMN, thus ruling out any significant interference of plasma on our results. In addition, the

abnormalities detected in the plasma of obese patients, such as the increase of valine, were in

agreement with previous reports [35], thus confirming the reliability of our methodology.

Our study has two main limitations. First, this is a pilot study which has been only validated

in a small independent cohort and, therefore, further confirmation in larger studies are

required. Second, as occurs in all cross-sectional studies a direct causal role between the meta-

bolic changes of neutrophils and their functional impairment can not be established. However,

rather than any type of causality our objective was to identify a metabolic signature of PMNs

in the setting of morbid obesity and the underlying insulin resistance.

In conclusion, we have described an easy and reliable method to monitor the metabolic sig-

nature of obesity using PMNs cells. Our results suggest that 3-hydroxyisovalerate and 2-ami-

noisobutyric acid are key metabolic biomarkers of IR and anthropometric features of obesity.

Finally, the methodology described could be used for monitoring the effect of diets and treat-

ments, thus opening up a new avenue in the setting of precision medicine.
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