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Diabetic cardiomyopathy (DCM) remains the major cause of death associated with diabetes. Researchers have demonstrated the
importance of impaired cardiac insulin signaling in this process. Insulin resistance (IR) is an important predictor of DCM.
Previous studies examining the dynamic changes in autophagy during IR have yielded inconsistent results. This study aimed to
investigate the dynamic changes in autophagy and apoptosis in the rat H9c2 cardiomyocyte IR model. H9c2 cells were treated
with 500 μM palmitic acid (PA) for 24 hours, resulting in the induction of IR. To examine autophagy, monodansylcadaverine
staining, GFP-LC3 puncta confocal observation, and Western blot analysis of LC3I-to-LC3II conversion were used. Results of
these studies showed that autophagic acid vesicles increased in numbers during the first 24 hours and then decreased by 36
hours after PA treatment. Western blot analysis showed that treatment of H9c2 cells with 500μM PA for 24 hours decreased
the expression of Atg12-Atg5, Atg16L1, Atg3, and PI3Kp85. Annexin V/PI flow cytometry revealed that PA exposure for
24 hours increased the rate of apoptosis. Together, this study demonstrates that PA induces IR in H9c2 cells and that this
process is accompanied by excessive activation of autophagy and increases in apoptosis.

1. Introduction

It was recently estimated that 415 million people suffered
from diabetes globally in 2015 [1]. Diabetic cardiomyopathy
(DCM) is a major complication that accounts for more than
half of the diabetes-related morbidity and mortality cases [2].
DCM has been defined as ventricular dysfunctions that occur
in diabetic patients independent of recognized cause, such as
coronary artery disease or hypertension [3]. Insulin resis-
tance, which is defined by a decrease in glucose disposal in
response to insulin by target tissues [4], is an important risk
factor for cardiovascular morbidity [4, 5]. However, the
molecular mechanisms of insulin resistance in the pathogen-
esis of DCM remain to be elucidated.

Elevated free fatty acid (FFA) plasma levels contribute to
obesity-associated insulin resistance. Previous research dem-
onstrated that increased lipid levels in the heart result in
deficiencies of myocardium contraction and left ventricular
dysfunction [6]. Saturated long-chain FFA such as palmitic
acid (PA) and stearic acid was potent inducers of these
dysfunctional effects [7]. PA is the main component of
dietary saturated fat, accounting for nearly 20% of the
total serum FFA. High levels of PA are widely used to
study FFA-induced insulin resistance [8]. In vitro studies
indicated that insulin resistance was induced in a human
endothelial cell line by 250 to 1000μMPA [9] and in primary
rat ventricular myocytes by 500μM PA for 24 hours [10]. In
vivo experiments showed that high levels of palmitic acid
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lead to insulin resistance due to changes in the level of phos-
phorylation of the insulin receptor and insulin receptor
substrate-1 in rats [4].

Autophagy is a cellular protein degradation system that
enables cells to recycle cytoplasmic components by degrada-
tion in the lysosomes [11]. While there have been a few
studies examining the relationship between autophagy and
insulin resistance, their conclusions have been inconsistent.
Yang et al. [12] observed a downregulation of autophagy,
particularly in Atg7 expression levels, in both genetic and
dietary models of obesity. They found that the suppression
of Atg7, both in vitro and in vivo, resulted in defective insulin
signaling. In contrast, Ost et al. [13] demonstrated attenuated
mTOR signaling and enhanced autophagy in adipocytes from
obese patients with type 2 diabetes. Rapamycin (RAP) induces
autophagy by inhibiting mammalian target of rapamycin
complex-1 (MTORC1) [14] and is routinely applied in the
study of autophagy regulation; thus, we used RAP as a positive
control for autophagy induction in our study [15, 16].

We hypothesize that basal levels of autophagy are neces-
sary for maintaining cellular insulin signaling, yet excessive
autophagy may lead to impaired insulin signaling. The aim
of the present study was to explore the role of autophagy in
insulin resistance in rat cardiomyocyte model induced by
PA to elucidate the molecular mechanisms leading to DCM
and help find candidate drug targets to treat DCM.

2. Materials and Methods

2.1. Materials and Reagents. Dulbecco’s Modified Eagle
Medium (DMEM) culture media were obtained from Life
Technologies (USA). Autophagy inducer rapamycin (RAP)
and 4′,6′-diamidino-2-phenylindole (DAPI) were purchased
from Solarbio (Beijing, China). Autophagy inhibitor hydro-
xychloroquine sulfate (HCQ) was obtained from Tokyo
Chemical Industry (Japan). Monodansylcadaverine (MDC)
was purchased from Sigma-Aldrich LLC (USA).

2.2. Cell Culture. Immortalized rat cardiac myoblastic cells
H9c2 were obtained from the Shanghai Institute of
Biochemistry and Cell Biology (China). Cells were cultured
inhigh-glucoseDMEMmediumsupplementedwith100U/ml
penicillin, 100μg/ml streptomycin, and 10% heat-inactivated
FBS (Thermo Fisher Scientific, USA) and maintained at 37°C
and 5% CO2. One day before experiments, cells were incu-
bated in culture medium supplemented with 1% FBS to allow
the cells to differentiate into cardiomyocytes [17].

2.3. PA Treatment. PA was administered to cells by conjugat-
ing it with bovine serum albumin (BSA) as described by
Chavez et al. [18]. Briefly, PA was completely dissolved in
100% ethanol and diluted 1 : 100 in 1% FBS-DMEM contain-
ing 2% (w/v) bovine serum albumin. The control treatment
was prepared by adding the same amount of ethanol to
BSA-DMEM solution. All solutions were filtered, aliquoted,
and stored at −20°C prior to use.

2.4. Measurement of Glucose Consumption. The consumption
of glucose was measured as previously described [17, 19].
H9c2 cells were seeded into 96-well culture plates (5000

cells/well) in 100μl medium for 24h. The medium was then
replaced with media with 0, 250, or 500μM PA with or
without 100nM RAP, and cells were cultured for another 12
or 24 h. Insulin (100 nM) was then added to each well for the
last 30 minutes. Glucose was measured from 8μl of media
removed at 12 and 24 h of culture. The concentration of glu-
cose in the cell media was measured with blood glucose test
paper (Roche, Switzerland), with glucose production calcu-
lated after subtracting the glucose concentration found in
media from DMEM culture medium wells without cells.

2.5. Western Blot Analysis. Total protein was extracted using
a lysis buffer containing 50mM Tris–HCl (pH8.0), 150mM
NaCl, 0.02% NaN3, 0.1% SDS, 1mM EDTA, 1% Triton X-
100, and 100mg/ml PMSF. For each sample, 50μg of protein
was separated by SDS-PAGE (with different concentrations
appropriate for the molecular weight of the targeted proteins)
at 80V for 0.5 h and 120V for 1 h using the Mini-PROTEAN
3 electrophoresis cell system (Bio-Rad, USA). Proteins were
then transferred to a PVDF membrane (Bio-Rad, USA) by
the semidry blotting method with Dunn carbonate transfer
buffer consisting of NaHCO3 (10mM), Na2CO3 (3mM),
and 20% methanol. Membranes were then treated with 5%
nonfat milk powder in 1XTBST buffer for 1 h to block non-
specific binding and then incubated overnight at 4°C with
primary antibodies. Antibodies were rabbit anti-IR-β, IRS2,
LC3I and II, Atg3, Atg12, Atg16L1, Bcl2, PI3Kp85 (1 : 500,
CST, USA), and mouse anti-GAPDH (1 : 1000, Abcam,
USA). Antibody binding was detected using goat anti-
rabbit or goat anti-mouse secondary antibodies (ZSGB Bio,
China), which were added for 1 h, washed 3 times, and then
visualized by luminal chemiluminescence ChemiDoc XRS
(Bio-Rad, USA). Band intensities were semiquantitatively
analyzed by quantity-one software.

2.6. Detection of Autophagic Vesicles by Monodansylcadave
rine Staining. Monodansylcadaverine (MDC), a fluorescent
compound, was used as a tracer of autophagic vacuoles
[20]. H9c2 cells were incubated with 50μM MDC for
30min at 37°C, according to preview literature’s method
[21]. Cells were then washed twice with PBS and fixed
with 4% paraformaldehyde for 15 minutes before autopha-
gosomes being observed with a confocal microscope (exci-
tation spectrum. 405nm), (Leica TCS SP8, Germany).
Data analysis was performed using Image-Pro Plus 6.0
(Media Cybernetics, USA), and the MDC positive area
was calculated for each visual field.

2.7. Detection of Autophagy Flow by GFP-LC3. Autophago-
somes were labeled with GFP to detect their movement.
H9c2 cells were transfected with a lentivirus plasmid vector
containing GFP-LC3 (a gift from Qi-hua He, Center of
medical and health analysis, Peking University) that targets
autophagosomes. Transfected cells were seeded onto confo-
cal culture dishes and treated with 500μM PA, with or
without 100nM RAP for 24 h and with or without 50μM
HCQ. HCQ was added for only the last 2 hours. Cells were
then fixed with 4% paraformaldehyde and washed 3 times
with PBS. Fixed cells were stained with DAPI for 15 minutes,
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washed 3 times with PBS, and observed with a confocal
microscope (GFP excitation spectrum: 488nm; DAPI excita-
tion spectrum: 405nm) (Leica TCS SP8, Germany). To assay
autophagic flow, “LC3 net flux” was calculated after subtrac-
tion of the amount of LC3II in the absence of HCQ from the
amount of LC3II in the presence of HCQ for each condition
[22]. Data analysis was performed using Image-Pro Plus 6.0
(Media Cybernetics, USA) and calculated for GFP-LC3 area
per cell.

2.8. RNA Extraction and Real-Time PCR. Total mRNA was
extracted from H9c2 cells using TRIzol reagent (Invitrogen,
USA). After the concentration of the purified mRNA was
verified, reverse transcription was conducted using
RevertAid first Strand cDNA Synthesis Kit (Thermo Scien-
tific, USA) according to the manufacturer’s instructions.
Expression of target genes was measured by semiquantitative
RT-PCR using BrilliantII SYBR Green QPCR Master Mix
(Agilent, USA) and gene-specific primers following the
manufacturer’s protocol. PCR reaction conditions were as
follows: initial denaturation at 95°C for 10min and then 40
cycles of denaturation at 95°C for 30 s and annealing/exten-
sion at 60°C for 30 s, 72°C for 30 s. Cycle number at threshold
(Ct value) was used to calculate the relative amount of the
mRNA molecules and is presented as fold-change compared
to β-actin, calculated using the 2△△Ct method [23]. Gene-
specific primer sequences used for RT-PCR were as follows:

Beclin1 F: 5′-AGATGCGCTATGCCCAGATG-3′, R: 5′-
AATTGTCCGCTGTGCCAGAT-3′;

mTOR F: 5′-CACCCATCCAACCTGATGCT-3′, R: 5′-T
CGAGACCGGTAACCTCCAT-3′;

β-actin F: 5′-TACAACCTTCTTGCAGCTCCT-3′, R: 5′-
TGACCCATACCCACCATCAC-3′.

2.9. Cell Viability. Cell viability was examined using the MTS
assay with CellTiter 96® AQueous One Solution (Promega
Biotech, USA) according to the manufacturer’s instructions.
Briefly, H9c2 cells were seeded into 96-well culture plates
(5000 cells/well) with 100μl medium and incubated over-
night to allow the cells to adhere. Cells were then treated with
PA (0, 250, and 500μM) with or without nM RAP for 24h.
For the last 4 hours of culture, 20μl of MTS solution was
added to each well. Absorbance was measured at 490 nm
using an iMarK microplate reader (Bio-Rad, USA).

2.10. Apoptosis Determination. Cellular apoptosis was deter-
mined using the StarGlow Annexin V-FITC Apoptosis
Detection Kit (Genestar, China). Briefly, 1× 106 cells from
different treatments were rinsed with PBS and suspended
with 100μl of binding buffer. Subsequently, 5μl Annexin
V-FITC was added and incubated for 5min under dark con-
ditions, and 10μl PI was added before flow cytometry (BD
Biosciences, USA).

2.11. Statistical Analysis. Data are presented as mean± stan-
dard error of mean (SEM) from three independent experi-
ments. Statistical differences were assessed using one-way
ANOVA. First, we checked whether the variances of the data
were homogeneous. If variances were homogeneous, then the

LSD statistics were applied as the post hoc test, if not, then
the Tamhane statistics was employed. P values less than
0.05 were considered to be significant.

3. Results

3.1. Insulin Resistance in H9c2 Cells Induced by 500μM PA
Treatment for 24 h. To induce insulin resistance model,
H9c2 cells were treated with 500μM PA with or without
RAP for 12 and 24 hours [10], and glucose consumption
was measured. No changes in glucose consumption were
found among groups after 12 hours (Figure 1(a), P > 0 05).
Glucose consumptions of the 500μM PA and the 500μM
PA+RAP groups were less than the controls at 24 h
(Figure 1(a), P < 0 05), with the glucose consumption of the
500μM PA+RAP group being less than that of the RAP
group (Figure 1(a), P < 0 05). H9c2 cells treated with lower
PA concentrations (250μM) for 24 hours did not show any
decrease in glucose consumption compared to the control
cells (data not shown).

Protein markers for insulin resistance were examined
after 24 h of treatment groups. Expression of IR-β was inhib-
ited in cells treated with 500μM PA compared with the
control group (Figures 1(b) and 1(c), P < 0 05), with the
levels of IR-β in the 500μM PA+RAP group significantly
lower than those in the RAP and control groups
(Figures 1(b) and 1(c), P < 0 05). Similar changes were seen
for IRS2 (Figures 1(c) and 1(d), P < 0 05). Together, these
data indicated that H9c2 cells acquired IR after exposure to
500μM PA for 24 h.

3.2. PA-Augmented Activation of Autophagy. The role of
autophagy during insulin resistance has been controversial
[13, 24, 25]; thus, we employed multiple techniques to dem-
onstrate that PA induces dysfunctional autophagy. As
autophagy is a dynamic process, we applied MDC, which
accumulates in acidic vesicles, for the detection of autopha-
gosome formation. The size of the MDC-positive particle
area in cells of the 500μM PA group was increased at 24 h
compared to 12h and then decreased at 36 h (Figures 2(a)
and 2(d), P < 0 05). A similar trend was seen for the RAP
and 500μM PA+RAP groups (Figures 2(a), 2(c), and 2(e),
P < 0 05). However, the MDC-positive particle area did
not change in the control groups (Figures 2(a) and 2(b),
P > 0 05). Based on these findings, we hypothesized that
PA enhanced autophagy flow for the first 24 hours and
then decreased by 36 hours, a pattern similar to that seen
with rapamycin.

We then wondered whether the increase in the number of
autophagosomes was due to enhanced autophagic activity or
blockage of autophagosome fusion with lysosomes. To study
this, we used assays with GFP-LC3. GFP-LC3 lentivirus was
employed to transfect H9c2 cells, generating cells that stably
express GFP-LC3. The lysosomal inhibitor HCQ (50μM)
was used to block LC3II fusion with lysosomes [22]. As
illustrated in Figures 3(a) and 3(b), 500μM PA or RAP
increased GFP-LC3 puncta per cell, and HCQ treatment in
combination with PA or RAP yielded a significantly increased
GFP-LC3 puncta (Figures 3(a) and 3(b), P < 0 05). Based
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on these results, we speculated that increased number of
autophagosomes seenwithPAexposurewasmostly attributed
to excessive activation of autophagic initiation, rather than the
blockage of fusion of autophagosomes with lysosomes.

To measure the amount of fusion of autophagosomes
(represented by LC3 puncta) with lysosomes, we defined
the concept “LC3 net flux,” which is calculated by sub-
tracting the average amount of GFP-LC3 in the absence
of HCQ from the amount of GFP-LC3 in the presence
of HCQ for each condition [22]. Our results showed that
LC3 net flux in H9c2 cells was enhanced upon exposure
to 500μM PA with or without RAP for 24 hours com-
pared to the control group (Figures 3(a) and 3(c), P < 0 05).
This suggests that, compared with the control group, treat-
ment with 500μM PA for 24 hours resulted in excessive
autophagy flow. The ratio of LC3II/LC3I in 500μM PA-
treated cells was significantly higher than in the control cells
(Figures 3(d) and 3(e), P < 0 05), which indicates that
500μM PA increased the conversion of LC3I to LC3II. As

an increase of LC3 conversion means enhanced autophagy
flow [22], this supported the conclusion that 500μM PA
augmented autophagy.

3.3. PA Decreased Remaining Autophagy-Related-Gene
Proteins at 24 h. In addition to the LC3 analysis, we also mea-
sured the protein expression levels of autophagy-related-
genes (Atg) by Western blot after 24 h treatment. Exposure
to 500μM PA with or without RAP caused a larger decrease
in protein levels of Atg12-Atg5 compared to the control
(Figures 4(a) and 4(d), P < 0 05). Also, 500μM PA+RAP
group showed significantly lower level of Atg12-Atg5 com-
pared with the RAP group (Figures 4(a) and 4(d), P < 0 05).
Since Atg12 combines with Atg5 soon after it is synthesized
[26], we did not detect free Atg12 (data not shown). Atg16L1
binds to Atg12-Atg5 to form a homodimer, and Atg12-Atg5-
Atg16L1 dimers are important for LC3-PE conjugation [26].
Western data showed that 500μM PA led to significantly
decreased Atg16L1 levels (Figures 4(b) and 4(e), P < 0 05).
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Figure 1: Insulin resistance in H9c2 cells was induced by 500 μMPA treatment for 24 h. (a) H9c2 were treated with solvent (control), 100 nM
RAP (RAP), 500μMPA (PA), 500μMPA+100 nM RAP (PA+RAP), and cultured for 12 h and 24 h. Cells were incubated by adding 100 nM
insulin for the last 30 minutes. Glucose consumptions were measured. H9c2 cells were treated with drugs for 24 h and 100 nM insulin was
then added for the last 10 minutes. (b) Western blot analysis of IR-β and IRS2 compared with GAPDH. (c, d) Quantification of the results
from (b) (n = 3). ∗P < 0 05 compared with the controls of the same time period. #P < 0 05 compared with RAP groups of the same time period.
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Atg3 is a protein necessary for LC3 activation [26]. The pro-
tein levels of Atg3 in the 500μM PA and 500μM PA+RAP
groups were significantly lower than in the controls
(Figures 4(c) and 4(f), P < 0 05), which was consistent with
the levels of Atg12-Atg5 and Atg16L1. These results, together
with MDC and LC3 analysis, imply that the decreases of Atg
proteins in the 500μM PA-treated cells are due to excessive
autophagic activation.

3.4. PI3K/Akt/mTOR Pathway Was Involved in PA-Induced
IR and Dysregulated Autophagy. Does pathway upstream of
autophagy change in the H9c2 IR model? To examine this,
we measured the protein levels of the PI3Kp85 subunits
and the mRNA levels for mTOR and Akt. The protein levels
of the PI3Kp85 subunit in the RAP, 500μM PA, and 500μM
PA+RAP groups were lower than that in the control
(Figures 4(g) and 4(h), P < 0 05). The mTOR mRNA in
500μM PA and 500μM PA+RAP-treated cells were higher
than that in the controls (Figure 4(i), P < 0 05). No
significant changes in the mRNA levels of Akt were observed
(data not shown).

3.5. 500μM Palmitic Acid Reduced Viability and Increased
Apoptosis of H9c2 Cells.We next explored whether PA influ-
enced cell viability and apoptosis in the H9c2 insulin

resistance model. H9c2 cells were exposed to 500μM PA
with or without 100 nM RAP for 12, 24, and 36 hours, and
cell viability was measured using MTS. Our results revealed
that 500μM PA reduced the viability of H9c2 cells compared
with the control (Figures 5(a) and 5(c), P < 0 05) at all of the
time points, whereas, cell viability in the 250μM PA group at
24 h did not change (Figure 5(d), P > 0 05).

To understand the mechanisms underlying PA-induced
cytotoxicity of H9c2 cells, we explored the role of apoptosis
after treatment of H9c2 cells with PA. An Annexin V/PI
analysis was used to measure apoptosis. Our data showed
that the rate of apoptosis in 500μM PA-treated cells did
not change at 12 hours (Figures 5(e) and 5(h), P > 0 05) but
was significantly increased at 24 h and 36 h compared with
the control (Figures 5(f), 5(g), 5(h), 5(i), and 5(j), P < 0 05).
These results suggest that 500μM PA increases the level of
apoptosis during the development of H9c2 insulin resistance.
Bcl2 and beclin1 are key proteins for the interactions between
apoptosis and autophagy [27] As a BH3-only Bcl2 family
protein, Beclin1 is regulated by Bcl2 family proteins through
its BH3 domain [28]. Treatment of H9c2 cells with 500μM
PA for 24 hours decreased the protein levels of Bcl2
(Figures 5(k) and 5(l), P < 0 05) while the mRNA levels of
Beclin1 mRNA were significantly higher than in the three
other groups (Figure 5(m), P < 0 05).
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Figure 2: PA-augmented activation of autophagy flow as evidenced by MDC fluorescence. (a) H9c2 cells were treated as in Figure 1 and
cultured for 12, 24, and 36 h. Cells were stained with 50 μM MDC for 30 minutes. MDC-positive area per visual field was counted in (b)
for the control, (c) for RAP, (d) for PA, and (e) for PA+RAP group (n = 5). ∗P < 0 05 compared with the 12 hour group. #P < 0 05
compared with the 24 hour group.
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4. Discussions

Several factors have been proposed to cause IR, including
inflammation, mitochondrial dysfunction, hyperinsulinemia,

hyperlipidemia, and aging [3]. Many of these factors are asso-
ciated with obesity, which is the major risk factor for IR in the
general population [29]. Lipotoxicity induced by high
concentrations of circulating FFA is a key mechanism of IR
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Figure 3: PA did not block autophagy, as evidenced by GFP-LC3 fluorescence and LC3 conversion. (a) H9c2 was treated with or without
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development, and among these FFAs, PA is the most
common [30]. Several studies have revealed that PA influ-
ences autophagy, but their conclusions were controversial
[13, 24]. In the present study, we addressed the effects of
PA on autophagy in IR cardiomyocytes.

First, we established a cardiomyocyte IR model by expos-
ing H9c2 to 500μM PA for 24 hours, as Cao et al. showed
that insulin resistance effect was induced in primary rat
ventricular myocytes treated with 500μM PA [10]. The cell
model was validated by inhibition of glucose consumption
and decreases in the protein levels for IR-β and IRS2. IR-β
tyrosine kinase, when activated by insulin, phosphorylates
IRS proteins [31]. IRS1 and IRS2 then activate the PI3K/
Akt pathway. Studies have shown that IRS2 polymorphisms
are related to insulin resistance, thus IR-β and IRS2 are useful
markers for the detection of insulin resistance [32]. Our
results were similar with those from previous studies. For
example, murine C2C12 myotubes and human umbilical
vein endothelial cells (HUVECs) [33] required 750μM and
100μMPA, respectively, to induce IR. As these cells are from
different species and tissues, the cellular metabolism is likely
not the same; thus, differing levels of PA lead to IR. PA-
induced IR is also observed in animal models. Battiprolu
et al. [34] showed that mice develop myocardial IR in

response to high fat-diet, where it is characterized by down-
regulation of IR activity, decreased Akt signaling, and a shift
from glucose to fatty acid utilization. Therefore, we estab-
lished a cardiomyocyte IR by saturated fatty acid.

Autophagy is a lysosomal degradation process through
which misfolded proteins and organelles are sequestered,
degraded by lysosomes, and recycled [15]. Autophagy is an
essential part of cardiomyocyte homeostasis and increases
the survival of cells following cellular stress and starvation
[35]. Under conditions of nutrient deprivation, induction of
autophagy provides cells with an opportunity to reutilize
their own constituents for energy [22]. However, under
specific circumstances, autophagy not only protects cells
against death but also mediates cell death. The morphological
features of autophagy, which are distinct from apoptosis,
have been observed in dying cells. If autophagy destroys
cytosol and organelles beyond a certain threshold, then
autophagic cell death will occur [36]. As glucose uptake
is impaired in tissues with insulin resistance, we investigate
whether autophagy changed in response to IR in our H9c2
IR model. MDC labelling was used to detect acidic vesicles,
including autophagosomes formation [21, 37]. We found
that autophagy flow in H9c2 cells exposed to 500μMPA rose
in the first 24 hours and then declined. LC3II is considered to
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Figure 4: Changes in Atg and PI3K proteins and mTOR mRNA after PA treatment for 24 h. (a–h) H9c2 was treated as in Figure 1 for 24 h.
Protein levels of Atg12-Atg5, Atg16L1, Atg3, and PI3Kp85 were semiquantitated by Western blot compared with GAPDH. (n = 3). (i) H9c2
cells were treated as in Figure 1 for 24 h, and the mRNA of levels mTOR were measured by semiquantitative RT-PCR, with β-actin as the
control. (n = 3). ∗P < 0 05 compared with the control. #P < 0 05 compared with the RAP group. $P < 0 05 compared with the PA+RAP group.
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Figure 5: Increased apoptosis of H9c2 cells treated with 500 μM PA. (a–d) H9c2 cells were treated with 250μM and 500μM PA, cultured for
24 h, and viability was measured by the MTS assay. (e–j) Changes in the rate of apoptosis with PA treatment. H9c2 were treated as in Figure 1
and cultured for 12 h (e, h), 24 h (f, i), and 36 h (g, j). Annexin V/PI staining flow cytometry was used to quantify the proportion of cells
undergoing apoptosis. (e–g) Typical graphs for each time points. (h–j) Quantification of the flow cytometry results. Percentage of
apoptotic cells is the sum of the events in the upper right and lower right quadrants. (k, l) H9c2 were treated as in Figure 1 for 24 h, and
Bcl2 protein was semiquantitated by Western blot, with GAPDH as the loading control (n = 3). (m) mRNA levels of Beclin1 were
measured by semiquantitative RT-PCR with β-actin as the control (n = 3). ∗P < 0 05 compared with the control. #P < 0 05 compared with
the RAP groups. $P < 0 05 compared with the PA+RAP group.
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be an autophagosome marker in mammals, and higher
LC3II/LC3I ratios indicate increased autophagy flow [26].
Experiments detecting GFP-LC3 puncta demonstrated that
HCQ treatment significantly increased the accumulation of
LC3II (designated as “LC3 net flux”) in each treatment after
24 h. These results demonstrate that PA activates excessive
autophagy at its initial formation rather than blocking
the fusion of autophagosomes with lysosomes. Excessive
autophagy was also indicated by the increased LC3I to
LC3II protein conversion, and the reduction in Atg protein
(Atg3, Atg12-Atg5, and Atg16L1) levels in the 500μM PA
groups. All of the above results led to a conclusion that
500μM PA induced excessive autophagy activation in H9c2
cells during IR development.

Phosphatidylinositol 3-kinase (PI3K)/Akt/mTOR path-
way was a link between insulin resistance and autophagy.
The two major insulin receptor substrates, IRS1 and IRS2,
activate PI3K/Akt pathway [31], and the PI3K/Akt/mTOR
pathway inhibits autophagy when it is activated [38]. It has
been demonstrated that autophagy can be inhibited by
activating mTOR [39]. In our study, the PI3Kp85 subunit
was expressed at lower levels in the 500μM PA-treated
group compared to the control cells, with the same ten-
dency seen in the RAP group, suggesting that PI3K was
inhibited by PA. The mRNA level of mTOR was increased

by PA and PA+RAP, which might be due to the feedback
of the protein levels for mTOR. Accumulating evidence
shows that autophagy and apoptosis are executed through
distinct signaling pathways, as autophagy is mainly medi-
ated by Atg proteins [26] and apoptosis was mainly regu-
lated by Bcl2 family protein and caspase family [40]. Yet
overlapping signals are engaged in response to specific
stimuli, as researchers showed that the crosstalk could be
mediated by interactions between Beclin1 and Bcl2/Bcl-xl
[41]. To explore the cytotoxicity of PA during the devel-
opment of IR, we employed Annexin V-FITC/PI FCM to
detect cell apoptosis [42, 43]. Our results indicate that
500μM PA also promoted apoptosis after treatment for
24 hours and more, while treatment for only 12 hours
did not increase the rate of apoptosis. The protein levels for
Bcl2 decreased dramatically in the PA and PA+RAP treated
cells, compared with the controls, and the mRNA level for
Beclin1 was increased with PA exposure. According to Wei
et al. [27], rapid phosphorylation of Bcl2 may initially occur
to promote cell survival by disrupting the Bcl2-Beclin1 com-
plex and activating autophagy. When autophagy is no longer
able to keep cells alive, the phosphorylated Bcl2 might then
serve to inactivate its antiapoptotic function. Our findings
suggest that the decreasing protein levels of Bcl2 might be
another factor enhancing autophagy and apoptosis.

PA

Sh
c IRS

mTORC1

24h
Autophasomes ↑
LC3II/LC3I ↑
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Atg12-Atg5-Atg16L1 ↓
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Figure 6: Relationship among PA-induced insulin resistance, autophagy, apoptosis, and inhibition of the PI3K/Akt/mTOR pathway. Insulin
resistance was induced in H9c2 cells with 500μM PA for 24 h. During the development of IR, the numbers of autophagic acid vesicles
increased during the first 24 hours and then decreased by 36 hours after PA treatment. Western blot analysis showed that the treatment of
H9c2 cells with 500 μM PA for 24 hours decreased the expression of Atg12-Atg5, Atg16L1, Atg3, and PI3Kp85. Annexin V/PI flow
cytometry revealed that PA exposure for 24 hours increased the rate of apoptosis. The PI3K/Akt/mTOR pathway was inhibited after the
PA treatment.
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5. Conclusions

The current study showed that PA induces IR in H9c2 cells,
and this process is accompanied by an excessive activation
of autophagy and increases in apoptosis. PI3K/Akt/mTOR
pathway is involved in this process; our conclusion scheme
is illustrated in Figure 6. Our study implies that targeting
the activation of autophagy may help treating insulin resis-
tance in DCM progression.
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