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Rhipicephalus microplus salivary gland molecules
induce differential CD86 expression in murine
macrophages
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Abstract

Background: Tick parasitism is a major impediment for cattle production in many parts of the world. The southern
cattle tick, Rhipicephalus (Boophilus) microplus, is an obligate hematophagous parasite of domestic and wild animals
that serves as vector of infectious agents lethal to cattle. Tick saliva contains molecules evolved to modulate host
innate and adaptive immune responses which facilitates blood feeding and pathogen transmission. Tick feeding
promotes CD4 T cell polarization to a Th2 profile usually accompanied by down-regulation of Th1 cytokines
through as yet undefined mechanisms. Co-stimulatory molecules on antigen presenting cells are central to
development of T cell responses including Th1 and Th2 responses. Tick induced changes to antigen presenting cell
signal transduction pathways are largely unknown. Here we document the ability of R. microplus salivary gland
extracts (SGE) to effect differential CD86 expression.

Results: We examined changes in co-stimulatory molecule expression in murine RAW 264.7 cells in response to
R. microplus SGE exposure in the presence of the toll-like receptor 4 (TLR4) ligand, LPS. After 24 hrs, CD86, but not
CD80, was preferentially up-regulated on mouse macrophage RAW 264.7 cells when treated with SGE and then
LPS, but not SGE alone. CD80 and CD40 expression was increased with LPS, but the addition of SGE did not alter
expression. Higher concentrations of SGE were less effective at increasing CD86 RNA expression. The addition of
mitogen or extracellular kinase (MEK) inhibitor, PD98059, significantly reduced the ability for SGE to induce CD86
expression, indicating activation of MEK is necessary for SGE induced up-regulation.

Conclusions: Molecules in SGE of R. microplus have a concentration-dependent effect on differential up-regulation
of CD86 in a macrophage cell line activated by the TLR4 ligand, LPS. This CD86 up-regulation is at least partially
dependent on the ERK1/2 pathway and may serve to promote Th2 polarization of the immune response.

Background
Ticks carry a variety of emerging and established vector-
borne pathogens of medical and veterinary importance
including arboviruses, ehrlichiae, spotted fever rickettsiae,
B. burgdorferi, relapsing fever borreliae, and babesiae
[1,2]. Tick- transmitted diseases also have a significant
global impact on livestock production and economic
development [3]. The southern cattle tick, Rhipicephalus
(Boophilus) microplus is a vector of bovine babesiosis and
anaplasmosis, which are important diseases in cattle
throughout tropical and subtropical regions [4,5]. It is

estimated that the domestic livestock industry realizes
annual savings totalling over three billion dollars at
today’s currency rate since R. microplus and the closely
related species R. annulatus were eradicated from the
United States [6,7]. Increasing resistance to commercially
available acaracides among R. microplus in Mexico is a
concern for the US Cattle Tick Eradication Program and
a growing threat to the livestock industry [8-11]. Anti-
tick vaccines are an alternative method for the control of
R. microplus. Bm86-based vaccines represent the first
generation of anti-tick vaccines to be commercialized
[12]. Identifying new vaccine targets and anti-tick strate-
gies for cattle would benefit greatly from a further under-
standing of the molecular basis underlying tick-host
interactions.
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Rhipicephalus microplus is one-host tick species that
evolved complex repertoires of saliva molecules to facili-
tate feeding and increase reproductive fitness [13,14].
Tick saliva modulates host responses including, hemos-
tasis, wound healing, pain and itch responses, inflamma-
tion, and immune defenses [15,16]. Ticks modulate
chemokines, T cells, interferon g (IFNg)-induced macro-
phage activation and production of pro-inflammatory
cytokines such as interleukin 1b (IL-1b) and tumor
necrosis factor a (TNFa), reactive oxygen intermediates,
and nitric oxide production [17-20]. Various studies
documented the ability of numerous tick species to
down-regulate Th1 cytokines while simultaneously up-
regulating Th2 cytokines [16]. Th2 polarization was
shown to occur upon mitogen stimulation of murine
lymphocytes or splenocytes derived from mice infested
with Dermacentor andersoni, Ixodes pacificus, Ixodes
ricinus and Rhipicephalus sanguineus [21-24]. Several
studies using murine systems involved stimulating
mixed populations of splenocytes or lymphocytes with
broad non-antigen dependent T cell stimulants to exam-
ine cytokine changes and T cell proliferative potential. It
has been shown in I. scapularis and D. andersoni that
tick infestation and salivary gland extracts reduce anti-
gen specific responses [25,26]. Similar immunosuppres-
sive effects have been reported in bovine models. R.
microplus infestation has been shown to reduce bovine
T and B cell numbers and responsiveness [27]. Further-
more, R. microplus alters gene expression at the site of
attachment as well as cellular subsets and cytokines
involved in the inflammatory process in susceptible Bos
taurus cattle as compared to resistant Bos indicus breeds
[28,29]. Additionally, a sphinomyelinase-like enzyme in
I. scapularis saliva has been identified as having a role
in altering CD4 T cell responses towards a more Th2
polarization by using an in vivo antigen-specific TCR
transgenic adoptive transfer model [25,26].
Tick saliva may directly suppress dendritic cell (DC)

differentiation and function [30]. Dendritic cells pulsed
with I. ricinus saliva drive naïve CD4 T cells towards
Th2 differentiation [31]. In addition, in vitro dendritic
cell maturation and ability to induce CD4 T cell prolif-
eration has been shown to be suppressed by I. scapularis
salivary gland prostaglandin E2 [32]. These host evasion
strategies alter the immune response to a more Th2
polarization which benefits transmission of tick-borne
pathogens that would be counteracted by host Th1
mediated defenses [33].
The mechanisms by which tick saliva alters antigen

presenting cell (APC) function are poorly understood.
APCs express co-stimulatory molecules CD80 and CD86
and up-regulate expression of these molecules upon
activation. Their binding with CD28 is required for
T-cell activation in addition to TCR engagement with

the cognate antigenic peptide-MHC class II complex
[34]. Although structurally related, CD80 and CD86 are
distinct glycoproteins expressed on professional APCs
such as dendritic cells (DCs), B cells and macrophages
[35]. CD80 and CD86 are known to modulate Th1/Th2
cytokine profiles [36-38]. While CD80 preferentially
favors Th1 type T cell differentiation, CD86 augments
IL-4 production and overall Th2 type T cell responses
[37,39,40]. CD86 was shown to be differentially regu-
lated by various cytokines including Th2 promoting
IL-4, via activation of MAP kinase and Stat6 [41]. More-
over, TLR signals and the MAPK pathway also control
cytokine release during the activation and effector
phases of adoptive immune responses [42,43]. Therefore
SGE may act to manipulate one or several of these path-
ways to alter APC responses. In this study, effects of R.
microplus SGE on the regulation of co-stimulatory
molecule expression were examined in the murine
macrophage cell line RAW 264.7.

Results
Changes in Co-stimulatory molecule expression by SGE
Co-stimulatory molecule expression of RAW 264.7 cells
was assayed by flow cytometry after 24 hrs of treatment
with or without 5 μg/mL of SGE from adult female ticks
fed on cattle for 3 days and 100 ng/mL of LPS. Both
CD80 and CD40 were up-regulated in the presence of
LPS, but addition of SGE did not alter this expression
(Figure 1A). LPS with 1 hr pre-treatment of SGE signifi-
cantly (P ≤ 0.05) increased CD86 expression as compared
to LPS alone, SGE alone or untreated cells. Cells co-
stained for both CD80 and CD86 showed an increase in
the CD86 positive population from 16.7% ± 5.9% SEM
with LPS alone to 34.8% ± 5.8% with LPS in the presence
of SGE (P < 0.05) (Figure 1B). CD86 RNA expression
after 24 hrs of LPS stimulation with 0, 1, 5, or 10 μg/mL
of SGE indicate that regulation of CD86 is concentration
dependent. 10 μg/mL of SGE show reduced capacity to
increase CD86 expression as compared with 5 μg/mL
(P < 0.01) (Figure 1C). Co-stimulatory molecule and
cytokine mRNA expression was measured at 1, 3, 6 and
24 hrs after LPS stimulation (Figure 2). No significant dif-
ferences in CD80, TNF-alpha or IL-10 transcripts were
detected between LPS alone and LPS in combination
with 5 μg/mL SGE. However, CD86 mRNA expression
was significantly increased in LPS with SGE group at
24 hrs when compared to LPS alone, SGE alone, or unsti-
mulated cells. Taken together, these data indicate SGE
synergizes with LPS to specifically up-regulate CD86 cell
surface expression.

Inhibition of MEK prevents up-regulation of CD86
The ERK1/2 signaling pathways were blocked pharma-
cologically by addition of the MEK inhibitor, PD98059.
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RAW 264.7 cells were treated with 50 μM PD98059 for
1 hr prior to addition of 5 μg/mL SGE for 1 hr followed
by 24 hrs of SGE and LPS stimulation. Changes in
CD86 and TNFa message were measured by real-time
PCR at the 24 hour post-stimulation time point. Addi-
tion of PD98059 significantly inhibited CD86 up-regula-
tion by LPS with SGE, but not LPS alone (Figure 3).
PD98059, a known inhibitor of LPS-induced TNFa gene
expression, did significantly inhibit increases in TNFa
message of both LPS and LPS with SGE. This indicates
increases in CD86 expression by SGE may be partially
dependent on the ERK1/2 pathways.

Discussion
Modulation of host immune responses by ticks is
important for successful blood feeding and facilitation of
transmission of tick-borne pathogens in susceptible
hosts [16]. This study is the first to examine changes in
co-stimulatory molecule expression of antigen present-
ing cells induced by the SGE of adult female R. micro-
plus. We show that at low physiologic concentrations of
SGE, CD86 is up-regulated in a murine macrophage cell

line. Previously, it was demonstrated that the number of
R. microplus ticks infesting a host can modulate the
antibody response to tick saliva; specifically low to mod-
erate levels of infestation promoted an IgE response
where as high infestation showed increases in IgG
responses [44]. In the presence of IL-4, a Th2 cytokine,
CD86 has been shown to promote IgE synthesis in
human B cells [45]. R. microplus tick infestation num-
bers and host breed susceptibility can also alter accumu-
lation of basophils, eosinophils and expression of
vascular adhesion molecules involved in immune cell
recruitment to sites of infestation [46]. Basophils can
promote Th2 responses by IL-4 production and both
basophils and eosinophils express CD86 and could be
targets of salivary gland molecules [47,48]. Our data
show a SGE concentration-dependent effect on CD86
up-regulation, which may indicate the potential of bi-
modal responses to differing levels of tick salivary pro-
teins in the skin microenvironment and systemic
responses. Previous reports show that saliva from adult
R. sanguineus females fed for seven days and containing
high protein concentrations of 64 μg/mL can inhibit

Figure 1 Cell surface expression of co-stimulatory molecules in response to SGE. RAW 264.7 cells were stimulated for 1 hr with 5 μg/mL
SGE followed by 24 hrs of 100 ng/mL LPS. Cells were then analyzed for co-stimulatory molecule expression by flow cytometry (A & B) or by
real-time PCR with varying concentrations of SGE (C). Flow cytometry images are representative of 3 independent experiments. *P < 0.05,
** P < 0.01.
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Figure 2 Relative message expression of co-stimulatory molecules and cytokines over 24 hrs. RAW 264.7 cells were unstimulated or
stimulated for 1 hr with 5 μg SGE followed by 1, 3, 6 or 24 hrs of 100 ng/mL LPS or no LPS. Total RNA was extracted and real-time PCR
performed to measure CD80, CD86, IL-10 and TNFa message levels. N = 3-5 independent experiments. * P < 0.05 ** P < 0.01.

Figure 3 Inhibition of SGE mediated upregulation of CD86 by MEK inhibitor, PD98059. RAW 264.7 cells were left untreated or treated with
50 μM PD98059 for 1 hr. Cells were then stimulated with or without 5 μg/mL SGE for 1 hr followed by 24 hrs of 100 ng/mL LPS or no LPS. RNA
was extracted and real-time PCR performed to assay CD86 and TNFa message levels. N = 3 independent experiments. * P < 0.05 ** P < 0.01.
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differentiation and maturation of murine bone-marrow-
derived dendritic cells including CD80 and CD86
expression [30]. It is well established in blood feeding
arthropods that salivary gland gene expression profiles
change during feeding and these changes in salivary
gland gene expression may have differential effects on
immune cell responses [16,49-51].
Ticks tend to modulate host immune responses away

from a Th1 profile (measured by decreased IFNg) and
towards a Th2 phenotype (measured by increased IL-4)
[22,25,30]. In addition, this Th2 response appears to
facilitate pathogen transmission [52,53]. The ability of I.
ricinus saliva pulsed dendritic cells to drive a Th2
response was initially reported using 15 μg/mL saliva
from females fed for 5.5 days [23,31]. In the presence of
IL-1b, these DC’s showed increased CD80 and CD86
expression and stimulated IL-4 production and priming
of naïve CD4 T cells towards Th2 differentiation. Pros-
taglandin E2 from I. scapularis saliva showed a trend to
increase CD86 expression of bone-marrow derived DC
stimulated with LPS, while it inhibited IL-12 and TNFa
protein expression in culture supernatants [32].We did
not observe changes in IL-10 or TNFa mRNA expres-
sion at R. microplus SGE concentrations tested in RAW
264.7 cells. Rhipicephalus microplus is a metastriate tick
and a member of the sub-family most phylogenetically
distant from the prostriate Ixodes ticks [16]. Salivary
gland transcriptomes of prostriate and metastriate spe-
cies have different proteins repertoires that might be
classified into similar functional families [13,54] repre-
senting convergent evolution of blood feeding strategies.
Identification and characterization of components in

tick saliva responsible for Th2 responses would present
targets for vaccine strategies to reduce tick burden and
offer alternative eradication strategies. The first tick
molecule identified to drive IL-4 response by host CD4
T cells was a spingomyelinase-like enzyme in I. scapu-
laris [55]. The authors speculate that the structure
could potentially bind Toll-like receptors (TLRs) or
other pathogen associated molecular pattern (PAMP)
binding molecules. Activation of TLRs is necessary for
optimal activation of APCs to initiate and polarize adap-
tive immune responses against invading pathogens
[56,57]. TLR4 deficient mice have reduced CD86 expres-
sion on DCs and a reduced ability to promote Th2 cyto-
kines and allergen-specific IgE levels [58]. In our study
we used ultrapure LPS shown to signal specifically
through TLR4. SGE alone did not affect macrophage
cytokine or co-stimulatory molecule expression, but
synergized with LPS to increase CD86. In our study we
used an immortalized in vitro homogenous cell popula-
tion, devoid of the potential for cross-signalling between
heterogeneous populations of immune cells. Further stu-
dies are required to examine how SGE affects a complex

heterogeneous population of primary murine or bovine
immune cells. The authors hypothesize that in a com-
plex skin microenvironment saliva proteins act on a het-
erogeneous population of cells in concert with other
danger signals, endogenous or exogenous, to signal in
part, through TLRs to program APCs towards Th2
responses.
IL-4 is primarily involved in promoting the differentia-

tion and proliferation of T helper 2 cells[59]. IL-4 can
also act on APCs to polarize them during an active
infection and it has been shown to up-regulate CD86 on
human alveolar macrophages via ERK1/2 and JAK/
STAT6 pathways [41]. Very few studies have examined
signal transduction pathways affected by tick saliva
molecules. ERK1/2 pathways control cell survival and
differentiation [60]. Addition of the MEK inhibitor,
PD98059, prior to SGE and LPS treatment, inhibited
SGE induced CD86 up-regulation in this study. This
indicates that up-regulation of CD86 by SGE may be
partially dependent on ERK1/2 pathways. Alteration of
CD86 expression may function to promote salivary
gland molecule driven Th2 responses, potentially
increasing pathogen transmission.
Further studies could examine whether the bioactive

factor(s) in SGE act synergistically with IL-4 via ERK1/2
pathways to regulate CD86 expression and subsequent
Th2 polarization. This is the first study examining signal
transduction pathways affected by R. microplus SGE.
Previously LPS-induced p38 and ERK phosphorylation
was reduced in bone-marrow derived DCs treated with
~40 μg of saliva protein/mL of fully engorged R. sangui-
neus ticks [61]. In conjunction with our findings, this
further supports the hypothesis that tick salivary gland
molecules may have concentration-dependent effects on
local and systemic immune responses.

Conclusions
Molecules in SGE of R. microplus have a concentration-
dependent effect on differential up-regulation of CD86
in a macrophage cell line activated by the TLR4-ligand,
LPS. This CD86 up-regulation is at least partially depen-
dent on the ERK1/2 pathway and may serve to promote
Th2 polarization of the immune response.

Methods
Isolation of Tick Salivary Glands
The Deutch strain of R. microplus used as the source of
ticks for this study originated from samples collected in
Webb County, TX during an outbreak in 2001. The
Deutch strain has been maintained by standard rearing
practices at the USDA-ARS Cattle Fever Tick Research
Laboratory at Moore Field, TX. The ticks and calves
were determined free of Babesia bovis and Babesia bige-
mina as described previously [62]. Unfed larvae were
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placed in patches, one on each side of a stanchioned
calf, and allowed to feed following protocols approved
by the Institutional Animal Care and Use Committee of
the USDA-ARS Knipling-Bushland Livestock Insects
Research Laboratory. Upon final ecdysis, adults were
allowed to feed for three days and then separated by
sex, surface cleaned with 70% ethanol and dissected.
Salivary glands were removed and placed into sterile-fil-
tered 0.15 M, Dulbecco’s phosphate buffered saline
(PBS) (Sigma, St. Louis, MO), pH 7.2 held on ice. Sali-
vary glands were sonicated at 55 kHz for 1 minute on
ice and centrifuged at 14,000 × g for 20 minutes at 4°C.
The supernatant was collected as salivary gland extract.
Protein concentration was determined by Pierce BCA
(bicinchoninic acid) Protein Assay (Thermo Scientific,
Rockford, IL). The SGE was separated into 20 μl ali-
quots and subsequently frozen at -70°C and thawed no
more than twice.

Cell Culture
Murine RAW 264.7, monocyte/macrophage-like cells,
Dulbecco’s Modified Eagle’s Medium (DMEM) supple-
mented with 4 mM L-glutamine, 4,500 mg/L glucose,
1 mM sodium pyruvate,1500 mg/L sodium bicarbonate,
and 100 U/mL streptomycin/penicillin were obtained
from the American Type Culture Collection (ATCC,
Manassas, VA). Cells were cultured in DMEM supple-
mented with 10% FBS (Atlanta Biologicals, Norcross,
GA) and passaged 1:4 by cell scraping with fresh media
every 2 days. Cells were subcultured into 12 or 24 well
plates overnight to a confluency of 60-80%. Cells were
treated with 5 μg/mL of SGE for 1 hr prior to addition
of 100 ng/mL of Ultrapure; E coli 0111:B4 lipopolysac-
cride (LPS), (Fisher Scientific, Pittsburg, PA) for 1, 3, 6
or 24 hrs prior to RNA extraction or flow cytometric
analysis. For inhibition studies, 50 μM of MEK inhibitor
PD98059 were added for 1 hr prior to addition of SGE.

Flow Cytometry
RAW 264.7 cells were treated for 1 hr with 5 μg/mL of
SGE followed by 24 hrs of 100 ng/mL LPS. Cells were
then washed 2× with PBS and immunolabeled with 1 μg
of the following antibodies for 30 min at 4°C: CD40
clone: 1C10, CD86 clone: GL1, and CD80 clone: 16-
10A1, or non-specific rat or Armenian hamster IgG iso-
types to assess background fluorescence (eBioscience,
San Diego, CA). Cells were washed 3× with PBS, resus-
pended in 400 μl PBS, and analyzed on an Accuri C6
Flow Cytometer. Data was analyzed by CFlow Plus soft-
ware (Accuri Cytometers, Ann Arbor, MI).

Real-time PCR
RAW 264.7 cells were treated for 1 hr with 5 μg/mL of
SGE followed by 100 ng/mL LPS. After 1, 3, 6 or 24 hrs

of LPS treatment total RNA was extracted by spin
column centrifugation using RNAeasy Mini Kit (Qiagen,
Valencia, CA). RNA concentration was determined
using a NanoDrop spectrophotometer (Thermo Scienti-
fic, Wilmington, DE) and RNA quality was analyzed by
agarose gel electrophoresis. Synthesis of cDNA was per-
formed with Superscript III First-Strand Synthesis Sys-
tem for RT-PCR (Invitrogen, Carlsbad, CA), using 500
ng of total RNA and random hexamer primers. For the
amplification of specific mRNA, inventoried 20× Taq-
Man MGB probe-primer sets for CD80, CD86, TNF,
IL-10 and GAPDH, was purchased and added to cDNA
and 2× TaqMan Universal PCR Master Mix (Applied
Biosystems, Foster City, CA). PCR was performed in a
CFX96 Real-Time PCR Detection System (BioRad, Her-
cules, CA) using the following thermal settings: one
cycle of 2 min at 50°C followed by 8 min at 95°C, and
40 cycles of 15 s at 95°C, 60 s at 60°C. All reactions
were performed in duplicate. Relative mRNA expression
was calculated by comparative Ct-method. GAPDH was
used as the endogenous control [63].

Statistics
Results are expressed as means ± SE. Significant differences
between means were determined using unpaired Student’s
t-tests or two-way analysis of variance (ANOVA) with
P < 0.05 considered statistically significant.
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