
Articles
Urinary metabolomic profiling from spontaneous
tolerant kidney transplanted recipients shows
enrichment in tryptophan-derived metabolites
Luc Colas,a Anne-Lise Royer,b,c Justine Massias,b,c Axel Raux,b,c M�elanie Chesneau,a Clarisse Kerleau,d Pierrick Guerif,d

Magali Giral,a,d,f Yann Guitton,b,c and Sophie Brouard a,d,e*, for the DIVAT Consortium1

aCHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, Centre Hospi-
talier, Nantes Universit�e, 30 bd Jean Monnet, Nantes F-44000, France
bMELISA Core Facility, Oniris, INRAE, Nantes F-44307, France
cLaboratoire d'Etude des R�esidus et Contaminants dans les Aliments (LABERCA), Oniris, INRAE, Nantes F-44307, France
dCHU Nantes, Service de N�ephrologie-Immunologie Clinique, Nantes Universit�e, Nantes, France
eLabex IGO, Nantes, France
fCentre d’Investigation Clinique en Bioth�erapie, Centre de Ressources Biologiques (CRB), Nantes, France
Summary
eBioMedicine 2022;77:
103844
Published online 28 Feb-
ruary 2022
https://doi.org/10.1016/j.
ebiom.2022.103844
Background Operational tolerance is the holy grail in solid organ transplantation. Previous reports showed that the
urinary compartment of operationally tolerant recipients harbor a specific and unique profile. We hypothesized that
spontaneous tolerant kidney transplanted recipients (KTR) would have a specific urinary metabolomic profile associ-
ated to operational tolerance.

Methods We performed metabolomic profiling on urine samples from healthy volunteers, stable KTR under stan-
dard and minimal immunosuppression and spontaneous tolerant KTR using liquid chromatography in tandem
with mass spectrometry. Supervised and unsupervised multivariate computational analyses were used to highlight
urinary metabolomic profile and metabolite identification thanks to workflow4metabolomic platform.

Findings The urinary metabolome was composed of approximately 2700 metabolites. Raw unsupervised clustering
allowed us to separate healthy volunteers and tolerant KTR from others. We confirmed by two methods a specific uri-
nary metabolomic signature in tolerant KTR mainly driven by kynurenic acid independent of immunosuppressive
drugs, serum creatinine and gender.

Interpretation Kynurenic acid and tryptamine enrichment allowed the identification of putative pathways and
metabolites associated with operational tolerance like IDO, GRP35 and AhR and indole alkaloids.
Abbreviations: ABMR, antibody mediated rejection; AhR, aryl hydrocarbon receptor; AUC, area under the curve; CKD, chronic kid-

ney disease; CNI, calcineurine inhibitors; CTLA4, cytotoxic T-lymphocyte antigen 4; DSA, donor specific antibodies; eGFR, esti-
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Research in context

Evidence before this study

Spontaneous operational tolerance in kidney trans-
plantation defined as a long-term and functional graft
without any immunosuppressive drug intake is a rare
state although it is more frequent than induced toler-
ance thanks to combined haplo-identical hematopoi-
etic stem cell and kidney transplantation. It is
characterized by a specific peripheral tolerance to the
graft both in T and B cell compartments we previously
described. Though precise mechanisms at play
remain undetermined. Urine is a human body fluid
that is easily accessible and directly produced by kid-
ney, thus potentially reflecting homeostatic or patho-
logic mechanisms in the kidney tissue. In the field of
kidney transplantation, several studies have shown
that factors identified by targeted or untargeted
metabolomic studies in the urine of kidney trans-
planted recipients were associated with allograft
rejection. To date, no metabolomic signature of spon-
taneous operational tolerance in kidney transplanta-
tion have been described to our knowledge.

Added value of this study

We demonstrated that spontaneous operational toler-
ance in KTR was associated with a specific urinary
metabolomic profile enriched in tryptophan-derived
metabolites such as kynurenic acid and tryptamine
allowing us to characterize TOL with a high sensitivity
and specificity in our cohort. This metabolomic signa-
ture is independent of serum creatinine level and
immunosuppressive drugs.

Implications of all available evidence

Kynurenic acid and tryptamine enrichment allowed
the identification of putative pathways and metabo-
lites associated with spontaneous operational toler-
ance such as IDO, GRP35 and AhR signaling and
microbiota-derived tryptophan metabolites such as
indole alkaloids. Further studies on larger cohorts are
then needed to better model the metabolomic net-
work. In parallel, multiomic models (metabolomic and
microbiomic) on several compartments (plasma, urine
and kidney graft tissue if possible) coupled with in
vitro/in vivo studies are mandatory to better decipher
their potential roles in spontaneous operational toler-
ance in KTR.
Introduction
Urine is a human body fluid that is easily accessible and
directly produced by kidney, thus potentially reflecting
homeostatic or pathologic mechanisms in the kidney
tissue. In the field of kidney transplantation, several
studies have shown that factors identified by targeted or
untargeted metabolomic studies in the urine of kindey
transplanted recipients (KTR) were associated with allo-
graft rejection. In T-cell mediated rejection (TCMR),
several urine metabolites related to amino acids metabo-
lism (tryptophan, proline, methionine, tyrosine, threo-
nine, dopamine), Krebs cycle (carnitine) or even
nucleotide metabolites (guanidine acetate, uric acid,
xanthine) could be identified.1�4 A similar urinary pro-
file encompassing Krebs cycle (ornithine, carnitine
notably), these metabolomic signatures were strongly
correlated with the estimated glomerular filtration rate
(eGFR) and creatinine excretion.1�5 These preliminary
results suggest that the immunological state and kidney
graft dysfunction could be monitored at locoregional
level in a non-invasive fashion using targeted metabolo-
mic.

Spontaneous operational tolerance (SOT) in kidney
transplantation (KTx) defined as a long-term and func-
tional graft without any immunosuppressive drug
intake6,7 is a rare state although it is more frequent
than induced tolerance thanks to haplo-identical
hematopoietic stem cell (HSCT) and kidney transplanta-
tion.8 Two cohorts of patients with SOT showed specific
clinical features such as being for at least 2/3 of male
gender with low even null rate of rejection, no donor
specific antibodies and antibiotic.9,10 Additionally, they
present specific immune features such as higher sys-
temic rate of granzyme B positive regulatory B cells11

and memory regulatory T cells12 and defective NK cells13

and Tfh cells function.14 All these immune features
makes an echo to transcriptomic analysis of peripheral
blood mononuclear cells (PBMCs) that exhibited a regu-
latory T cell6 and an B cell profiles.6,10 More recently,
our team demonstrated that SOT was associated with a
unique and specific urinary proteobacteria signature
mostly in males15 suggesting that a functional interplay
between this specific microbiota and KTR immunoregu-
latory mechanisms potentially associated with a specific
metabolome at a locoregional level.

Based on this, we hypothesized that operational tol-
erance could be associated with a specific urinary
www.thelancet.com Vol 77 Month March, 2022
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metabolomic signature. To this aim, we performed a
metabolomic profiling via ultrahigh performance liquid
chromatography coupled with mass spectrometry
(UHPLC/MS) in the urine of spontaneous tolerant KTR
(TOL) compared with stable KTR (STA), minimally
immunosuppressed KTR (MIS) and healthy volunteers
(HV). We could clearly identify a specific urinary signa-
ture associated with SOT encompassing tryptophan-
derived metabolites from the kynurenine pathway.
Methods

Patient selection and clinical data
Fifty�six patients were enrolled in the study and signed
informed consent forms. The study groups were defined
as follows: (1) sixteen spontaneously tolerant patients
(TOL) with no immunosuppression for at least 1 year as
previously described6,7,9; 10 with stable kidney graft
function with creatinine <150 mmol/L and proteinuria
<1 g/24 h plus six TOL with higher creatinine serum
and/or proteinuria (150�402 mmol/L and proteinuria
1g�1.76g/24 h) without donor specific antibodies
(DSA) which was attributed to vascular nephropathy by
two-independent nephrologists. Thirteen with stable
kidney graft function (creatinine <150 mmol/L and pro-
teinuria <1 g/24 h) for at least 3 years under standard
immunosuppression (calcineurin inhibitors (CNI), anti-
�metabolite § corticosteroids) matched for post-trans-
plantation time were selected16: (2) eight had normal
histology (STA) whereas (3) five patients had histology
proven subclinical ABMR (scABMR), (4) Thirteen mini-
mally immunosuppressed patients (MIS) as previously
described17; ten with stable kidney graft function (creati-
nine <150 mmol/L and proteinuria <1 g/24 h) for at
least 3 years under 1 immunosuppressive drug (anti-
�metabolite or corticosteroids) plus three patients with
higher serum creatinine attributed to CNI toxicity by
two independent nephrologists and with stable creati-
nine for at least 3 years (creatinine 150�406 mmol/L
and proteinuria 1g�7.4 g/24 h), (5) Fourteen healthy
volunteers (HV) matched for age at sampling (+/- 5
years) without any medical history of immunosuppres-
sive (IS) drugs in the last 6 months and without autoim-
mune or inflammatory disease, urinary tract infection
or kidney diseases (Table 1). All the clinical data were
retrospectively extracted from the DIVAT Integralis
database for kidney�grafted patients (https://integralis.
chu�nantes.fr/Default.aspx).
Ethics statement
This study was performed in accordance with the Decla-
ration of Helsinki and was approved by the National
French Ethics Committee (CPP) N°337/2002
“Characterization of operational tolerance in kidney
transplanted recipients without immunosuppressive
www.thelancet.com Vol 77 Month March, 2022
drugs.” And DIVAT (Donn�ees Informatis�ees et VAl-
id�ees en Transplantation) (www.divat.fr, French
Research Ministry: RC12_0452, last agreement No. 13
334, No. CNIL for the cohort: 891735)). All participants
enrolled in this study signed informed consent forms.
Urine samples collection
Urine samples (one sample per KTR and HV) were col-
lected from TOL, STA, MIS and HV subjects from 2003 to
2020. Samples were collected aseptically after genital disin-
fection and were frozen at -80°C within 1 h of sampling.
Urine samples preparation
Urine samples were thawed on ice, homogenized and
centrifuged at 4°C at 750g for 5 min. Urine pH and
optic density were measured. Samples were then nor-
malized on optic density using a refractometer (Digital
Urine Specific Gravity Refractometer, 4410 (PAL-l0S),
Cole-Parmer, USA) with ultrapure HPLC qualified
water (Sigma�Aldrich, Saint Quentin Fallavier, France)
and ultrafiltrate to retain molecules smaller than 10kDA
(VWR, Fontenay-sous-Bois, France). Internal deuterated
standards (leucine-5,5,5-d3, L-tryptophan 2,3,3 d3, acide
indole-2,4,5,6,7-d5-3-ac�etique et acide 1,14-
t�etrad�ecanedioÿque-d24) were added to each sample in
order to assess intra- and intersample validity. They
were purchased from Sigma�Aldrich (Saint Quentin
Fallavier, France) and CDN Isotopes (Qu�ebec, Canada)
and prepared in ethanol at 10 ng/µl.
Urine metabolome analysis by UHPLC/MS
Normalized and 10-kDa-filtered urine samples were
analyzed on ultrahigh performance liquid chromatogra-
phy with high-resolution mass spectrometry (UHLPC/
MS) with the same apparatus and methods described in
Peng et al18 and in Narduzzi et al19 for reversed phase
(RP) UHPLC/MS and Hydrophilic Interaction Liquid
Chromatography (HILIC) UHPLC/MS respectively.
Tacking advantage of the MS2 capacities of the hybrid
quadrupole-orbitrap (Q-ExactiveTM) mass spectrometer
(Thermo Fisher Scientific, Bremen, Germany) QC sam-
ples (ie. pooled samples) were analyzed, in ESI positive
and ESI negative modes, with three cycles of iterative
Data Dependent MS2.20 Samples were analyzed at ran-
dom with regular QC samples injection (every 5 sam-
ples), following LC-MS metabolomics guidelines.21
Metabolomic signature process (Figure 1)
Data processing was performed under the Galaxy envi-
ronment platform workflow4Metabolomic.org
(W4M)22,23 in two steps. The first step consisted of
transforming raw UHPLC/MS files into a data matrix
containing all the identified ions in each sample. For
this purpose, each peak of mass spectrum (= an ion) in
3



STA TOL MIS scABMR HV Global p-value

Recipient

Sex n = 8 patients n = 16 patients n = 13 patients n = 5 patients n = 14 patients

Women (%) 2 (25) 3 (19) 2 (15) 3 (60) 7 (50) 0.13

Men (%) 6 (75) 13 (81) 11 (85) 2 (40) 7 (50)

Sex ratio (W/M) 0.33 0.23 0.18 1.5 1

Transplantation rank n = 8 patients n = 16 patients n = 13 patients n = 5 patients n = 14 patients

1 (%) 7 (88) 15 (94) 11 (85) 4 (80) NA 0.77

> 1 (%) 1 (12) 1 (6) 2 (15) 1 (20) NA

Initial nephropathy n = 8 patients n = 16 patients n = 13 patients n = 5 patients n = 14 patients

Glomerulonephritis (%) 4 (50) 4 (24) 5 (38) 1 (20) NA 0.64

Intersitial nephropathy (%) 3 (37) 6 (38) 6 (46) 3 (60) NA

Vascular nephropathy (%) 0 (0) 0 (0) 0 (0) 1 (20) NA

Unknown (%) 1 (13) 0 (0) 2 (16) 0 (0) NA

Missing data (%) 0 (0) 6 (38) 0 (0) 0 (0) NA

Age at sampling (years) n = 8 patients n = 16 patients n = 13 patients n = 5 patients n = 14 patients

Median Err:509 Err:509 Err:509 Err:509 Err:509 0.07

Min 36 36 41 46 26

Max 66 72 79 79 64

Missing data (%) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Sampling time (months after transplantation) n = 8 patients n = 16 patients n = 13 patients n = 5 patients n = 14 patients

Median Err:509 Err:509 Err:509 Err:509 NA 0.15

Min 168 176 60 160 NA

Max 236 433 336 375 NA

Missing data (%) 0 (0) 0 (0) 0 (0) 0 (0) NA

DONOR

Deceased 7 (88) 12 (75) 9 (69) 5 (100) NA 0.6

Alive 1 (12) 4 (25) 4 (31) 0 (0) NA

Missing data (%) 0 (0) 0 (0) 0 (0) 0 (0) NA

IMMUNOSUPPRESIVE DRUGS

CNI at sampling n = 8 patients n = 16 patients n = 13 patients n = 5 patients n = 14 patients

Yes (%) 5 (63) 0 (0) 0 (0) 4 (80) 0 (0) 1 £ 10-7

No (%) 3 (37) 16 (100) 13 (100) 1 (20) 14 (100)

Missing data (%) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Table 1 (Continued)
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STA TOL MIS scABMR HV Global p-value

Antiproliferative at sampling n = 8 patients n = 16 patients n = 13 patients n = 5 patients n = 14 patients

Yes (%) 7 (88) 0 (0) 9 (69) 3 (60) 0 (0) 9,45 £ 10-9

No (%) 1 (12) 16 (100) 4 (31) 2 (40) 14 (100)

Missing data (%) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

mTOR inhibitors at sampling n = 8 patients n = 16 patients n = 13 patients n = 5 patients n = 14 patients

Yes (%) 3 (37) 0 (0) 0 (0) 1 (20) 0 0.003

No (%) 5 (63) 16 (100) 13 (100) 4 (80) 14 (100)

Missing data (%) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Steroids at sampling n = 8 patients n = 16 patients n = 13 patients n = 5 patients n = 14 patients

Yes (%) 1 (12) 0 (0) 11 (85) 1 (20) 0 (0) 2,21 £ 10-8

No (%) 7 (88) 16 (100) 2 (15) 4 (80) 14 (100)

Missing data (%) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

IMMUNOLOGY

DSA at sampling n = 8 patients n = 16 patients n = 13 patients n = 5 patients n = 14 patients

neg 5 (63) 10 (62) 13 (100) 0 (0) NA 1,44 £ 10-5

Positive class I 0 (0) 0 (0) 0 (0) 0 (0) NA

Positive class II 3 (37) 0 (0) 0 (0) 3 (60) NA

Positive class I and II 0 (0) 0 (0) 0 (0) 2 (40) NA

Missing data (%) 0 (0) 6 (38) 0 (0) 0 (0) NA

ROUTINE BIOLOGY

Creatinin (micromol/L) n = 8 patients n = 16 patients n = 13 patients n = 5 patients n = 14 patients

Median Err:509 Err:509 Err:509 Err:509 Err:509 1,2 £ 10-4

Min 100 53 107 86 64

Max 147 402 406 142 90

Missing data (%) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Proteinuria (g/d) n = 8 patients n = 16 patients n = 13 patients n = 5 patients n = 14 patients

Median Err:509 Err:509 Err:509 Err:509 MD 0.23

Min 0.05 0 0 0.07 MD

Max 0.90 1.76 7.41 0.56 MD

Missing data (%) 0 (0) 1 (6) 2 (15) 0 (0) 14 (100)

Urinary pH n = 8 patients n = 16 patients n = 13 patients n = 5 patients n = 14 patients

Median Err:509 Err:509 Err:509 Err:509 Err:509 7.12 £ 10-5

Min 5 5 5.5 5 5.5

Max 6 6 7 5.5 7

Missing data (%) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Table 1: Clinical and biological characteristics of recipient groups (TOL, MIS, STA, scABMR) and healthy volunteers. * indicates significant adjusted p-value < 0.05 and NA indicates “not applicable”.
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each sample was individualized using centwave algo-
rithm based on the centroid approximation according to
their mass (m/z) and retention time (RT) (“peak
picking”).22,24 Then, the same peaks (= the same ions)
were aligned and gathered across samples according to
their m/z and RT (“peak grouping”).22,24 After group-
ing, missing data (= undetected ions) for each sample
were integrated again according to m/z and RT in order
to detect and create a new peak if available (“peak
filling”). Finally, the batch effect was assessed and cor-
rected using QC samples as an internal standard with
the loess algorithm22,25,26 and ions presenting a coeffi-
cient of variation (CV) > 30% in QC samples were fil-
tered from the final data matrix. This step was
performed on both ESI-positive and ESI-negative files
which are available on online repositories. The second
step consisted of individualizing a specific urinary
metabolomic signature for TOL from the data matrix
obtained at the former step. To this aim, a sample meta-
data files containing anonymous clinical and biological
datas were generated. OPLS-DA multivariate analyses
were performed with ions’ relative intensities and the
group status (TOL, MIS, STA, scABMR and HV) as the
response nominal variable in order to discriminate the
most impacting ions for each tested condition which
was defined by a variable importance in projection
(VIP) score value> 0.8.23,26�29 Metabolomic signatures
were then extracted from the more impacting ions
using first non-parametric univariate analysis followed
by a multivariate analysis with ions’ relative intensities
thanks to the Biosigner algorithm.30
Metabolites identification
To identify metabolites from the TOL urinary metabolo-
mic signature both MS and MS2 data were used. In the
MS data, adduct and isotopologues were searched using
CAMERA annotation package.23,31 The MS2 data gener-
ated on pooled samples with iterative data dependant
MS2 acquisitions (iDDA)20 were processed with msPur-
ity32 package tools included in W4M. In brief, every ion
detected in the first step of “metabolomic signature
process” was searched in the UHPLC/MS2 files. If at
least one MS2 spectra was recorded for an ion then the
MS2 spectra was compared to several external public
databases (MassBank https://massbank.eu/MassBank/,
HMDB https://hmdb.ca and GNPS https://gnps.ucsd.
edu) This process allows us to annotate compounds at
putative level (level 2) according to Creek and al.33 We
used the same process to identify tryptophan-derived
metabolites: tryptophan, serotonin, melatonin, trypt-
amine, kynurenine, kynurenic acid, anthranilic acid, 3-
hydroxyanthranilic acid, 5-hydroxyindoleactetic acid,
indoleactetic acid, xanthurenic acid at a putative level
(level 2). Then, standards for those metabolites were
purchased from from Sigma�Aldrich (Saint Quentin
Fallavier, France). This allowed the comparison of
retention time, MS2 mass spectra and identification of
those compounds without a doubt in LC-MS traces
(level 1) according to Creek et al.33
Statistical analysis
Univariate group comparisons were performed using
nonparametric tests (Wilcoxon for 2 groups and Kruskal-
Wallis for 3 or more groups). Unsupervised and super-
vised multivariate analyses were performed with ions’
relative intensities using PCA and (O)PLS-DA respec-
tively. Heatmaps were generated using correlation clus-
tering and the ward aggregation algorithm26 and
interaction models were performed using N-way ANOVA
under the Workflow4Metabolomics plateform.23 Receiver
Operating Characteristic Curve (ROCC) comparing TOL
to nonTOL were generated using GraphPad Prism soft-
ware version 6.0 (GraphPad software, California). False
discovery rate correction (FDR) was applied to the p-value
in case of multiple testing.34 Statistical significance was
considered from alpha risk< 0.1.
Role of funding source
None of the funder had any role in the present study.
Results

Clinical and biological data of KTR and controls
We compared the clinical and biological data from the 4
groups of recipients (STA, TOL, MIS and scABMR) and
from HV using ANOVA analysis for independent varia-
bles. No significant difference (adjusted p-value <0.05)
was found for age at sampling, sampling time, trans-
plantation rank, proteinuria and urinary pH among the
recipient groups. No significant difference in sex ratio
was observed between STA, TOL, MIS whereas
scABMR and HV had a higher proportion of females
without statistical significance (p-value <0.05
“ANOVA”)). Furthermore, serum creatinine was not
significantly different among recipient groups whereas
it was significantly lower in HV (p-value = 1,2 £ 10�4

“ANOVA”) (Table 1). Of important note, our KTR
groups could be considered as representative of their
respective wider population since no difference were
noted between the clinical and routine biological param-
eters of our KTR groups with those consensually used to
define TOL,6,7,9 MIS7 and STA.16
The urine metabolome profile of spontaneous tolerant
recipients differs from that of other recipients and
healthy volunteers
After processing UHPLC/MS raw data, we obtained posi-
tive (ESI+) and negative ionization (ESI-) mode chromato-
grams containing 2171 ions in ESI+ and 2681 ions in ESI-
with different mean intensities across the 4 recipient
www.thelancet.com Vol 77 Month March, 2022



Figure 1. Schematic representation of the workflow used to identify the metabolomic signature of operational tolerance. This figure
was created by BioRender.

Articles
groups and the control group. Metabolomics profiles
extended from polar to apolar metabolites following the
acetonitrile gradient (Figure 2a). To further assess whether
or not the urinary metabolome structure differed accord-
ing to each group, we used principal component analysis
(PCA) with the first three components (PC) in both ioniza-
tion modes. In ESI+, we found that TOL and HV clustered
together apart from STA, MIS and scABMR in the three
PC projections (Figure 2a and 2b). In ESI-, HV clustered
apart from recipients ‘groups in the three PCs. The four
recipient groups clustered in roughly parallel planes going
from TOL/MIS/STA/scABMR in the three PCs as well
(Figure 2a and 2c) echoing blood transcriptomic and urine
microbiota data.6,15 Altogether these results suggest a spe-
cific metabolomic signature for TOL that is distinct from
other KTR and HV.
Spontaneous tolerant recipients exhibit a urine-specific
metabolomic signature mostly enriched in a
tryptophan-derived metabolite: kynurenic acid
To identify a urine-specific metabolomic signature in
TOL, we kept ions whose RT was greater than or equal
to 60 s to avoid a high coelution rate between ions
(Figure 2a). MIS and STA were grouped under non-
spontaneous tolerant patients (nonTOL) since multivar-
iate analysis (OPLS-DA) could not strictly identify
www.thelancet.com Vol 77 Month March, 2022
impacting ions to differentiate MIS and STA as shown
by the permutation diagram in both ESI+ and ESI-
modes in our cohort (Supp Figure 1a) probably linked to
long-term stability and time post-transplantation match-
ing. Despite partial clustering of scAMBR in metabolo-
mic profiling (Figure 2a and b), this group was not
considered for further analysis since it was impossible
to identify impacting ions to differentiate them from
STA and MIS in both modes in our cohort (Supp
Figure 1b) probably due to small group size and a lack
of statistical power. Using that strategy, we identified
twelve ions that allowed us to discriminate TOL from
nonTOL and HV among which, ten were upregulated
and two were downregulated in TOL patients compared
to nonTOL and HV (Figure 3a). There was no interac-
tion between those ions and clinical parameters such as
gender, serum creatinine > 150µmol/L or the presence
of DSA at sampling. Interestingly, two ions (M183T391
and M289T387) interacted with immunosuppressive
drugs: M183T391 was significantly downregulated in
the presence of CNI and mTOR inhibitors (FDR
adjusted p-value = 0.03 and 0.008 respectively “N-way
ANOVA”) whereas M289T387 was upregulated in the
presence of CNI, antiproliferative drugs and/or oral cor-
ticosteroids (OCS) (FDR adjusted p-value = 0.0009;
0.00005; 0.0004 respectively “N-way ANOVA”)
(Table 2). Among those twelve ions, eight ions were not
7



Figure 2. Richness and structure of the urinary metabolome for each group of KTR and HV with RP UHPLC-MS method. (a) Chro-
matogram showing showing 2161 ions and 2681 ions with a major proportion of highly polar and polar metabolites in ESI+ and ESI-
modes respectively according acetonitrile gradient and retention time (RT). (b) Structure of urinary metabolome in ESI+ assessed by
principal component analysis (PCA) with the first three components for recipient groups (TOL, MIS, STA, scABMR) and healthy volun-
teers revealing two clusters: one grouping TOL and HV and another grouping MIS, STA and scABMR. (c) Structure of the urinary
metabolome in ESI- assessed by principal component analysis (PCA) with the first three components for recipient groups (TOL, MIS,
STA, scABMR) and healthy volunteers revealing an isolated cluster of HV in the three PCs and KTR clustering in roughly parallel
planes from TOL/MIS/STA/scABMR.
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identified since neither isotopic patterns nor matches in
public databases or in our in-house bank were found.
Interestingly, we identified four ions with the same RT
in both modes corresponding to KYNURENIC ACID
(M144T186, M188T186, M190T186, M191T186) with
significantly higher intensity threshold (1,4 fold com-
pared to HV and 1,9 compared to nonTOL) in TOL ver-
sus nonTOL (FDR adjusted p-value = 9.10�6 “Kruskal
Wallis test”) and HV (FDR adjusted p-values = 0.015
“Kruskal Wallis test”). The associations of these four
ions using ROCC analysis allowed us to specifically dis-
criminate TOL from the nonTOL and HV with a high
sensitivity (Se = 81%) and specificity (Sp = 95%) when
considering the relative intensity threshold of 4,3 £ 107

(Figure 3b and c Supp Table 1). Altogether, these results
show that TOL exhibit a specific urinary metabolomic
profile that is strongly driven by kynurenic acid echoing
to tryptophan metabolism pathways independent of
immunosuppressive drugs, eGFR and gender.
The urinary tryptophan metabolome of spontaneous
tolerant recipients was skewed toward kynurenine
pathways and tryptamine pathways
Because of the involvement of the KYNURENIC ACID
and to provide an overview of the involvement of the dif-
ferent pathways of the tryptophan and its metabolites in
TOL, nonTOL and HV, we identify in our cohort the fol-
lowing metabolites: tryptophan, serotonin, melatonin,
tryptamine, kynurenine, kynurenic acid, anthranilic
acid, 3-hydroxyanthranilic acid, 5-hydroxyindoleactetic
acid, indole-actetic acid and xanthurenic acid. Using RP
UHPLC/MS method, we found that kynurenine, kynur-
enic acid and tryptamine were upregulated in TOL com-
pared to nonTOL and HV whereas the remaining
metabolites were not different between the different
groups (Figure 4 and Supp Figure 3). Using HILIC
UHPLC/MS method, we confirmed that kynurenic acid
was significantly increased in TOL compared to HV and
non TOL (FDR-adjusted p value = 0.08 and 0.01
www.thelancet.com Vol 77 Month March, 2022



Figure 3. Specific metabolomic signature in urine of TOL detected thanks to RP UHPLC-MS method. (a) represents the supervised
clustered heatmap according to KTR (TOL, nonTOL) and HV of the twelve ions composing the specific urinary signature of TOL
patients where ten are upregulated in TOL (red cluster) and two are downregulated in TOL (black to blue cluster). Among the twelve
ions, four were identified as being adducts of kynurenic acid (highlighted in red) (b) as shown in boxplots (c) which allow a good dis-
crimination of TOL compared to nonTOL patients according to the ROCC. * indicates an FDR-adjusted p-value < 0.1; ** indicates an
FDR-adjusted p-value < 0.01 and ***indicates an FDR-adjusted p-value < 0.001
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respectively). There was no difference in kynurenine or
tryptophan. We could not detect tryptamine. At last,
there a significant decrease in xanthurenic acid in both
TOL and non TOL compared to HV (FDR-adjusted p
value = 0.02 and 0.05 respectively “Kruskal Wallis test”)
(Supp Figure 4). At last, we did not highlight any inter-
action between the tryptophan-derived metabolites and
gender, immunosuppressive drugs or the presence of
DSA at sampling (Table 3). Altogether, these results
suggest that kynurenine pathway (encompassing kynur-
enic acid) and tryptamine pathway are associated with
and upregulated in spontaneous operational tolerance.
Discussion
We could identify a specific urinary metabolomic profile
strongly driven by the up-regulation of the tryptophan-
derived metabolites; kynurenine, kynurenic acid and
tryptamine independent of any immunosuppressive
drugs and serum creatinine level in spontaneous toler-
ant patients.

Metabolomic is a recent growing field allowing to
depict spatiotemporal shifts in metabolic pathways asso-
ciated with homeostatic or pathologic processes. A few
publications have associated metabolic changes with
www.thelancet.com Vol 77 Month March, 2022
graft rejection in solid organ transplant immunology.1�5

In those studies, tryptophan-derived metabolites were
detected (decreased) either in blood or urine compart-
ments suggesting that the kynurenine pathway may be
involved in kidney allograft alloimmune damages. Tryp-
tophan is decreased and correlated with eGFR in the
serum of patients with chronic allograft dysfunction
compared to stable KTR and HV.2 In urine, a recent
study by Sigdel TK et al associated three main metabo-
lites (increase in glycine, decrease in N-methylalanine
and inulobiose) in the urine with histology proven het-
erogenous allo-immune dysfunctions of kidney trans-
plants (acute rejections and IFTA).35 Interestingly,
glycine has been associated with broad anti-inflamma-
tory properties, ischemia/reperfusion and thermic
shock protection.36 On the opposite, N-methylalanine
was negatively correlated with active inflammation in
patients with rheumatoid arthritis.37 At last, inulobiose
is an exogenous metabolite derived from inuline which
is not reabsorbed after glomerular filtration.38 The dif-
ference in urine inulobiose concentration during allo-
immune dysfunction could be linked to a lower eGFR.
Interestingly, no tryptophane derived metabolites were
highlighted. Conversely, tryptophan was decreased in
patients with T-cell mediated rejection (TCMR)
9



Figure 4. Tryptophan-derived metabolites detected in the urine samples of our cohort (TOL, nonTOL and HV) and their associated
metabolic pathways detected thanks to RP UHPLC-MS method. Kynurenine, kynurenic acids and tryptamine were upregulated in
TOL compared to nonTOL and HV as shown in boxplots. Solid lines represent detected and identified metabolites; dashed lines rep-
resent nonidentified metabolites; grey shading indicates no change in TOL; blue-shading indicates downregulation; red shading
indicates upregulation; * indicates an FDR-adjusted p-value < 0.1; ** indicates an FDR-adjusted p-value < 0.01 and *** indicates an
FDR-adjusted p-value < 0.001
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compared with stable KTR under a standard immuno-
suppressive drug regimen1,4 or KTR with ABMR.5

Moreover, Duranton et al, reported on amino acid varia-
tions in the plasma and urine of patients with chronic
kidney disease (CKD) and hemodialyzed patients. In
particular, tryptophan and hydroxykynurenine (direct
down-stream kynurenine metabolite) are modulated
and associated with eGFR variations in the plasma,
whereas no variation was observed in the urine of the
same patients.39 Similarly, Goek et al also demonstrated
that the kynurenine pathway was upregulated by eGFR
impairment in the plasma but not in urine40 whereas
urinary excretion of serotonin, another tryptophan-
derived metabolite, was lower in KTR with eGFR
impairment.3 At last, Bassi et al reported that no differ-
ence in urine tryptophan concentration according to
eGFR in KTR with allograft dysfunction.2These observa-
tions suggest that (1)kynurenine pathway deviation
would be associated with kidney transplant stability
(either with IS drugs or SOT); (2)eGFR impairment has
a different impact on the tryptophan metabolic path-
ways in plasma and urine, which is consistent with our
data. Though, it should be born in mind that metabolo-
mic techniques can skew the metabolomic profile.41

Back to our data, we did not observe any association
between the kynurenine pathway and serum creatinine
levels in our cohort whereas the serotonin pathway was
downregulated by high serum creatinine levels, which
is consistent with the aforementioned literature.39,40

Nor did we observe any association between the immu-
nosuppressive regimen and tryptophan-derived metabo-
lites (kynurenine, tryptamine or serotonin/melatonin
pathways) in accordance with data in rodents and
human KTR despite difference in metabolomic techni-
ques41 Altogether, our results argue for an upregulation
of the kynurenine (kynurenic acid) and the tryptamine
pathways in spontaneous tolerant patients compared to
HV and non-TOL suggesting their implication in
www.thelancet.com Vol 77 Month March, 2022



Table 2: Interaction matrix of the urinary metabolomic signature of TOL detected thanks to RP UHPLC-MS method. Each column
represents a tested factor among the interaction models (N-way ANOVA) for each of the twelve ions identified (in rows). A color code
features either the upregulation (red) or the downregulation (blue) or the absence of change (grey) induced by the considered factor. No
interaction with the tested factors was detected for kynurenic acid. There was also an inverse interaction between two ions and
immunosuppressive drugs when considering TOL. The statistical significance of the interaction is represented by * indicating an FDR-
adjusted p-value < 0.1; ** indicating an FDR-adjusted p-value < 0.01 and *** indicating an FDR-adjusted p-value < 0.001.
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spontaneous tolerance state independent of eGFR and
immunosuppressive regimen.

Kynurenic acid display immunomodulatory proper-
ties mediated through GPR35 and aryl hydrocarbon
receptor (AhR).42,43 GPR35 is widely expressed on mye-
loid cells (dendritic cells, mast cells/basophils, eosino-
phils and monocytes) and lymphoid cells such as
natural killer T cells (NKT).44�46 In vitro studies
showed that kynurenic acid-GPR35 signaling inhibited
www.thelancet.com Vol 77 Month March, 2022
guanylate cyclase activity preventing calcium induced
activation and induced b-catenin accumulation stabiliz-
ing NF-kB inhibitors.47�49 In concordance, kynurenic
acid has been shown to reduce Th17 T cell polarization
by reducing IL-23 production by dendritic cells after
TLR4 stimulation by LPS.47 Kynurenic acid also reduces
natural killer T cell activation through GPR35 signaling
under inflammatory conditions,46 promoting CTLA4,
PD-L1 and FOXP3 induction in naÿve CD4+ T cells (i.e.,
11



Table 3: Interaction matrix of the urinary tryptophan-derived metabolite in TOL detected thanks to RP UHPLC-MS method. Each column
represents a tested factor among the interaction model (N-way ANOVA) for each of the twelve ions identified (in rows). A color code
features either the upregulation (red) or the downregulation (blue) or the absence of change induced by the considered factor. Only
tryptamine and serotonin were downregulated in the case of serum creatinine > 150µmol/L. No interaction with immunosuppressive
drugs was detected. The statistical significance of the interaction is represented by * indicating an FDR-adjusted p-value < 0.1; **
indicating an FDR-adjusted p-value < 0.01 and *** indicating an FDR-adjusted p-value < 0.001.
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regulatory T cell phenotype) cocultured with melanoma
cell-lines.50 AhR is a ubiquitous receptor for aromatic
endogenous and exogenous molecules acting as a tran-
scription factor once activated and is involved in
immune-regulatory mechanisms.43,51,52 Kynurenic acid
was demonstrated to be a ligand of AhR with an affinity
of the low micromolar range and a high stability51,53

allowing to the activation of AhR under-inflammatory
conditions and inducing indole 2,3-diamine oxygenase
(IDO) phosphorylation and transcription.54 IDO, the
first enzyme that catalyzes the first steps in the kynure-
nine pathways, is well-known to promote immune-
regulatory mechanisms and tolerance in solid organ
transplantation. Indeed, IDO is upregulated upon
endogenous or exogenous CTLA4 engagement and also
in grafts infiltrated with regulatory T cells (Treg) in a
mice model of kidney allograft tolerance induced by
CTLA4-Ig.55 Conversely, pretransplant conditioning of
the graft with adenovirus-mediated IDO gene transfer
delayed T-cell mediated graft rejection.56 Recently, an in
vitro study showed a role of IDO in restraining humoral
allo-immune response in a AhR-independent mecha-
nism in a one-way MLR model using PBMC from
healthy donors.57
www.thelancet.com Vol 77 Month March, 2022
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We found that the tryptophan-derived metabolites;
kynurenine, kynurenic acid and tryptamine were upre-
gulated in urine from TOL. A recent study by Piper et al
in an inflammatory mice model of collagen arthritis
showed that Breg generation was dependent on AhR
activation.58 To our knowledge, no study has yet demon-
strated any direct immunomodulatory effect of kynur-
enic acid on regulatory B cells, nevertheless, these data
echo to immunological features such as the increase of
B cells with regulatory properties,11 the Tfh defective
functions13,14 and a low DSA immunization rate9 in
TOL and argue for a potential role of kynurenic acid in
the onset and/or maintenance of the active mechanisms
such as IDO, GRP35 and AhR signaling in spontaneous
operational tolerance in KTR. However, the precise
mechanisms of action and main inductors remain to be
determined.

Finally, we recently demonstrated that TOL had a
specific urinary microbiota with an enriched fraction of
Proteobacteria.15 Among those Proteobacteria, we identi-
fied Janthinobacterium lividum which is a Gram-negative
soil dwelling bacteria that produces the Violacein
metabolite known to have antiproliferative59 and anti-
�inflammatory properties via Treg induction.60 Viola-
cein is a bis-indole-derived alkaloid that can be
synthetized from tryptophan61 and can activate AhR.62

Other microbiota indole-derived alkaloids such as pytir-
iazepin (Malessezia), rutaecarpine, evodiamine and
dehydroevodiamine (Euodia rutaecarpa) were shown to
ligate and activate AhR as well.63,64 Furthermore,
microbiota-derived metabolites were recently shown to
amplify AhR activation in Breg and to participate in
dampening inflammation.65 With respect to our data,
we demonstrated that tryptamine was upregulated in
TOL without any increase either in the serotonin/mela-
tonin pathway or in the indole-acetic acid pathway sug-
gesting that tryptamine could fuel microbiota-derived
alkaloid biosynthesis66 and would help to the onset
and/or maintain of spontaneous operational tolerance
in KTR. These data also echo our previous data report-
ing on higher levels of mTregs in TOL with higher
immunosuppressive properties.12 Surprisingly, whereas
the urinary microbiota was enriched in Proteobacteria
mainly in males,15 no gender bias was observed in our
metabolomic signature suggesting that it did not
encompass microbiota-derived metabolites. Further
studies comparing urine microbiota metagenome and
metabolome coupled with in vitro studies on myeloid
and lymphoid cells would help to better decipher the
impact of microbiota on spontaneous operational toler-
ance and the associated immune features.

In conclusion, we demonstrated that spontaneous
operational tolerance in KTR was associated with a spe-
cific urinary metabolomic profile enriched in trypto-
phan-derived metabolites such as kynurenic acid and
www.thelancet.com Vol 77 Month March, 2022
tryptamine allowing us to characterize TOL with a high
sensitivity and specificity. This metabolomic signature
is independent of serum creatinine level and immuno-
suppressive drugs. Kynurenic acid and tryptamine
enrichment allowed the identification of putative path-
ways and metabolites associated with spontaneous oper-
ational tolerance such as IDO, GRP35 and AhR
signaling and microbiota-derived tryptophan metabo-
lites such as indole alkaloids. Further studies on larger
cohorts are then needed to better model the metabolo-
mic network. In parallel, multiomic models (metabolo-
mic and microbiomic) on several compartments
(plasma, urine and kidney graft tissue if possible) cou-
pled with in vitro/in vivo studies are mandatory to better
decipher their potential roles in spontaneous opera-
tional tolerance in KTR.
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