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Abstract

Persons who inject drugs (PWID) are at increased risk for overdose death (ODD), infections

with HIV, hepatitis B (HBV) and hepatitis C virus (HCV), and noninfectious health conditions.

Spatiotemporal identification of PWID communities is essential for developing efficient and

cost-effective public health interventions for reducing morbidity and mortality associated

with injection-drug use (IDU). Reported ODDs are a strong indicator of the extent of IDU in

different geographic regions. However, ODD quantification can take time, with delays in

ODD reporting occurring due to a range of factors including death investigation and drug

testing. This delayed ODD reporting may affect efficient early interventions for infectious dis-

eases. We present a novel model, Dynamic Overdose Vulnerability Estimator (DOVE), for

assessment and spatiotemporal mapping of ODDs in different U.S. jurisdictions. Using Goo-

gle® Web-search volumes (i.e., the fraction of all searches that include certain words), we

identified a strong association between the reported ODD rates and drug-related search

terms for 2004–2017. A machine learning model (Extremely Random Forest) was devel-

oped to produce yearly ODD estimates at state and county levels, as well as monthly esti-

mates at state level. Regarding the total number of ODDs per year, DOVE’s error was only

3.52% (Median Absolute Error, MAE) in the United States for 2005–2017. DOVE estimated

66,463 ODDs out of the reported 70,237 (94.48%) during 2017. For that year, the MAE of

the individual ODD rates was 4.43%, 7.34%, and 12.75% among yearly estimates for states,

yearly estimates for counties, and monthly estimates for states, respectively. These results

indicate suitability of the DOVE ODD estimates for dynamic IDU assessment in most states,

which may alert for possible increased morbidity and mortality associated with IDU. ODD

estimates produced by DOVE offer an opportunity for a spatiotemporal ODD mapping.

Timely identification of potential mortality trends among PWID might assist in developing

efficient ODD prevention and HBV, HCV, and HIV infection elimination programs by target-

ing public health interventions to the most vulnerable PWID communities.
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Introduction

Injection drug use (IDU) is associated with an increase in overdose deaths (ODDs), HIV and

hepatitis C virus (HCV) infections, and other noninfectious health conditions [1–3]. From

2010 to 2015, the number of HCV new infections jumped by 294%, with particularly sharp

increases among states hardest hit by the opioid crisis [4]. These IDU-related infections are

associated with a high cost of health care and high mortality, presenting a substantial public

health problem. Spatiotemporal identification of PWID communities and assessment of the

health conditions associated with IDU might assist in identifying hard-to-reach populations

most vulnerable to infections with bloodborne pathogens, which require targeted public health

interventions to reduce health disparity among these populations.

Reported ODD from different geographic regions is a fundamental metric for estimating

key factors associated with PWID (e.g., community size or IDU risk) and for assisting in devel-

oping and implementing interventions. Overdose is the most frequent cause of death among

PWID, with annual mortality rates for PWID being 14–17 times greater than for their non-

drug using peers [2]. Although timeline of drug overdose death reporting has improved in

recent years [5], ODD quantification can take time, with delays in ODD reporting occurring

due to a range of factors including death investigation and drug testing. Hence, CDC Wonder

has 11–23 months delays in final data availability. Although 12-month ending provisional

counts (97–99% complete) of ODD are now available after only a 6-month lag [5], a monthly

estimate may enable a more dynamic ODD surveillance to aid in identifying regions that may

be at risk for increased morbidity and mortality associated with IDU.

Web-searches are a powerful method for monitoring intention and interest in a topic,

which has been termed predicting the present, and demonstrate their utility with monitoring

economic indicators [6]. Web-searches were first used successfully in epidemiology for pre-

dicting incidence of influenza-like illnesses [7, 8], giving rise to the practice of what is now

referred to as digital epidemiology [9–13]. With regard to ODD, it was found that increases in

online posts about synthetic opioids precede increases in synthetic opioid death rates [14]. In

addition, Young et al. [15] studied the association of opioid-related Web-searches with future

heroin-related admissions to emergency departments. Their model explained 72% of the vari-

ance in heroin-related emergency visits across nine metropolitan areas in the United States,

indicating potential applicability of digital epidemiology in assessing IDU risks [15].

We hypothesize that observed ODD trends could be used as a link between the activity of

the PWID community and the easily accessible and recent Web-searches data. The accuracy of

ODD predictions can then be used to prune the data and thus find the most important key-

words. Thus, we implemented a novel tool, the Dynamic Overdose Vulnerability Estimator

(DOVE), for surveillance and assessment of ODD trends by using Web-searches. Applying

this tool could provide an opportunity for the detection of changes in ODDs in vulnerable

communities, so that public health investigations can be targeted to areas with potential

increases in ODDs and IDU-related infections.

Methods

Data

Observed ODD data. For each state for 2004–2017, we gathered the number of yearly and

monthly deaths caused by drug poisonings (overdose), including ICD-10 underlying cause of

death codes X40–X44, X60–X64, X85, and Y10-Y14 [16]. For each U.S. county in the same

period, we gathered number of yearly and monthly deaths in the same way. The crude rates per

100,000 persons were used, with both monthly and yearly estimates using the yearly population.
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We did not use age-adjusted rates in any of the analyses. Data were obtained from the Centers

for Disease Control and Prevention’s National Center for Health Statistics, Underlying Cause of

Death 1999–2017 on CDC WONDER Online Database, released in December 2018. Data were

obtained from the Multiple Cause of Death Files, 1999–2017, as compiled from data provided

by the 57 vital statistics jurisdictions through the Vital Statistics Cooperative Program [17]. For

many counties (e.g., 68.73% for 2017), the exact ODD number is suppressed because of privacy

concerns when the number of deaths is<10. We assigned estimates for these counties on the

basis of the procedure outlined by Tiwari et al. [18], who demonstrated that effects of suppres-

sion can be largely overcome by using the known total suppressed count and partitioning these

counts according to county population. Although we could have requested access to the sup-

pressed data, we wanted this research to be strictly based on publicly available data, either from

the CDC wonder side or google, so our work can be better replicated and validated by others.

Because of the large portion of suppressed data for the monthly county estimates (95.16% for

2017), we excluded the monthly county estimates from further analysis.

Web-search data. We obtained from Google Trends™ (Google, Inc., Mountain View, Cal-

ifornia) the query rates of 80 drug-related keywords (Table 1) in each state for each month and

year from January 1, 2004, to December 31, 2018. The rate for each query is calculated as the

total query volume for the search term in question within a state divided by the total number

of queries in the state during the period examined [6]. Google states that the these rates have

the following characteristics (internally defined by Google, Inc): (i) the queries are broad-

matched; therefore, such queries as drug overdose were counted in the calculation of the rates

for overdose; (ii) rates are computed from a subset of all data collected using a sampling

method, and the results, therefore, varied slightly from day to day; and (iii) due to privacy con-

siderations, only queries with a certain minimum volume are reported. Because of restrictions

from Google, Inc. on access to county-level Web-search rates, the model was trained by using

only the state-level Web-search rates.

Analysis

Individual features. To measure the association strength of a keyword with the ODD

rates, we calculated the individual Pearson correlation across all 51 regions (50 states and the

District of Columbia) for each target year.

Machine learning overview. The entire dataset includes all available years (e.g., 2004–

2017), with 80 keywords and 1 response variable (ODD data). The following is an overview of

the machine learning procedure.

• We split the dataset into a validation dataset (last known year, 2017), and a working dataset

(all previous year, 2004–2016).

• For each target year in the working dataset (e.g., 2005), we calculated the prediction accuracy

(measured as Median Absolute Error percentage [MAE]) of a model trained using only pre-

vious years (e.g., 2004) and tested on the target year.

• This was repeated with a variety of parameter combinations (feature selection levels, machine

learning methods, number of previous years used, levels of temporal information, and levels

of spatial information), for a total of 2048 combinations for each of the 12 target years of the

working dataset. The average of each combination over the 12 evaluated years was calculated.

• This way, parameter tuning allowed us to select not the best parameters for the entire train-

ing dataset, but rather parameters that performed well predicting unseen data over a long

period of time for each test year.
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• Finally, the best value for each parameter was chosen and the model with these parameters

was applied to the validation dataset. This dataset has never been seen by the model before

and thus will allow us to estimate its true predictive power.

Table 1. List of web-search keywords and their association with ODD rate in 2017.

Keywords (A–L) Correlation MultiSURF Rank Keywords (M–Z) Correlation MultiSURF Rank

adderall 0.2646 29 meperidine -0.0006 59

addict 0.5365 53 methadone 0.6470 7

addiction 0.2050 45 morphabond 0.1764 36

alprazolam -0.0375 72 morphine 0.2045 21

amphetamine 0.1739 61 murder eight 0.0000 42

apadaz -0.1013 51 naloxone 0.6690 10

arymo 0.1747 36 narcan 0.8318 1

bath salts -0.0911 39 narcotic 0.1806 64

benzodiazepine 0.0755 66 norco -0.2641 70

buprenorphine 0.5564 43 opana 0.3360 33

china girl 0.1244 19 opiate 0.5191 16

china white 0.2758 30 opioid 0.7508 9

cocaine 0.4039 48 overdose 0.6644 8

codeine -0.1581 50 oxy -0.1159 22

cody -0.1759 49 oxycodone 0.2561 67

demerol -0.1422 34 oxycontin 0.1905 52

depression 0.1930 25 oxymorphone 0.3806 68

diazepam -0.0604 20 pain 0.4410 12

dilaudid 0.2608 75 perc 0.6644 5

dope 0.0463 27 percocet 0.4655 17

dope sick 0.2587 63 percocet 30 0.5393 35

dose 0.1249 56 pill 0.2318 69

drug dealer 0.5724 11 purple drank -0.3003 58

duragesic 0.0498 80 rehab 0.2690 13

dying 0.1937 47 ritalin 0.1632 62

embeda -0.0044 40 roxybond 0.0432 41

exalgo 0.1949 73 shooting up 0.3032 55

fentanyl 0.5394 6 sober 0.0305 74

fenty 0.2558 23 suboxone 0.7092 4

goodfella 0.3349 31 subutex 0.5695 14

hep c 0.4867 44 subutex vs suboxone -0.1918 18

heroin 0.7707 2 targiniq 0.0863 36

hydrocodone -0.3915 15 tattoo 0.0256 28

hydromorphone 0.0299 71 track marks 0.3112 79

hysingla -0.0446 57 tramadol -0.0356 32

iv drug 0.3892 65 veteran 0.0936 77

king ivory -0.1454 54 vicodin 0.3052 76

laxative 0.1752 78 vikes -0.2672 26

vivitrol 0.7505 3

withdrawal 0.6469 24

xtampza 0.2972 60

zohydro -0.1299 46

https://doi.org/10.1371/journal.pone.0243622.t001
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Feature selection. Machine learning is improved by feature selection methods that can

function in noisy problems and detect complex patterns of association between variables. Here

we applied the MultiSURF method to choose a subset of the keywords, which is a Relief-Based

Algorithm that yields the most reliable feature selection performance across a wide range of

problem types [19]. For each model, we calculated the MultiSURF score of each keyword vari-

able and ranked them. For each model, 15 levels of numbers of variables were tested, ranging

from 5 variables to 75 variables in steps of 5.

Machine learning method. Multiple machine learning methods were tested, including

Ordinary least-squares, Bayesian ridge regression, Lasso, Adaptive Boosting, k-nearest neigh-

bors, Decision trees, random forest, and Extremely Random Forest (ERF) [20, 21]. ERF dem-

onstrated the best average results over all years evaluated. We used the scikit-learn [22] Python

implementation of ERF with default sci-kit parameters.

Number of previous years used. We studied models with two levels of previous years

used: (i) only the previous year (e.g., if the target year is 2006, training only with 2005) or (ii)

all available years (e.g., if the target year is 2006, training with both 2005 and 2004).

Temporal information. We tested two levels of temporal information: (i) without any

extra information and (ii) with a single added variable containing the lagged observed ODD

rate, which is obtained from the last available value for that particular area, in a similar manner

to Kandula and Shaman [13]. Thus, besides the keyword rates, this level includes the informa-

tion about the ODD rate in each studied region from the previous year.

Spatial information. We tested four levels of spatial information: (i) without any extra

information; (ii) with a simple dummy variable for each state, where a datapoint has a 1 if its

state is the one for the variable; (iii) with a spatial neighborhood structure, as suggested by San-

dahl [23], where there is a variable for each state and a datapoint has a 1 if its state is the same

as the variable or if it is a geographic neighbor of the state; and (iv) with a population weighted

spatial neighborhood structure, where there is a variable for each state and a datapoint has a 1

if its state is the same as the variable, or if it is a geographic neighbor of the state it gets a num-

ber equal to the neighboring state population divided by the sum of all neighboring

populations.

County-level estimation. We calculated county estimates as follows: (i) For each county,

we calculate percentage of the overall observed state ODD counts that belong to each county.

As there are several years’ worth of data, the final percentage was the expected value for the

new year based on the trend obtained by linear regression. (ii) ODD rates are predicted for

each state using Web-searches. Then, the predicted rate is used to estimate the number of

ODD counts based on the state population size. (iii) The predicted state ODD counts are then

partitioned among counties according to their final percentage. (iv) Finally, these county ODD

counts are used to calculate the county rate by dividing by the counts the county population

size.

Results

Correlation of individual web-search terms with ODD rates

Our interest in Web-search terms started with the observation that the search rates of certain

drug-related terms (drug dealer, heroin and overdose) revealed daily peaks 1–3 hours after mid-

night, especially on weekends (Fig 1A). Afterwards, we found by using https://www.google.

com/trends/correlate that most keywords associated with the state ODD rates (from the year

2015) were drug-related terms such as overdose, narcan, and suboxone. Due to this finding, we

proceeded to measure the association between the reported yearly ODD rates and drug-related

keywords for each year during the 2004–2017 period. A list of 80 web-search terms included a
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mixture of: (i) common drug names, (ii) new slang terms and (iii) terms related to high risk

populations or behaviors (e.g. “veteran”), and (iv) terms with high correlation with the state

rates of 2015 using Google correlate.

Among 80 search terms evaluated (Table 1), 24 were highly correlated with the reported

ODD rate during 2017 (Pearson correlation, P< .01). The 10 most correlated terms were nar-
can (r = 0.8318; P< .0001), heroin (r = 0.7707; P< .0001), opioid (r = 0.7508; P< .0001), vivitrol
(r = 0.7505; P< .0001), suboxone (r = 0.7092; P< .0001), naloxone (r = 0.6690; P< .0001), perc
(r = 0.6644; P< .0001), overdose (r = 0.6644; P< .0001), methadone (r = 0.6470; P< .0001),

and withdrawal (r = 0.6469; P< .0001). All correlation measures shown refer to the state level.

Variation of web-search terms over time and among states

Out of the 100 counties with the highest observed ODDs during 2017, only 58 were among the

top 100 during 2016 and only 11 during 2009. These changes indicate the highly dynamic

nature of the ODD rate variation (Fig 1B). This dynamic nature can also be observed among

the top 10 keywords correlated with ODDs during 2017, where only a few were also in the top

10 during previous years (Fig 1C). Correlation of individual keywords with ODD rates over all

states in a particular year varied over time (Fig 2A). The considerable change of the top 10 key-

words between consecutive years (Fig 2B) indicates a highly dynamic association between

Web-search terms and ODDs. With limited exceptions (e.g., suboxone, methadone, or with-
drawal), where association with ODDs constantly increases over time (consistent and strong

association with ODDs during the previous 2–3 years), the association of the majority of key-

words fluctuated between consecutive years (e.g., opana, fentanyl, or diazepam).

A noticeable variation of the association of ODDs with use of different Web-search key-

words was observed among states (Fig 3). Some of the terms among the 20 most correlated

with ODDs (Fig 3) (e.g., narcan or vivitrol) did not show high correlation with ODDs for

Fig 1. Dynamic nature of opioid and search rates. (A) Search Rates of 3 Drug-Related Terms for October 1, 2019–

October 8, 2019; (B) For Each Year, Number of Counties in the Top 100 (by reported overdose death [ODD] Rate)

That Are Also in the Top 100 Counties in 2017; (C) For Each Year, Number of Keywords in the Top 10 (By

Correlation with reported ODD Rates) That Are Also in the Top 10 Keywords Identified for 2017.

https://doi.org/10.1371/journal.pone.0243622.g001
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certain states (e.g., Arkansas, Hawaii, or Oregon). Correlation of other terms (e.g., perc or ben-
zodiazepine) varied broadly from negative to positive values among states (Fig 3). Besides indi-

vidual terms, overall correlation with ODDs varied among states, with certain states (e.g.,

Arizona, California, Georgia, Ohio, and Pennsylvania) having a high overall correlation,

whereas others (e.g., Montana, North Dakota, Oregon, Washington, and Wyoming) had low

overall correlations.

Fig 2. Changes across time. (A) Correlation of 80 Keywords with observed Overdose Death (ODD) Rates for Each

Year, 2004–2017, Keywords Are Sorted from the Highest to the Lowest Average Correlation Across All Years; (B)

Keywords in the Top 10 (Shown in Black) by Correlation with observed ODD Rates for Each Year, 2004–2017.

https://doi.org/10.1371/journal.pone.0243622.g002

Fig 3. Correlation between web-search volumes by using individual keywords and yearly observed overdose death

rates by states during 2004–2017.

https://doi.org/10.1371/journal.pone.0243622.g003
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Machine learning with the working dataset (2005–2016)

Given that we have several years’ worth of data, we can search for a model that performs well

under several years with dynamic changing conditions. We split the dataset into a validation

dataset (last known year, 2017), and a working dataset (2004–2016). For each target year in the

working dataset, we calculated the MAE of a model trained using only previous years (e.g., 2004

and 2005) and tested on the target year (e.g. 2006). This was repeated with a variety of parameter

combinations for each of the 12 target years of the working dataset. The average of each combi-

nation over the 12 values was calculated and the best value for each parameter chosen:

• The best method was ERF (Fig 4A), both having the lowest MAE across all parameter combi-

nations and the lowest variation across years. A close second was Bayesian Ridge Regression.

ERF fits several randomized decision trees on various sub-samples of the dataset and uses

averaging to improve the predictive accuracy and control over-fitting.

• The best number of top keywords (by MultiSURF score) was 5 (Fig 4B).

Fig 4. Machine learning performance in the working dataset. (A) Machine Learning Methods; (B) Number of top

keywords used (from 5 to 75, in steps of 5); (C) Number of previous Years Used; (D) Inclusion of lag observed ODD

rate; (E) Inclusion of spatial variables; (F) Comparison of the final model’s performance in 2017 with and without

Web-search Terms.

https://doi.org/10.1371/journal.pone.0243622.g004
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• The MAE of models using all available previous years was lower than the MAE of models

using only one immediately previous year (Fig 4C).

• The MAE of models including a lag variable of the ODD rate was lower than the MAE of

models lacking this addition (Fig 4D).

• The MAE of models including spatial information was lower than the MAE of models lack-

ing spatial information. The best MAE occurred with the addition of a spatial neighborhood

structure, where there is a variable for each state and a datapoint has a 1 if its state is the

same as the variable name or if it is a geographic neighbor of the state (Fig 4E).

Over the entire working dataset, the model with this particular combination of parameters

(ERF, 5 top keywords, all previous years, previous year ODD rate, added spatial neighborhood

structure) showed a MAE of 9.32%, 10.59%, and 13.19% among yearly estimates for states,

yearly estimates for counties, and monthly estimates for states, respectively (Fig 5A). The

model estimated a total of 487,161 ODDs out of the reported 501,946 (97.05%) during this

Fig 5. Dynamic Overdose Vulnerability Estimator (DOVE) performance. (A) Median Absolute Error % of the Final

Model for Each Target Year; (B) Total number of observed and predicted yearly ODDs; (C) Total number of observed

and predicted Monthly ODDs; (D) Predicted versus Observed State 2017 Overdose Death (ODD) Rates; (E) Predicted

versus Observed County 2017 ODD Rates; (F) Predicted versus Observed State Monthly ODD Rate in 2017.

https://doi.org/10.1371/journal.pone.0243622.g005
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time period (Fig 5B). As these results come from our training dataset, the more relevant results

are for 2017 as shown below.

DOVE assessment for 2017

The validation dataset (2017) has not been used for building the final model. This set was

tested only to make the final evaluation of the model performance. The following 5 keywords

were identified as the most relevant for assessing ODDs during the period 2004–2016 due to

their high MultiSURF score: narcan, heroin, vivitrol, suboxone, and perc (Table 1).

DOVE estimated 66,463 ODDs out of the reported 70 237 (94.48%) during 2017. The

median error of the individual ODD rates was 4.43%, 7.34%, and 12.75% among yearly esti-

mates for states, yearly estimates for counties, and monthly estimates for states, respectively

(Fig 5A). These results were better than the models lacking web-search keywords (using only

the lag rate and the spatial neighborhood structure) (Fig 4F). Error of yearly DOVE estimates

for 2017 varied among states from 0.04% in Utah to 44.78% in Wyoming. Estimates for all

regions, except the District of Columbia, Vermont, and Wyoming, were made with less than

20% error, whereas the most accurate estimates (<1% error) were obtained for Florida, Kan-

sas, Maine, New York, Oregon, Tennessee, and Utah.

The DOVE estimates for counties were as follows: (i) Out of the top 100 U.S. counties by

ODDs, 91 were also in the top 100 identified by DOVE; (ii) 75 of the reported top 100 U.S.

counties by ODD rates were also in the top 100 identified by DOVE; (iii) When comparing the

ranks of all counties, the correlation between observed and predicted ODD rates was very high

(Spearman r = 0.9569, P< 0.001).

Dynamic spatiotemporal ODD mapping

DOVE can capture changes dynamically, whereas the lag in ODD reporting by using hard

data is 11–23 months. DOVE estimated 71,622 ODDs occurred during 2018, which was 5.94%

higher than the reported true value (n = 67,367). DOVE assessments can be obtained almost

instantly for the past month or year at the state level and for the past year at the county level.

Fig 6 displays examples of maps generated by DOVE, comparing the reported versus estimated

ODDs by states and counties for the state of Connecticut. This state showed the lowest error

while having none of its counties suppressed, thus the similarity of observed and predicted is

separated from the uncertainty on the method to assign rates to suppressed counties.

We investigated if the error was associated with population size, Internet usage penetration

(as of 2017) [24], or fraction of population in urban areas (as of 2010) [24]. The error in our

estimates is not correlated with the percentage of the population in each state that uses the

Internet (Pearson correlation = 0.0076; P = 0.9580), nor with population size (-0.2359; 0.0956),

nor with the fraction of population in urban areas (-0.0494; 0.7309).

Discussion

With some limitations presented below, DOVE provides a simple dynamic spatiotemporal

mapping of ODD at the level of U.S. states and counties by using Web-searches. Internet-

derived information has been applied recently to epidemiologic investigations of different

infectious and noninfectious diseases, giving rise to the practice of what is now referred to as

digital epidemiology [9–13]. Google Trends is most frequently used for assessing epidemio-

logic trends from Web-searches [25, 26]. Although examples of successful use of digital epide-

miology in different epidemiologic settings exist [15, 27, 28], reliable application of the web-

search information to public health is still under investigation [25, 26]. Recently, Kandula and
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Shaman [13] reappraised the utility of Google Flu Trends, showing how the initial failures of

the Google Flu Trends could have been avoided by using different techniques.

To a substantial degree, accuracy of assessments relies on strength of linkage of an epidemi-

ologic variable chosen for evaluation with Web-search volumes. Here, we used ODDs because

we expected them to generate a robust and specific response among Internet users. Indeed, we

identified a strong association between selected drug-related search terms and reported ODD,

resulting in the 95.02% accuracy of the DOVE assessment. DOVE’s accuracy varied among

jurisdictions and across time, producing epidemiologically relevant estimates with yearly

median errors of 11.64% and 14.23% among states and counties, respectively. Considering a

variable association of search terms with ODD among states and counties, the model might

require specific term adjustments to improve performance in jurisdictions with lower DOVE

accuracy. However, overall, DOVE’s performance improved with each year of observation,

which can be explained simply by an increased amount of data (as more previous years are

available) or by the increased correlation of individual variables with ODD across time.

Although the reasons for this increase are unclear, the contribution of increased Internet

usage, resulting in a greater volume of data is a reasonable explanation. If this is true, the

model will continue improving with time, with the Internet providing more data and more

specific terms.

The availability of sensitive diagnostic tests and highly effective therapy capable of achieving

sustained virologic response in >95% of patients have made HCV infection elimination tech-

nically feasible in the United States and globally [29]. Given that PWID are at highest risk for

HCV transmission, making them a high priority for treatment [1], spatiotemporal identifica-

tion of PWID communities and assessment of the health conditions associated with IDU pro-

vides potential means of identifying vulnerable populations needed for targeted interventions.

ODD estimates are vital for assessment of IDU risk and associated HIV, HBV, and HCV infec-

tions as well as an array of noninfectious health conditions. ODDs have been used to establish

county-level vulnerability scores for acquisition of HIV infection [30]. However, considering

the time and effort needed to assess ODD, the estimates are outdated, which limits their timely

Fig 6. US maps generated by the Dynamic Overdose Vulnerability Estimator (DOVE). The color corresponds to

the ODD rate, from low (blue) to high(red). (A) Observed 2017 Overdose Death (ODD) Yearly Rates by State; (B)

DOVE Estimated 2017 ODD Yearly Rates by State; (C) Observed July 2017 ODD Rates by State; (D) DOVE Estimated

July 2017 ODD Rates by State; (E) Observed County 2017 ODD Yearly Rates in the State of Connecticut; DOVE

Estimated County 2017 ODD Yearly Rates in the State of Connecticut.

https://doi.org/10.1371/journal.pone.0243622.g006
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application among such dynamic groups as PWID. In comparison with reported ODDs

obtained by using hard data, estimates made by DOVE, while less exact, can be obtained more

quickly, thus facilitating its effective application in identifying areas that may warrant further

investigation. However, it must be considered that our county estimates are ultimately based

on a partitioning of the state estimate based on previous behavior. This means that within a

state, DOVE estimates are not better than estimates based on the trend of previous years, for

instance obtained by forecasting models. However, when counties are compared at the

national level, DOVE estimates become useful as they still incorporate the updated web-based

estimate and thus changes in ranking at the national level can identify areas where ODD rates

may have recently increased.

A major HIV and HCV infection outbreak that occurred in Scott County, Indiana [31–33]

lends support to the need for a more dynamic monitoring among vulnerable populations.

During November 2014–November 2015, the Indiana State Department of Health recorded a

cluster of 11 HIV infections in a small rural community in Scott County. Further investigation

led to detection of 181 HIV-positive patients linked to injection use of oxymorphone [31–33].

Genetic analyses revealed a longstanding and continued HCV transmission within this

affected community, and a dense and dynamic network of HCV transmission among PWID

that enabled extensive HIV transmission [33]. A detailed analysis of this outbreak indicates

that transmission began in 2011, underwent a considerable increase in mid-2014, and

decreased after public health interventions [34]. In retrospect, Scott County was one of the top

5 Indiana counties for ODD rates in 2010, with the highest county ODD rate in both 2011 and

2012, as well as the 12th highest U.S. county rate for 2011 and 13th highest for 2012. Although

this was the period just before the county experienced a substantial HIV and HCV infection

outbreak associated with PWID, the final data for each of these years were released 2–3 years

later (Fig 7). This episode highlights an instance where DOVE could have better informed pro-

gram decision-making.

Application of technologies like DOVE, when capable of detecting dynamic changes in

ODD rates, could assist public health efforts, especially after DOVE is enhanced with actual

web-based county rates. Reported ODDs can be used as a strong metric of changes in the activ-

ity and size of the PWID community. However, surveillance systems have delays in data avail-

ability for months, highlighting the need for timely and comprehensive ODD surveillance.

The recorded ODD values are highly accurate but not current. Although high accuracy of esti-

mates is crucial, sensitivity to dynamic ODD variations is key for effective application of esti-

mates in public health interventions among PWID. Technologies like DOVE might serve as a

virtual advance warning of potential rapid changes in vulnerability, which, for example, might

have helped in developing timely interventions for reducing HIV and HCV infection transmis-

sion in Scott County. DOVE is now available in GHOST (Global Hepatitis Outbreak and Sur-

veillance Technology) [35]. GHOST is a cloud-based platform where only registered Public

Health Users have access to a suit of bioinformatic tools to aid in Hepatitis surveillance and

outbreak detection. As part of GHOST we have several “X-labs”, where new beta-release tools

are tested and troubleshooted before wide release. DOVE has been implemented as an X-lab

into GHOST, currently providing state-yearly, state-monthly and county-yearly “vulnerability

scores”, which are ranks obtained using our predicted ODD rates. The purpose of DOVE is to

work as a smoke alarm and find places with a growing PWID community which can be vulner-

able to the spread of viral infections.

A noticeable variation exists in association of ODDs with Web-search keywords among

jurisdictions, indicating a locally specific usage of the terms. Thus, keywords must be continu-

ously updated to keep the model relevant. Although one of the advantages of our model is the

ease of keywords addition and modification without any additional cost, we are currently
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exploring the automation of this selection process by using natural language processing of

drug-related reports. This offers an opportunity for adjusting messages of the targeted adver-

tisements based on rapidly changing local jargon to improve communication and prevention

interventions.

This study has several limitations: (i) Owing to the dynamic nature of keyword usage in

Web-searches, the model presented here does not capture current ODD trends equally well

for all states and needs to be continuously updated to account for the rapid changes in the

usage of specific search terms. Thus, we must be proactive with the update of keywords, oth-

erwise the model will stop being useful. Although one of the advantages of our model is that

it is very easy to add keywords that may be important without any cost, we are currently

exploring the automation of this selection process by using natural language processing of

drug-related reports; (ii) Extrapolation of the county suppressed ODD rates used in this

study does not allow for accurate assessment of current ODD rates for such counties, mak-

ing these results preliminary. Research is warranted for further improvement of the model

based on using data from all counties including counties with suppressed data. In addition,

the complete data will allow the use of age-adjusted rates, which may improve accuracy; (iii)

Owing to privacy concerns, data for county specific Web-searches are not readily available,

Fig 7. DOVE estimates for Indiana counties during 2005–2017. (A) Estimated Overdose Death (ODD) Rate; (B)

Top Indiana 5 Counties by ODD Rate Estimated by DOVE for Each Year.

https://doi.org/10.1371/journal.pone.0243622.g007
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which significantly affects accuracy of ODD assessments, especially monthly assessments, at

the county level. This is another potential venue for further improvement of the model; (iv)

Although monthly estimates at the state level can help detect shifting trends and sudden

changes in ODD, these estimates can only guide where further investigation for targeting

resources to the appropriate communities might be warranted; (v) Web searches can be sen-

sitive to the overall burden of drug use in a community despite reduction in fatal overdoses

as the community becomes more familiar with new drugs and overdose treatments, which

may potentially explain an overestimate of the ODD numbers for 2018 by DOVE (predicted

slowdown vs observed decline); (vi) We have not found a satisfactory explanation for the

wide variation in error rates among states, which suggests that finding a measurable variable

that accounts for this variation could substantially improve the model; (vii) It must be noted

that given the delays in data availability (with 11–23 months for final data), the last available

known rate used in our models will not always be from the previous year (as modelled here)

but sometimes from the year before that. Thus, accuracy of predictions may differ in a real-

world setting, although even models without any lag variable performed well. Moreover,

12-month ending provisional counts (97–99% complete) of ODD are now available after

only a 6-month lag [5] and could be used to bring the lagged rates closer to their current

value.

DOVE was designed as an alert system, in the same way a smoke alarm detects fire. We aim

to detect major changes in vulnerability to acquisition of HIV, HBV and HCV infections and

noninfectious health conditions associated with IDU, by using ODD to calibrate the model.

Such major changes leading to large disease outbreaks are unlikely to occur in counties with

suppressed ODD data within few years because of small PWID population, whereas substantial

changes in vulnerability among large PWID communities may have a significant effect on

acquisition of infections as was observed in Scott County. However, further improvement of

the theoretical framework used in this study may help develop models for the accurate,

dynamic estimation of ODD without at least some of the aforementioned limitations.

Conclusions

The model presented here is a novel surveillance tool for spatiotemporal mapping of ODD

rates. In the absence of other information, these ODD estimates could be used to monitor

major changes in potential vulnerability to IDU-related acquisition of HIV, HBV, and HCV

infections.
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