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ABSTRACT Swarming colonies of the bacterium Proteus mirabilis are capable of self-recognition and territorial behavior. Swarms
of independent P. mirabilis isolates can recognize each other as foreign and establish a visible boundary where they meet; in con-
trast, genetically identical swarms merge. The ids genes, which encode self-identity proteins, are necessary but not sufficient for
this territorial behavior. Here we have identified two new gene clusters: one (idr) encodes rhs-related products, and another (tss)
encodes a putative type VI secretion (T6S) apparatus. The Ids and Idr proteins function independently of each other in extracel-
lular transport and in territorial behaviors; however, these self-recognition systems are linked via this type VI secretion system.
The T6S system is required for export of select Ids and Idr proteins. Our results provide a mechanistic and physiological basis for
the fundamental behaviors of self-recognition and territoriality in a bacterial model system.

IMPORTANCE Our results support a model in which self-recognition in P. mirabilis is achieved by the combined action of two
independent pathways linked by a shared machinery for export of encoded self-recognition elements. These proteins together
form a mechanistic network for self-recognition that can serve as a foundation for examining the prevalent biological phenom-
ena of territorial behaviors and self-recognition in a simple, bacterial model system.
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The ability to differentiate self from nonself is a behavior ob-
served throughout biology, from animals to single-celled or-

ganisms. Self-recognition has been hypothesized to be a corner-
stone aspect of territorial behavior, i.e., a preference for kin and
aggressiveness toward nonkin (1). Multiple implementations of
self-recognition capability have been described in a growing set of
bacteria, including Proteus mirabilis, Pseudomonas aeruginosa,
Vibrio cholerae, Escherichia coli, Paenibacillus dendritiformis, and
Myxococcus xanthus (2–9). In both P. aeruginosa and V. cholerae,
the type VI secretion (T6S) system mediates the exchange of tox-
ins between neighboring cells; kin selection occurs through the
strain-specific expression of an antitoxin to the T6S-mediated
toxins, which are usually strain- or species-specific effector mole-
cules (3–5). Similarly, contact-dependent inhibition (CDI) in
E. coli and Dickeya dadantii is achieved through the direct ex-
change of toxin-encoding peptides that are selectively targeted to
inhibit growth of nonisogenic strains; these nonisogenic strains do
not express the requisite neutralizing antitoxin (7, 10–12). It has
been proposed that these CDI toxins are linked to rhs (rearrange-
ment hotspot) sequences in bacteria (11). While the molecular
mechanisms of these systems are beginning to be described, the
native environmental and physiological role for self-recognition
in bacteria is poorly understood.

In the model system P. mirabilis, a Gram-negative bacterium
and causative agent of urinary tract infections, self-recognition is
necessary for territorial behavior. Migrating populations, or

swarms, of independent P. mirabilis isolates can recognize each
other as foreign and establish a macroscopically visible boundary
(of up to 3 mm) where they meet. In contrast, genetically identical
swarms merge, forming a single, larger swarm (2). This behavior
indicates that P. mirabilis populations are capable of distinguish-
ing self from nonself. P. mirabilis infections have been described as
clonal and as a consequence of infection by the host’s endogenous
strain (13, 14).

We previously reported that P. mirabilis populations with mu-
tations in the ids operon, consisting of idsABCDEF, do not merge
with the wild-type parent, indicating a loss of the ability to cor-
rectly recognize self (15, 16). More specifically, we found that idsD
and idsE encode strain-specific self-identity determinants in
P. mirabilis. Strains in which either idsD or idsE is absent form a
territorial boundary with an otherwise genetically identical parent
strain, and this behavior is not rescued by expression of idsD
and/or idsE alleles from a foreign strain (15). This differs from the
Ids proteins IdsA, IdsB, IdsC, and IdsF, which we found do not
confer strain-specific self-identity, as replacing their genes with
alleles from a foreign strain does not alter boundary formation
(15). The Ids proteins, however, are necessary but not sufficient
for self-recognition and subsequent boundary formation in P. mi-
rabilis.

To fully understand and model self-recognition behavior in
bacteria, we need to know the core components and how they
interact with one another. Indeed, the full set of proteins involved

RESEARCH ARTICLE

July/August 2013 Volume 4 Issue 4 e00374-13 ® mbio.asm.org 1

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
mbio.asm.org


in self-recognition in P. mirabilis, as well as their cellular location
and the interconnections between them, were previously un-
known. Moreover, the role of the Ids proteins, and of self-
recognition in general, in social behaviors outside boundary for-
mation has yet to be examined. Here, we have characterized core
molecular networks for self-recognition in one strain of P. mira-
bilis, as well as the interconnections between these proteins.

RESULTS
Self-recognition requires two gene clusters, tss and idr, in addi-
tion to the ids genes. We sought to ascertain the full set of genes
necessary for self-recognition by searching for mutants that dis-
play a territorial boundary formation phenotype different from
that of the wild-type strain and/or an ids-deficient mutant strain.
To this end, we generated a library of roughly 13,000 single-
insertion transposon mutants in the wild-type strain BB2000, rep-
resenting an approximately threefold coverage of its genome.
Then, we screened each mutant from the library by swarming it
against a mutant lacking the ids operon (�ids) and against other
mutants from the transposon library, which served as proxies for
nonself and self populations, respectively. We isolated mutants
that either merged with all strains or formed boundaries with the
�ids strain and each other (Fig. 1A). Seven mutants were pursued:
five that merged with both the �ids mutant and the wild-type
parent (“all-merge”) and two that formed boundaries with both
the �ids strain and the wild-type (“no-merge”) (Fig. 1B). We had
isolated an additional no-merge mutant in a previous self-
recognition screen (15). The isolated mutant strains, like the wild-
type parent and the �ids strain, formed boundaries with the inde-
pendent P. mirabilis wild-type strain HI4320 (Fig. 1B). The eight
insertion sites represented by these recovered mutants map to two
adjacent, divergently oriented gene clusters.

The insertions in the all-merge mutants map to a single 17-
gene cluster, tssA-Q, located from base pair 938,609 to 916,585
(Fig. 1C) (NCBI accession number BankIt1590180 BB2000
CP004022). The sequence of tssA-Q reveals similarities to genes
encoding core components of the Vibrio cholerae type VI secretion
(T6S) system, including the membrane protein genes icmF, dotU,
and sciN, as well as the ATPase gene clpV (17). This is the sole locus
containing these T6S proteins in the BB2000 genome. To confirm
the phenotype associated with tssA-Q, we introduced tssN (icmF)
and the three downstream genes, tssOPQ, into a low-copy-
number plasmid where gene expression is controlled by the region
directly upstream of tssA; we transformed this plasmid, pLW100,
into a tssN-deficient mutant (tssN*) in which tssN is disrupted by
a transposon insertion. The genes tssNOPQ were included on
pLW100, because the tssN mutation likely disrupts expression of
the downstream genes. The plasmid pLW100 complements the
tssN mutation; the resultant strain forms a boundary with �ids
(Fig. 1B). We did not see complementation with a plasmid con-
taining solely tssN using the same promoter region, suggesting
that a disruption in tssO, tssP, or tssQ may also be responsible for
the all-merge phenotype and that the upstream promoter is not
contributing to the complementation phenotype (see the supple-
mental material). Therefore, we conclude that disruption of T6S
function is responsible for the all-merge phenotype.

The no-merge mutants contain transposon insertions in three
separate genes of a previously uncharacterized five-gene locus,
located from base pair 940,506 to 949,474, that we name idr for
“identity recognition” (Fig. 1D). The first gene, idrA, shares high

sequence similarity with idsA (95%) and the T6S-related gene hcp,
whereas the second gene, idrB, has some sequence similarity to
idsB (55%) and the T6S-related gene vgrG (Fig. 1D). The idrB-
deficient (idrB*) mutant strain in which idrB is disrupted by a
transposon insertion served as the idr-deficient strain throughout
our studies. The remaining genes, idrC, idrD, and idrE, are pre-
dicted to encode polypeptides of unknown function. The idrD
gene contains rhs sequences. Some genes containing rhs sequences
have been shown to encode antibacterial toxins (11).

We observe that the ids, idr, and tss gene clusters are all present
in the genome of the independent strain HI4320 (18). The Ids
proteins share more than 97% sequence identity among strains,
except for IdsD and IdsE, which share 96% and 93% sequence
identity, respectively (15). The polypeptides encoded by the tss
locus are highly similar (over 97% sequence identity) between
strains BB2000 and HI4320 (Fig. 1C). However, the idr locus dif-
fers in both nucleotide sequence and gene content between strains
BB2000 and HI4320, suggesting that the idr locus encodes as-yet
uncharacterized strain-specific factors necessary for self-
recognition (Fig. 1D).

The ids, tss, and idr loci are each critical for competition on
surfaces. We next examined the role of each gene cluster in self-
recognition and territorial behaviors. We predicted that self-
recognition capability likely provides an increased ability to sur-
vive against other organisms. As self-recognition-dependent
boundary formation in P. mirabilis is principally apparent on sur-
faces, we investigated whether the loss of self-recognition capabil-
ity decreases a population’s ability to compete on surfaces. In
equal initial ratios, we mixed cells of the parent BB2000, which is
fully capable of self-recognition, with those of either the �ids,
tssN*, or idrB* mutant strains, all of which are deficient in one or
more self-recognition protein. We placed each mixed population
on a nutrient surface in a single spot from which the population
migrated outward as a single swarm. Then, we analyzed for dom-
inance by measuring whether the mixed population merged with
a pure swarm of either BB2000 or an isolated swarm of the tested
mutant strain. The parent BB2000 prevailed in virtually every
mixed population (Fig. 2A).

To determine how the parent strain achieves dominance, we
sampled for the presence of the parent and mutant strains at dis-
crete locations within the swarm of the mixed population. Nota-
bly, parent BB2000 cells migrated to the periphery of the swarm
more rapidly than any of the mutant strains (Fig. 2B). None of the
mutant strains have a motility defect, compared to BB2000, when
migrating alone (Fig. 1). Therefore, loss of self-recognition capa-
bility diminishes a population’s relative rate of movement to, and
dominance of, the leading edge of a swarm colony when it is grow-
ing with an otherwise genetically identical strain fully capable of
self-recognition (Fig. 2B).

We next assessed how the BB2000 parent and mutant strains
fared in competition with the independent wild-type P. mirabilis
strain HI4320. In similar assays for dominance as described above,
we mixed an equal ratio of HI4320 and BB2000 cells and then
placed the mixed population onto a nutrient surface in a spot from
which the cells migrated outward as a single swarm. We measured
for dominance by examining whether the swarm of the mixed
population formed a boundary with an adjacent pure swarm of
either HI4320 or BB2000. Most mixtures of HI4320 and BB2000
yielded boundaries with the neighboring HI4320 swarm but
merged with the BB2000 swarm, indicating that BB2000 cells

Wenren et al.

2 ® mbio.asm.org July/August 2013 Volume 4 Issue 4 e00374-13

mbio.asm.org


dominated at the leading edges of mixed populations (Fig. 2C).
Likewise, mixtures of HI4320 and the �ids mutant strain primar-
ily formed boundaries with a pure HI4320 swarm but merged with
a pure �ids swarm, indicating that the �ids strain was dominant in
these mixed population and that the ids genes are not needed for
competition between strains (Fig. 2C). In contrast, mixtures of
HI4320 with either the tssN* or idrB* mutant strain primarily
yielded swarms that merged with a pure HI4320 swarm but
formed boundaries with pure swarms of the tssN* or idrB* mutant
strain, respectively, indicating that HI4320 dominated in these

mixed populations (Fig. 2C). The presence of the Idr and T6S
proteins, but not the Ids proteins, is therefore advantageous in
competitions against the independent strain HI4320. Further, the
Idr and Ids proteins have discrete roles in competitions; while Ids
and Idr proteins are necessary for competitions with the parent
strain, only Idr proteins are involved in competition with foreign
strains.

Type VI secretion is required for export of components in-
volved in self-recognition. The phenotypes observed during the
competition assays suggest a dynamic connection between these
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three gene clusters that together contribute to self-recognition and
territorial behaviors. Since T6S is needed for the export of proteins
in other bacterial systems, we predicted that self-recognition
products in P. mirabilis are likely exported from the cell via this
system. As such, we examined the secretion profiles of the wild-
type, �ids, idrB*, and tssN* strains for proteins involved in self-
recognition using liquid chromatography-tandem mass spec-
trometry (LC-MS/MS). We detected the self-identity determinant
protein IdsD, as well as IdsA and IdsB, in the extracellular fraction
of the wild-type P. mirabilis strain BB2000 but not in that of the
�ids mutant strain (Fig. 3A). None of the remaining Ids proteins
were present in any of the extracellular fractions by LC-MS/MS
analysis. The newly identified IdrA and IdrB proteins were also
present in the extracellular fractions for both the wild-type and the
�ids mutant strains, indicating that export of the Idr proteins is
independent of the Ids proteins (Fig. 3A). Conversely, IdsA, IdsB,
and IdsD, as well as IdrA, were detected by LC-MS/MS analysis in
supernatant isolated from the idrB* mutant strain, providing fur-
ther support for the idea that the Ids and Idr proteins likely func-
tion independently in export from the cell (Fig. 3A).

We readily observed IdsA and IdrA in the extracellular frac-

tion of the wild-type strain as discrete bands in a Coomassie
blue-stained protein gel. We excised these bands and con-
firmed by LC-MS/MS that they were indeed IdsA and IdrA
(Fig. 3B). Only a single polypeptide band corresponding to the
molecular weight of IdrA was present in the �ids extracellular
fraction, confirming the LC-MS/MS results (Fig. 3B). In con-
trast, neither IdsA nor IdrA was visible in the extracellular
fraction of the tssN* mutant strain (Fig. 3B). Indeed, neither
Ids nor Idr proteins were detected above background levels in
the supernatant of the tssN* mutant strain analyzed by LC-
MS/MS (see the supplemental material).

To further confirm the LC-MS/MS data, we attached a FLAG
epitope to the C terminus of IdsA in a low-copy-number plasmid
containing the entire ids operon with its native promoter, result-
ing in plasmid pLW101, and then introduced this plasmid con-
struct into the �ids strain, into wild-type BB2000, and into the
tssN* mutant strain. In these plasmid-carrying strains, IdsA-
FLAG was absent in the extracellular fraction of the tssN* mutant
strain but was present in that of the �ids and wild-type strains, as
detected by Western blotting (Fig. 3C). Of note, IdsA-FLAG was
detected not only in the supernatant but also on the surface of
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intact BB2000 carrying pLW101 cells (see the supplemental mate-
rial). The lack of extracellular IdsA-FLAG in the tssN* mutant
strain was not due to reduced production, as IdsA-FLAG was pres-
ent at equivalent levels in the whole-cell extracts of all plasmid-
carrying cells (Fig. 3C).

We performed a similar Western blot analysis using custom-
raised antibodies to IdsB. IdsB was detected at equivalent levels in
the whole-cell extracts of the wild-type, idrB*, and tssN* strains

but was detected only in the supernatant fractions of the wild-type
and idrB* strains (Fig. 3D). Unfortunately, we were unable to
directly localize epitope-tagged variants of IdsD in vivo, perhaps
due to low expression of IdsD and/or to steric hindrance of the
epitope by a putative identity complex. However, based on the
LC-MS/MS and Western blot analyses, export of the self-identity
determinant protein IdsD, as well as the non-identity determinant
proteins IdsA, IdsB, IdrA, and IdrB, requires a functional T6S
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system. Moreover, export of the Ids components is independent of
the Idr components and vice versa.

DISCUSSION

Here we report the discovery of two additional gene clusters that
together with the ids operon comprise a network of self-
recognition genes (Fig. 4A). One locus, idr, encodes proteins nec-
essary for merging with the parent BB2000 strain, while the other
locus, tss, encodes a type VI secretion system that mediates export
of Ids and Idr proteins. Significantly, we found that multiple Ids
and Idr proteins are exported from the cell, including the self-
identity determinant protein, IdsD.

The Idr and Ids proteins represent
two separate mechanisms for self-
recognition. Export of the Idr proteins is
independent of the ids gene cluster, and
likewise, export of the Ids proteins is not
dependent on the idr gene cluster. More-
over, strains with mutations in the ids or
idr genes have different phenotypes in in-
traspecies competitions. The Ids proteins,
which are needed only for competition
with the parent strain, encode strain-
specific self-identity determinants (15).
Interestingly, the idrD gene contains rhs
sequences, which are commonly found in
bacterial species. Recent research has im-
plicated that these rhs-encoded proteins,
as well as proteins involved in contact-
dependent inhibition, such as CdiA in
E. coli, encode toxin elements in the
C-terminal domain (6, 11, 19). However,
the rhs-containing sequences may also
encode adhesion molecules, because they
share some sequence similarity to YD-
repeat-containing teneurin proteins (11).
Either of these proposed idrD functions
could explain why the idr genes are re-
quired for increased competition (and/or
population migration) against foreign
strains.

Indeed, we demonstrate that the
self-recognition capability of P. mirabilis
provides a competitive advantage for
the population specifically on surfaces.
We did not observe similar advantages
when the wild type was grown with self-
recognition mutant strains in liquid
(see the supplemental material). Growth
on surfaces induces a broad develop-
mental change in P. mirabilis where in-
creased cell-cell contact yields increased
population-wide coordination that is in-
tegral to migration and outward expan-
sion of the swarm (reviewed in references
20 and 21). Perhaps the behavior of self-
recognition is most beneficial in environ-
ments where social interactions are more
frequent and thus potentially more im-
pactful.

Our research supports a model in which P. mirabilis self-
recognition involves the display of self-identity proteins that are
likely interpreted via a direct physical interaction with other cells;
this communication then yields a self-versus-nonself assessment
that guides whether boundaries are formed between populations
(Fig. 4B). Some self-identity proteins are likely displayed on or
near the cell surface, as physical contact between cells is required
for boundary formation (22). This extracellular exposure may
serve to communicate a cell’s identity represented by the self-
identity determinant molecules IdsD and IdsE during interactions
with neighboring cells (15, 16). Indeed, Ids and Idr proteins are
transported out of the cell via the T6S system and either are trans-
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IdsB

IdrB

Ids Idr

A

B Self is present.

WT WT

WT WT

Self is present.

WT tss-

WT tss-

Self is absent.

WT ids-

WT
idr- 
or 
ids-

idr-

or

FIG 4 Model for Ids and Idr functional roles in self-recognition. (A) Functional flow chart for the roles
of the Ids, Idr, and T6S proteins in self-recognition and territorial behaviors. A subset of Ids and Idr
proteins are primarily exported via a shared T6S system (tss) and are necessary for competition on
surfaces with the parent strain. Idr proteins are also needed for competition against foreign strains. (B)
Our proposed model for self-recognition predicts that the combined actions of interactions between
cognate Ids and Idr proteins between two neighboring cells result in the determination that self is
present, ultimately resulting in the merging of two swarms. Expression of the self-recognition compo-
nents within the cells is sufficient, though in wild-type strains, some of these components are exported
from the cell by a T6S system. In contrast, absence of one or more of the Ids and Idr self-recognition
systems leads to the determination that self is absent and ultimately to boundary formation.

Wenren et al.

6 ® mbio.asm.org July/August 2013 Volume 4 Issue 4 e00374-13

mbio.asm.org


ported into the neighboring cell or localize on the cell surface (see
the supplemental material). However, we have not yet found evi-
dence for the transfer of self-recognition proteins into a neighbor-
ing cell.

We propose that boundary formation can result from the ac-
tions of a single population, which has queried on a cell-cell level
whether the neighboring cell is self. For each population of P. mi-
rabilis strain BB2000, “self” is defined by the combined actions of
the Ids and Idr pathways. Self-recognition occurs when both the
expected cognate Ids and Idr proteins are present in (or on) the
neighboring cell, ultimately resulting in merging with the neigh-
boring swarm (Fig. 4B). In contrast, we predict that boundary
formation results from the absence of the cognate Ids and Idr self
determinants in the neighboring cell (Fig. 4B). Both the Ids and
Idr proteins likely initiate downstream signaling pathways that are
altered depending on whether the interactions are with cognate or
noncognate Ids and Idr proteins, respectively.

This two-part network for self-recognition appears analogous
to aspects of the innate immune system and indeed has many
parallels to the immune surveillance of natural killer (NK) cells. In
current models for NK cell activity, the presence of self cells (i.e., of
one’s own organism) is conveyed by the combined detection of
two surface receptors (an activation receptor ligand and class I
major histocompatibility complex [MHC]), resulting in no killing
of the self cell. In contrast, the absence of either receptor leads to
the NK cell’s determination of an absence of self and the subse-
quent killing of the nonself (or receptor-deficient) cell, as re-
viewed in reference 23. Intriguingly, these results in P. mirabilis
further support the idea that cellular self-recognition is a behavior
shared among organisms at many levels of biological complexity.

While the capability for self-recognition is broadly found, it
remains unclear why and how bacteria utilize this ability. In P. mi-
rabilis, self-recognition is necessary for territorial expansion when
one population interacts with competing nonisogenic popula-
tions. Recently, other research groups have shown that type VI
secretion systems confer a fitness advantage in interbacterial and
interkingdom competitions, likely through transport of small
peptides, but their role in intraspecies interactions is only begin-
ning to emerge (3–5, 24–31). Our demonstration that a T6S sys-
tem functions directly in self-recognition-dependent territoriality
expands the set of known applications for this widely conserved
export machinery. We still need to explore the mechanisms of T6S
in P. mirabilis and its relative functional capabilities compared to
T6S systems described in other bacteria. Importantly, we still need
to understand the dynamics of Idr and Ids protein-protein inter-
actions within and between cells. Indeed, the Ids, Idr, and T6S
proteins together form a mechanistic foundation for examining
the basic biological phenomena of territoriality and self-
recognition in a bacterial model system.

MATERIALS AND METHODS
Bacterial strains and media. All strains are listed in Table 1. Escherichia
coli strains were maintained on LB agar and Proteus mirabilis strains were
maintained on L swarm minus (LSW�) agar (32). P. mirabilis was grown
on CM55 blood agar base agar (Remel Inc., Lenexa, KS) for swarm colony
growth. For broth cultures, all strains were grown in LB broth under
aerobic conditions at 37°C. Antibiotics were used at the following concen-
trations: 15 �g/ml tetracycline (Tet); 100 �g/ml rifampin (Rif); 50 �g/ml
kanamycin (Kn); 35 �g/ml chloramphenicol (Cm) for E. coli and
50 �g/ml Cm for P. mirabilis. All media contained antibiotics appropriate

TABLE 1 Bacterial strains and plasmids

Strain or mutation Genotype Reference or source

Proteus mirabilis
BB2000 Wild type 32
HI4320 Wild type 18, 40
�ids �ids::Cmr 15
�ids c. pidsBB �ids::Cmr carrying a plasmid expressing the ids operon under the control of the

ids upstream region
15

idrB* idrB::Tn-Cmr This study
idrC* idrC::Tn-Cmr This study
idrD* idrD::Tn-Cmr 15
tssA* tssA::Tn-Cmr This study
tssB* tssB::Tn-Cmr This study
tssG* tssG::Tn-Cmr This study
tssM* tssM::Tn-Cmr This study
tssN* tssN::Tn-Cmr This study
BB2000 c. pKG101 Wild type carrying a plasmid with Knr and promoter-less gfp 16
tssN* c. pLW100 tssN::Tn-Cmr strain carrying a plasmid expressing tssNOPQ under the control

of the tssA upstream region
This study

BB2000 c. pLW101 Wild type carrying a plasmid expressing IdsA-FLAG in which a FLAG was engineered
to the C terminus of IdsA in the pidsBB vector

This study

�ids c. pLW101 �ids::Cmr strain carrying a plasmid expressing IdsA-FLAG in which a FLAG was
engineered to the C terminus of IdsA in the pidsBB vector

This study

tssN* c. pLW101 tssN*::Cmr strain carrying a plasmid expressing IdsA-FLAG in which a FLAG was
engineered to the C terminus of IdsA in the pidsBB vector

This study

Escherichia coli
SM10�pir c. pUTmini-Tn5-Cm Cmr 41
S17-1�pir 41
XL10-Gold ultracompetent cells Agilent Technologies,

Santa Clara, CA
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for selection or maintenance of plasmids. Strains carrying plasmids are so
denoted with a “c.”

Plasmid construction. The tssN (icmF) complementation plasmid
pLW100 carries the last four genes of the tss gene cluster (tssN through
tssQ) under the transcriptional control of the proposed promoter con-
tained in the region immediately upstream of the tss gene cluster. This
plasmid was constructed in two steps: the 1,200 bp upstream of tssA was
amplified by PCR from the BB2000 genome and inserted into the pBBR1-
NheI (15) plasmid using the Infusion HD system (Clontech Laboratories,
Mountain View, CA); tssN, tssO, tssP, and tssQ were then PCR amplified
and inserted into the above plasmid (with Infusion HD), resulting in
pLW100. To construct pLW101, which is the plasmid encoding IdsA-
FLAG, a FLAG epitope (N-DYKDDDDK-C) was inserted immediately
before the idsA stop codon in the pidsBB plasmid (15) using QuikChange
site-directed mutagenesis (Agilent Technologies, Santa Clara, CA). Plas-
mids were propagated in E. coli XL10-Gold and then conjugated into
P. mirabilis via mating with E. coli S17-1�pir carrying the target plasmid as
described earlier (15).

Swarm boundary assay. Cells were inoculated from overnight or mid-
logarithmic-phase cultures with an inoculation needle onto the surface of
CM55 agar. Swarm plates were incubated for 18 to 24 h at 37°C and
screened by eye for the presence or absence of a visible boundary.

Transposon library construction and screen. A library of P. mirabilis
transposon insertion mutants was generated by mating P. mirabilis strain
BB2000 with E. coli strain SM10�pir carrying pUTmini-Tn5-Cm as de-
scribed previously (15). Matings were performed on LSW� agar plates in
the absence of selection for 8 to 16 h, and the resultant populations spread
on 22-cm by 22-cm LSW��Tet�Cm agar trays (Genetics/Molecular De-
vices, United Kingdom) and incubated at 37°C for 24 to 36 h. Colonies
were picked using a robotic colony picker (Qbot/Molecular Devices,
Genetix, United Kingdom) and arrayed into 96-well master plates. In
total, 12,960 transposon insertion mutants were arrayed from 96-well
master plates onto swarm agar trays (Nunc OmniTray; Nalge Nunc Inter-
national, Rochester, NY) using the gridding head of the robotic colony
picker. The swarm agar trays were arrayed in one of two patterns: (i) the
mutants alone were arrayed and screened for boundary formation be-
tween independent mutants, or (ii) the mutants were arrayed alternating
with the �ids mutant. After 24 and 48 h, each mutant was scored for
boundary formation or merger with neighboring colonies. From the ini-
tial high-throughput, robotic screen of ~26,000 interactions, 192 poten-
tial mutants were selected for further retesting. Potential mutants were
then examined in individual swarm boundary assays against the BB2000
parent, the �ids mutant strain, and wild-type P. mirabilis strain HI4320
(33) to confirm the phenotype. Of those tested, 21 mutant strains were
confirmed. Eight mutants contained disruptions in eight different loci, six
strains contained mutations in the ids locus, and the remaining mutants
contained disruptions in the tss (five) and idr (two) loci.

Mapping the transposon insertion sites. Arbitrary PCR was used to
map the sites of the mini-Tn5-Cm transposon insertions as described
previously (34–36). Briefly, genomic DNA was isolated from each trans-
poson mutant of interest by phenol-chloroform extraction, and the trans-
poson insertion sites were amplified using Vent polymerase (New Eng-
land Biolabs, Ipswich, MA) and primers Tn5Ext and ARB6 for the first
round and then oNS054 (5= TTCACACAGGAAACAGCTATGACCGCA
TTAAAATCTAGCGAGG 3=) and ARB2 for the second round. Samples
were treated with ExoSAP-IT (New England Biolabs, Ipswich, MA) be-
tween rounds and prior to sequencing. Sanger sequencing was performed
using primer oNS056 (5= TTCACACAGGAAACAGCTATGACC 3=) by
Genewiz, Inc. (South Plainfield, NJ). Results were mapped against the
HI4320 (18) and the BB2000 (NCBI accession number BankIt1590180
BB2000 CP004022) genome sequences using ViroBLAST (37).

Sequence alignments. The predicted polypeptide sequences for the
ids, tss, and idr gene clusters were compared between independent P. mi-
rabilis strains BB2000 and HI4320. Percent identities for the entire peptide
were calculated in pairwise comparisons using ClustalW2 (38, 39).

Surface competitions. To observe the spatial distribution of co-
swarming P. mirabilis strains over time, BB2000 c. pBBR2-GFP (16) was
competed against BB2000 or the �ids, tssN*, or idrB* mutant. Overnight
cultures were normalized to an optical density at 600 nm (OD600) of 0.1.
Competing strains were mixed together in a 1:1 ratio, and 0.5 �l of each
coculture was spotted onto the center of a CM55 agar plate. After incuba-
tion first at room temperature for 22 h and then at 37°C for 6 h, each
swarm consisted of four swarm rings and was patched using a half-plate
48-prong device onto selective plates that could detect the marked BB2000
strain (LSW� Kn) and, when applicable, the mutant strain (LSW� Cm).
Select swarms (i.e., BB2000 versus BB2000) were also plated nonselec-
tively onto LSW� agar. To determine which strain was dominant in sur-
face competitions, overnight cultures, normalized to OD600 of 1.0, of
BB2000 were mixed at a 1:1 ratio with cultures of the �ids, tssN*, or idrB*
strain. Mixed populations were inoculated onto CM55 agar using an in-
oculation needle; monocultures of the boundary indicator strains were
inoculated approximately 1 cm away. After overnight incubation at 37°C,
the presence or absence of boundaries between swarms was used to assess
strain dominance at the leading edge. Dominance of BB2000 was assessed
as the merger of mixed populations with a monoswarm of BB2000; dom-
inance of the mutant was assessed as a merger with a monoswarm of itself
or, in the case of the tssN* strain, the �ids strain.

For competition between independently derived strains, the surface
competition described above was repeated using the P. mirabilis wild-type
strain HI4320 competed against BB2000 or the �ids, tssN*, or idrB* strain,
with the modifications that a monoculture of HI4320 was used as the
indicator strain on each plate instead of BB2000 and dominance of
HI4320 was assessed as the merger of mixed populations with the HI4320
monoswarm. For all assays, unclear boundaries were recorded as “nei-
ther.”

TCA precipitation. Overnight cultures were diluted to an OD600 of 0.1
in fresh LB�Kn and grown at 37°C with shaking to an OD600 of 3.5 to 4.5.
For whole-cell extracts, 1 ml of culture was centrifuged, and the pellet was
resuspended in 100 �l SDS-PAGE sample buffer. For supernatant sam-
ples, 30 ml of culture was clarified by centrifugation and filter sterilized
(0.22-�m filters). The filtered supernatant was treated with trichloro-
acetic acid (10% final concentration) and incubated on ice for 30 min.
Precipitated proteins were collected by centrifugation, washed twice with
prechilled 100% acetone, dried, and resuspended in 100 �l 2� SDS-PAGE
sample buffer.

Protein sequence analysis by LC-MS/MS. TCA-precipitated samples
were analyzed by electrophoresis using 10% SDS-PAGE gels and then
stained with Coomassie blue. Gel regions of interest were excised and
analyzed by liquid chromatography-mass spectrometry/mass spectrome-
try (LC-MS/MS) by the Taplin Biological Mass Spectrometry Facility
(Harvard Medical School, Boston, MA). The unique peptide results for
the Ids and Idr proteins are presented in Tables S1 to S4.

Antiserum preparation. Polyclonal antiserum against residues
Cys713 to Ala723 of IdsB was raised in rabbits according to the standard
protocols (Covance Research Products, Denver, CO).

Gel electrophoresis and Western blot. Protein samples were sepa-
rated by gel electrophoresis using 15% Tris-Tricine gels and were either
stained with Coomassie blue or transferred to nitrocellulose for Western
blot analysis. Western blot membranes were probed with primary anti-
body (either 1:5,000 mouse anti-FLAG [Sigma-Aldrich, Allentown, PA],
1:1,000 mouse anti-sigma70 [Thermo Scientific, West Palm Beach, FL], or
1:1,000 rabbit anti-IdsB antiserum) for 1 h and with secondary antibody
(1:5,000 goat anti-mouse-HRP [KPL, Gaithersburg, MD] or 1:5,000 goat
anti-rabbit-HRP [KPL, Gaithersburg, MD]) for 1 h and visualized using
Immun-Star HRP luminol/enhancer (Bio-Rad, Hercules, CA) and the
ChemiDoc XRS system (Bio-Rad, Hercules, CA).

Nucleotide sequence accession number. The sequence for tssA-Q was
deposited in NCBI under accession number BankIt1590180 BB2000
CP004022.
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