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Background: Super-resolution (SR) refers to the use of hardware or software methods to enhance the 
resolution of low-resolution (LR) images and produce high-resolution (HR) images. SR is applied frequently 
across a variety of medical imaging contexts, particularly in the enhancement of neuroimaging, with 
specific techniques including SR microscopy—used for diagnostic biomarkers—and functional magnetic 
resonance imaging (fMRI)—a neuroimaging method for the measurement and mapping of brain activity. 
This bibliometric analysis of the literature related to SR in medical imaging was conducted to identify the 
global trends in this field, and visualization via graphs was completed to offer insights into future research 
prospects.
Methods: In order to perform a bibliometric analysis of the SR literature, this study sourced all publications 
from the Web of Science Core Collection (WoSCC) database published from January 1, 2000, to October 
11, 2023. A total of 3,262 articles on SR in medical imaging were evaluated. VOSviewer was used to perform 
co-occurrence and co-authorship analysis, and network visualization of the literature data, including author, 
journal, publication year, institution, and keywords, was completed.
Results: From 2000 to 2023, the annual publication volume surged from 13 to 366. The top three journals 
in this field in terms of publication volume were as follows: (I) Scientific Reports (86 publications), (II) IEEE 
Transactions on Medical Imaging (74 publications), and (III) IEEE Transactions on Ultrasonics Ferroelectrics and 
Frequency Control (56 publications). The most prolific country, institution, and author were the United States 
(1,017 publications; 31,301 citations), the Chinese Academy of Sciences (124 publications; 2,758 citations), 
and Dinggang Shen (20 publications; 671 citations), respectively. A cluster analysis of the top 100 keywords 
was conducted, which revealed the presence of five co-occurrence clusters: (I) SR and artificial intelligence 
(AI) for medical image enhancement, (II) SR and inverse problem processing concepts for positron emission 
tomography (PET) image processing, (III) SR ultrasound through microbubbles, (IV) SR microscopy 
for Alzheimer and Parkinson diseases, and (V) SR in brain fMRI: rapid acquisition and precise imaging. 
The most recent high-frequency keywords were deep learning (DL), magnetic resonance imaging (MRI), and 
convolutional neural networks (CNNs). 
Conclusions: Over the past two decades, the output of publications by countries, institutions, and authors 
in the field of SR in medical imaging has steadily increased. Based on bibliometric analysis of international 
trends, the resurgence of SR in medical imaging has been facilitated by advancements in AI. The increasing 
need for multi-center and multi-modal medical images has further incentivized global collaboration, leading 
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Introduction

Super-resolution (SR) refers to algorithms that enhance 
the resolution of low-resolution (LR) images, resulting in 
high-resolution (HR) images (1). The technology has been 
extensively applied across a variety of contexts, including for 
enhancing the spatial resolution of hyperspectral images in 
satellite and aerial imaging (2), enabling nanoscale optical 
capture for image enhancement (3), and enhancing image 
quality and rectifying image artifacts in medical image 
processing (4). The available hardware-based methods 
to produce HR images from LR ones typically involve 
enhancing pixel density through pixel size reduction or 
sensor size enlargement. In general, image device hardware 
upgrades tend to be expensive. Hence, improvements 
are typically achieved through algorithms, such as SR 
algorithms.

Various medical imaging devices based on different 
imaging principles have been invented to more intuitively 
depict the condition of human organs. The advancement 
and implementation of SR concepts necessitate increased 
refinement in medical imaging. Additionally, higher 
resolution enables the early detection of abnormalities and 
improves the accuracy of assessing the size and morphology 
of organs and pathologies. During the research process, 
the majority of studies tend to prioritize postprocessing 
methods over hardware enhancements as a means to 
improving resolution. These efforts are motivated by the 
potential of using SR algorithms to enhance resolution.

Bibliometric analysis is a scientific quantitative research 
method that employs techniques such as co-word and 
cluster analysis to organize publications. Its purpose is to 
summarize the advancements in a given field of research 
and identify focal points and emerging trends and to 
use quantitative statistics to evaluate the contributions 
of authors, journals, institutions, and countries (5). 
Furthermore, VOSviewer (http://www.vosviewer.com) can 
be used to visually represent the co-occurrence of keywords 
and researchers through a network map (6). Recently, 
there have been multiple bibliometric studies in the fields 

of medicine and biomedicine that have investigated the 
existing literature.

Although several reviews on SR in the medical imaging 
with different focuses have been published (4,7-11), there is 
still a lack of a comprehensive analysis and visual assessment 
for the evolution and trends in SR in medical imaging. In 
this study, we employed bibliometric analysis to characterize 
the current state of research in SR in medical imaging and 
examine the related trends. Our objective was to present 
the current research status and the five primary research 
directions concerning medical image SR via keyword co-
occurrence analysis, identify the research hotspots and 
future development prospects within this field through 
keyword heatmaps, and employ bibliometric analysis 
methods to support newcomers and researchers in selecting 
their research trajectory and cultivating innovative ideas. 
This analysis used a publication dataset obtained from 
the Web of Science Core Collection (WoSCC) database 
which spanned from 2000 to 2023. The dataset includes 
comprehensive information from publications, and can 
be examined via various search tags. Subsequently, we 
conducted an analysis to characterize the research status and 
future trends in the field of SR in medical imaging using 
an array of statistical data obtained through bibliometric 
methods.

Methods

Data source

The WoSCC database comprises more than 9,000 esteemed 
research journals worldwide, incorporating numerous 
features suitable for bibliometric analysis. The data in our 
analysis corresponded to field tags of the WoSCC: the 
publication’s information is categorized in terms of AU 
(author), SO (source), and PY (publication year) tags; the 
keyword information is categorized in terms of AK (author 
keywords) and KP (keywords plus) tags; the topic is obtained 
through the TS (topic) tag; and the abstract is retrieved 
using the AB (abstract) tag.

to the diverse research paths in SR medical imaging among prominent scientists.
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Retrieval strategy

A search for publications in the WoSCC database was 
performed on October 12, 2023, with the following 
search strategy shown (available in Figure 1): TS= (“super-
resolution” OR “super-resolution” OR “superresolution”) 
AND TS= (“medic*” OR “clinic*” OR “disease” OR 
“diagnos*” OR “radiology” OR “magnetic resonance 
imag*” OR “MRI” OR “computed tomography” OR “CT” 
OR “X-ray” OR “PET” OR “Ultrasound” OR “Ultrason*” 
OR “digital radiography” OR “computed radiography” 
OR “Digital Subtraction Angiograph”) NOT WC= 
(“Astronomy & Astrophysics”). The publication dates 
spanned from January 1, 2000, to October 11, 2023, and 
exclusively encompassed full-length papers (Document 
Type=[article]) written in English. To avoid retrieving 
papers from the fields of astronomy and astrophysics, as 
there is a prevalence of X-ray applications in the astronomy 
and astrophysics, we excluded them from the search results 
using the Web of Science Categories (WC). All publication 
data, including title, publication year, author, country/

region, affiliation, source, author keywords, and abstract, 
were extracted from the WoSCC as a TXT file. To optimize 
retrieval effectiveness, all data searches and downloads were 
conducted on October 12, 2023.

Data analysis and visualization software

The use of bibliometrics was used to elucidate the present 
state, future possibilities, and knowledge framework of SR 
in medical imaging. Bibliometric analysis usually involves 
building bibliometric maps and visually displaying them. 
Co-occurrence information presents the frequency of 
bibliographic co-occurrences and enables hierarchical 
clustering based on these co-occurrences. In this study, the 
clusters were visualized via graphs.

Bibliometrics are valuable in tracking the progression of 
trends of particularly influential publications. Bibliometric 
visualization software is widely used for the extraction and 
analysis of publication data and for creation of knowledge 
maps. In this study, VOSviewer (version 1.6.19) was 
used to conduct the co-occurrence, coauthorship, and 

Start retrieval

WoSCC database

Performed on 2023.10.12

Add data range: 2000.1.1 to 2023.10.11

A

Search methods: TS =(“super resolution” 
or “super-resolution” or “superresolution ”) 
and TS =(“medic*” or “clinic*” or “disease” 
or “diagnos*” or “radiology” or “magnetic 
resonance imag*” or “MRI” or “computed 
tomography” or “CT” or “X-ray” or “PET” 
or “ultrasound” or “ultrason*” or “digital 

radiography” or “computed radiography” or 
“digital subtraction angiograph”)

3,262 studies identified

End Retrieval

Web of Science Categories Limit:
Exclude Astronomy & Astrophysics

A

3,496 studies identified

Language Limit: English
Document Type: Article

3,467 studies identified

Figure 1 Literature retrieval strategy. Cylinders, rectangles, parallelograms, and A represent databases, processes, data, and connections, 
respectively. WoSCC, Web of Science Core Collection.
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network analysis. We also drew maps of the coauthorship 
and author keyword networks and created an overlay 
visualization map (6).

Specifically, we conducted an analysis of the top 100 
keywords in terms of frequency to perform co-occurrence 
analysis and identify the hotspots in the field of SR in 
medical imaging. The co-occurrence network was visualized 
via VOSviewer, with each node being represented as a 
labelled circle, the size of the circle correlating with the 
frequency of the co-occurring items, the color denoting the 
cluster assignment, and the length and thickness of the node 
links indicating the correlation and strength of connections, 
respectively. Our visualization presents the 1,000 most 
influential connections between nodes.

Results

Annual worldwide publications on SR in medical 
imaging

Based on our specific search strategy of the WoSCC 
database, a total of 3262 publications from 2000 to 2023 
were identified for inclusion. Figure 2 illustrates the 
quantity change of annual publications in SR in medical 

imaging. Over the past two decades, interest in this field has 
significantly increased, with annual worldwide publications 
rising from 13 in 2000 to 366 in 2023. The annual 
publication output for SR in medical imaging was lower 
than 100 from 2000 to 2012, but steadily increased from 
102 to 182 between 2013 and 2017. Surprisingly, from 2018 
to 2023, the figure rose above 200, peaking at 437 in 2022.

Journals distribution and the 10 most-cited articles

A total of 3,262 articles on SR in medical imaging were 
published across 1,057 different journals. The top 20 most 
productive journals in this field accounted for 25.05% 
(817/3,262) of all publications, as listed in Table 1. Scientific 
Reports demonstrated the highest level of productivity 
compared to the other journals, with 86 publications, 
while NeuroImage received the highest number of citations, 
totaling 4,678, and was followed by IEEE Transactions 
on Medical Imaging and IEEE Transactions on Ultrasonics, 
Ferroelectrics and Frequency Control, which published 74 and 
56 articles, respectively.

The articles received a total of 77,180 citations, with 
a median of 24 citations. Table 2 displays the 10 most 

Figure 2 The publication outputs on super-resolution in medical imaging per year from 2000 to 2023. The red dashed line represents the 
overall trend. The year 2023 had incomplete statistical data, which have been imputed using a specific pattern.
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Table 1 Most productive journals in the field of super-resolution in medical imaging

Rank Journal WoS category
Impact  
factor

Publication 
proportion

Citation,  
n

1 Scientific Reports Multidisciplinary sciences 4.6 86 (2.64%) 1,802

2 IEEE Transactions on Medical Imaging Radiology, nuclear medicine & 
medical imaging

10.6 74 (2.27%) 3,319

3 IEEE Transactions on Ultrasonics Ferroelectrics 
and Frequency Control

Acoustics 3.6 56 (1.72%) 1,448

4 Magnetic Resonance in Medicine Radiology, nuclear medicine & 
medical imaging

3.3 53 (1.62%) 1,368

5 IEEE Access Computer science, information 
systems

3.9 51 (1.56%) 575

6 NeuroImage Radiology, nuclear medicine & 
medical imaging

5.7 48 (1.47%) 4,678

7 Medical Physics Radiology, nuclear medicine & 
medical imaging

3.8 45 (1.38%) 636

8 Nature Communications Multidisciplinary sciences 16.6 44 (1.35%) 1,872

9 Physics in Medicine and Biology Radiology, nuclear medicine & 
medical imaging

3.5 41 (1.26%) 865

10 Proceedings of the National Academy of 
Sciences of the United States of America

Multidisciplinary sciences 11.1 39 (1.20%) 2,163

11 Medical Image Analysis Radiology, nuclear medicine & 
medical imaging

10.9 36 (1.10%) 1,367

12 PLOS One Multidisciplinary sciences 3.7 36 (1.10%) 1,291

13 Optics Express Optics 3.8 31 (0.95%) 836

14 Biomedical Signal Processing and Control Engineering, biomedical 5.1 29 (0.89%) 128

15 Computer Methods and Programs in Biomedicine Computer science, theory & methods 6.1 28 (0.86%) 301

16 Nuclear Instruments & Methods in Physics 
Research Section A: Accelerators Spectrometers 
Detectors and Associated Equipment

Physics, nuclear 1.4 27 (0.83%) 505

17 Sensors Engineering, electrical & electronic 3.9 26 (0.80%) 271

18 Multimedia Tools and Applications Computer science, theory & methods 3.6 24 (0.74%) 108

19 Magnetic Resonance Imaging Radiology, nuclear medicine & 
medical imaging

2.5 23 (0.71%) 536

20 ACS Nano Chemistry, physical 17.1 20 (0.61%) 614

WoS, Web of Science.

frequently cited articles, with the citation number ranging 
from 305 to 1,383 citations. The most cited article was 
“Robust determination of the fibre orientation distribution 
in diffusion MRI: non-negativity constrained super-resolved 
spherical deconvolution” (12) (1,383 citations), which was 
published in NeuroImage in 2007.

Coauthorship status of countries/regions

SR in medical imaging has garnered worldwide interest, with 
81 countries/regions devoting to research to this subject 
in total, as demonstrated in Figure 3. Table 3 presents the 
top 10 countries with the highest productivity based on 
their national scientific research strength, with the United 
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Table 2 The top 10 most frequently cited articles

Rank Title Source Total citations PY

1 Robust determination of the fibre orientation distribution in diffusion MRI: 
non-negativity constrained super-resolved spherical deconvolution (12)

NeuroImage 1,383 2007

2 Ultrafast ultrasound localization microscopy for deep super-resolution 
vascular imaging (13)

Nature 698 2015

3 Lewy pathology in Parkinson’s disease consists of crowded organelles 
and lipid membranes (14)

Nature Neuroscience 444 2019

4 Resolving crossing fibres using constrained spherical deconvolution: 
Validation using diffusion-weighted imaging phantom data (15)

NeuroImage 428 2008

5 Super-resolution: a comprehensive survey (1) Machine Vision and Applications 408 2014

6 Anatomically constrained neural networks (ACNNs): Application to 
cardiac image enhancement and segmentation (16)

IEEE Transactions on Medical 
Imaging

377 2018

7 Convolutional neural networks for inverse problems in imaging: A review (17) IEEE Signal Processing Magazine 364 2017

8 Super-resolution microscopy reveals that mammalian mitochondrial 
nucleoids have a uniform size and frequently contain a single copy of 
mtDNA (18)

Proceedings of the National 
Academy of Sciences of the 
United States of America

348 2011

9 Super-resolution in medical imaging (7) Computer Journal 320 2009

10 Medical image synthesis with deep convolutional adversarial networks 
(19)

IEEE Transactions on Biomedical 
Engineering

305 2018

PY, publication year.

States leading with 1,017 publications and 31,301 citations, 
followed by China with 867 publications and 14,134 citations, 
and England with 326 publications and 9,753 citations. 
VOSviewer was used to conduct coauthorship analysis to 
characterize the international collaboration in this field. 
The resulting network, as shown in Figure 3, included 
75 out of 81 countries or regions, categorized into three 
distinct clusters, each represented by a different color. The 
red cluster is the largest, containing 32 countries, and is 
centered around England, France, Germany, and Italy. The 
United States has extensive collaboration with numerous 
countries (n=54), wields significant scientific research 
influence in this field, and is followed by England (n=53), 
China (n=47), France (n=44), and Germany (n=43).

Coauthorship status of institutions

Our analysis indicated that 3,562 institutions published 
research on SR in medical imaging. Table 4 presents 
the rankings of the top 10 institutions based on their 
productivity. The Chinese Academy of Sciences published 
the highest number of articles, with 124 publications and 
2,758 citations, followed by King’s College London (58 

publications and 2,034 citations), and Harvard Medical 
School (57 publications and 1,426 citations). After 
institutions that published fewer than 14 articles were 
eliminated, 100 institutions remained. VOSviewer was used 
to conduct coauthorship analysis for these 100 institutions. 
Figure 4 illustrates the network of institutions, depicting 
100 institutions divided into 6 clusters, each represented 
by a distinct color. The largest cluster, highlighted in red, 
comprises 27 institutions focused on the Chinese Academy 
of Sciences, the University of Chinese Academy of Sciences, 
and Shanghai Jiao Tong University. In terms of the number 
of partners, Harvard Medical School has the highest count, 
followed by the University of Oxford, the Chinese Academy 
of Sciences and the University College London, with 39, 
37, 32, 29 partners, respectively.

Coauthorship status of authors

Our analysis revealed that 17,026 authors made 20,905 
contributions to publish the 3,262 retrieved articles, with an 
average of 6.4 authors contributing per article in total. The 
top 20 most productive authors, with Dinggang Shen (20 
publications, 671 citations) ranked first, Pengfei Song (19 
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Figure 3 Cooperation network of countries/regions. The circle size represents the publication volume, while the line thickness represents a 
research connection between two countries based on their coauthorship status. The various colors represent different cooperation clusters, 
and countries grouped within the same cluster may possess greater potential for collaborative relationships.

publications, 499 citations) ranked second, and Clemens F. 
Kaminski (15 publications, 773 citations) ranked third, are 
presented in Table 5. In this study, coauthorship analysis was 
conducted through VOSviewer, with a cutoff of four articles 
published by the authors being used. Out of the 17,026 authors,  
367 met the criterion, and Figure 5 presents the author’s 
coauthorship network. The coauthorship network assigned 
129 authors into 15 groups, each distinguished by a different 
color. The largest red group encompassed 16 authors and 
centered around Joshua D. Trzasko, Chengwu Huang, and 
Wei Zhang, with 17, 14, and 14, and 10 cooperating partners, 

respectively.

Co-occurrence status of the top 100 most frequent keywords

Keywords serve to represent the fundamental theme of the 
article. Meanwhile, co-occurrence analysis is employed to 
accurately represent the essence of the research field using 
high-frequency keywords. VOSviewer was used to extract 
all the keywords from the research field and then placed 
them in the top 100 most distinct groups, as delineated in 
Table 6. Figure 6 depicts a visual network graph illustrating 
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the top 100 most frequent keywords, categorized into 5 
groups according to their co-occurrence relationships. The 
node size reflects the frequency of keyword occurrence, 
while the connection between two nodes represents 
their co-occurrence relationship. At the center of the 
visual network graph are the most frequently occurring 
keywords, including super-resolution (697 citations), deep 
learning (DL) (205 citations), magnetic resonance imaging 
(MRI) (197 citations), convolutional neural network (CNN) 
(116 citations), and generative adversarial networks (GANs) 
(92 citations). VOSviewer was further used to classify 
keywords into five categories according to their connection 
strength. In Figure 6, these five clusters are indicated by the 
colors red, green, blue, yellow, and purple. The following 

provides explanations of titles categorized by the keywords 
within the clusters.

Cluster 1 in red
SR technology plays a crucial role in enhancing the 
quality and accuracy of medical images by using advanced 
techniques such as DL, CNN, and GANs. This technology 
is widely applied in MRI and computed tomography (CT) 
imaging for tasks such as image enhancement, segmentation, 
and reconstruction. Moreover, methods such as compressive 
sensing, sparse representation, machine learning, and 
transformation learning have been increasingly used in 
low-dose CT scans and rapid MR scans. Additionally, SR 
technology has been implemented in super-resolution 
(SISR) and three-dimensional super-resolution (3DSR). 
Noteworthy advancements have been made during the 
coronavirus disease 2019 (COVID-19) through attention 
mechanisms and image registration techniques in SR 
reconstruction and optical coherence tomography (20). 
Meanwhile, the integration of artificial intelligence (AI) into 
the process of SR reconstruction of chest X-rays has resulted 
in the enhanced classification accuracy of COVID-19 (21). 
In essence, this cluster focuses on the integration of SR and 
AI for improving medical image.

Cluster 2 in green
SR holds significance in medical image processing. 
Addressing inverse problems involves using dictionary 
learning and regularization methods to accomplish tasks 
such as image denoising, restoration, and motion correction. 
The advancement of image morphology analysis and DL 

Table 3 Top 10 most productive countries

Rank Countries Publications, n Citations, n

1 USA 1,017 31,301

2 China 867 14,134

3 England 326 9,753

4 Germany 318 9,376

5 France 215 7,559

6 Japan 188 2,844

7 India 179 2,543

8 South Korea 144 3,953

9 Canada 125 3,849

10 Australia 119 5,661

Table 4 Top 10 most productive institutions

Rank Institutions Country Publications, n Citations, n

1 Chinese Academy of Sciences China 124 2,758

2 King’s College London England 58 2,034

3 Harvard Medical School USA 57 1,426

4 University College London England 50 1,259

5 Stanford University USA 47 1,507

6 University of Illinois USA 47 1,326

7 Imperial College London England 45 1,490

8 University of Oxford England 44 1,943

9 University of Cambridge England 43 1,616

10 University of Chinese Academy of Sciences China 40 556
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Figure 4 Cooperation network of institutions. Analysis of the graph’s clustering reveals a higher level of intracountry cooperation among 
institutions. A location at the border between groups represents more international or intergroup collaboration, while a location within a 
group represents domestic or intragroup collaboration. The circle size represents the publication volume, while the line thickness represents 
a research connection between two institutions based on their co-authorship status. The various colors represent different cooperation 
clusters, and institutions grouped within the same cluster may possess greater potential for collaborative relationships.

techniques enables enhancement of the positron emission 
tomography (PET) image resolution affected by hardware 
constraints through inverse problem processing concepts. 
In essence, this cluster emphasizes enhancing the quality 
of PET images through the integration of SR and inverse 
problem processing concepts.

Cluster 3 in blue
The use of SR in ultrasound has garnered considerable 
interest, particularly in ultrasound localization microscopy 

and SR ultrasound. This technology leverages microbubbles 
as contrast agents to enable the characterization of minute 
structures such as microvasculature. Through deconvolution 
operations on ultrasound images to enhance resolution, 
SR not only aids in early disease detection, such as that of 
cancer, but also elevates the utility of ultrasound imaging 
in the realm of biomedical imaging. Moreover, contrast-
enhanced ultrasound and fluorescence microscopy facilitate 
multimodal imaging and comprehensive data acquisition. 
The fusion of ultrasound and optical imaging not only 
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Table 5 Top 20 most productive authors 

Rank Author Publications, n Citations, n Average citations

1 Shen, Dinggang 20 671 34

2 Song, Pengfei 19 499 26

3 Kaminski, Clemens F. 15 773 52

4 Chen, Shigao 14 467 33

5 Tang, Meng-Xing 14 696 50

6 Liu, Xin 13 296 23

7 Tanter, Mickael 13 1,087 84

8 Lowerison, Matthew R. 12 174 15

9 Zheng, Hairong 12 129 11

10 Chen, Zhong 12 453 38

11 Dunsby, Christopher 12 627 52

12 Huang, Chengwu 11 249 23

13 Cai, Congbo 11 309 28

14 Eckersley, Robert J. 11 722 66

15 Christensen-Jeffries, Kirsten 11 684 62

16 Eldar, Yonina C. 11 520 47

17 Schierle, Gabriele S. Kaminski 10 677 68

18 Sauer, Markus 10 254 25

19 Klenerman, David 10 579 58

20 Chen, Lin 10 229 23

advances photoacoustic technology but also extends to 
acoustics and modulation transfer function. By optimizing 
ultrasound transducers and enhancing image quality, 
SR technology boosts image spatial resolution, thereby 
supporting the expansion of ultrasound imaging technology 
applications. To conclude, this cluster focuses on using 
ultrasound microbubble methods for achieving SR.

Cluster 4 in yellow
SR plays a pivotal role in microscopy imaging, notably in 
SR microscopy. Advancements in structure illumination 
microscopy (SIM) and stimulated emission depletion 
microscopy (STED) have enabled the HR imaging of 
microstructures such as protein aggregation and synapses. 
Techniques such as SR fluorescence microscopy and 
direct stochastic optical reconstruction microscopy 
(DSTORM) leverage fluorescence microscopy for 
the precise imaging of cellular substructures such as 

mitochondria. In neurodegenerative diseases, including 
Alzheimer disease (AD) and Parkinson disease (PD), 
SR facilitates the exploration of intracellular changes, 
such as protein aggregation, neuronal synapses, and Tau 
protein accumulation in neurons, aiding in the study 
of pathological mechanisms and treatment pathways in 
neurodegenerative diseases. Moreover, the integration of 
electron microscopy and expansion microscopy is becoming 
increasingly prominent. By investigating the distribution 
and functionality of nanoparticles within cells, SR can 
advance the study of life sciences and neurodegenerative 
disease treatment and mechanisms. In essence, this cluster 
is focused on the use of SR microscopy in addressing two 
distinct diseases.

Cluster 5 in purple
The implementation of SR in diffusion MRI and brain 
neuroimaging is being increasingly appreciated. The 
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Figure 5 Cooperation network of authors. The intragroup collaborations among authors demonstrate stronger ties than do the intergroup 
connections. Typically, the most productive author within each cluster serves as the core and has the highest number of connections. The 
circle size represents the publication volume, while the line thickness represents a research connection between two authors based on their 
co-authorship status. The various colors represent different cooperation clusters, and authors grouped within the same cluster may possess 
greater potential for collaborative relationships.

integration of brain diffusion tensor imaging (DTI), 
tractography, and track density imaging with SR can reveal 
the intricate structure and connectivity of brain neural 
pathways, facilitating a comprehensive examination of 
neural function and structure. In fetal MRI, SR effectively 
addresses motion artifacts. The near continuous innovation 
in this field suggests the vast potential of SR in advancing 
neuroimaging research and propelling the development of 
neuroscience. In summary, this cluster focuses on how SR 
functional magnetic resonance imaging (fMRI) of the brain 
provides rapid acquisition and enhances precision imaging.

Figure 7 illustrates how VOSviewer was used to color 
code the keywords extracted from the publications based 
on the average appearing year (AAY) via a heatmap for the 
analysis of trend progression. Keywords with cooler hues 
signify earlier occurrences, whereas keywords with warmer 
hues signify later occurrences. The most recent hotspot 
words include transformer (AAY: 2022.8889), attention 

mechanism (AAY: 2022.2353), medical diagnostic imaging (AAY: 
2022.1), feature extraction (AAY: 2022), task analysis (AAY: 
2021.9011), COVID-19 (AAY: 2021.8333), location awareness 
(AAY: 2021.8182), and generative adversarial networks (AAY: 
2021.5326).

Discussion

Research trends in the field of SR for medical imaging

SR in medical imaging has made significant progress 
with the development of science and technology. Figure 2  
illustrates the temporal evolution of the popularity of SR 
research, indicating a consistent and substantial growth. 
The research concerning SR in medical imaging has 
exhibited a sustained level of excellence over the past 5 years, 
encompassing 58.6% (1,911/3,262) of the total publications, 
with a noteworthy emphasis on the significance of AI. 
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Table 6 Clusters of the top 100 keywords

Cluster Keyword Counts Rank

1 Super-resolution 697 1

1 Deep learning 205 2

1 MRI 197 3

1 Convolutional neural network 116 4

1 Generative adversarial networks 92 5

1 Super-resolution reconstruction 53 8

1 Medical imaging 49 11

1 CT 44 12

1 Compressed sensing 36 13

1 Sparse representation 33 19

1 Image segmentation 30 23

1 Image enhancement 25 27

1 Reconstruction 25 28

1 Machine learning 24 30

1 Image processing 20 34

1 Interpolation 19 36

1 COVID-19 18 37

1 Attention mechanism 17 40

1 Image registration 17 42

1 Optical coherence tomography 16 46

1 Resolution enhancement 16 47

1 Denoising 15 48

1 Image quality 15 51

1 Transfer learning 15 54

1 Artificial intelligence 13 59

1 Breast cancer 12 63

1 Single image super-resolution 12 67

1 Image fusion 11 70

1 Spatiotemporal encoding 10 83

1 Classification 9 85

1 Residual learning 9 88

1 Residual network 9 89

1 Transformer 9 91

2 Image reconstruction 89 6

2 Image resolution 31 21

Table 6 (continued)

Table 6 (continued)

Cluster Keyword Counts Rank

2 PET 31 22

2 Training 25 29

2 Dictionary learning 20 32

2 Feature extraction 20 33

2 Motion correction 18 39

2 Image restoration 17 43

2 Inverse problems 17 44

2 Three-dimensional displays 17 45

2 Neural network 14 58

2 Image denoising 13 61

2 Medical image processing 12 66

2 Task analysis 11 75

2 Diseases 10 79

2 Medical diagnostic imaging 10 80

2 Generators 9 86

2 Convolution 8 94

2 Noise reduction 8 97

2 Unsupervised learning 8 100

3 Ultrasound imaging 51 9

3 Imaging 50 10

3 Ultrasound 36 15

3 Ultrasound localization microscopy 35 17

3 Microbubbles 32 20

3 Microscopy 30 24

3 Spatial resolution 27 26

3 Super-resolution ultrasound 20 35

3 Fluorescence 18 38

3 Biomedical imaging 17 41

3 Microvasculature 15 52

3 Resolution 15 53

3 Deconvolution 14 55

3 Cancer 11 69

3 Location awareness 11 71

3 Contrast-enhanced ultrasound 10 78

3 Optical imaging 10 81

Table 6 (continued)
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Table 6 (continued)

Cluster Keyword Counts Rank

3 Acoustics 9 84

3 Modulation transfer function 9 87

3 Transducers 8 99

4 Super-resolution microscopy 89 7

4 STED 36 14

4 Alzheimer's disease 35 16

4 Structured illumination microscopy 30 25

4 Fluorescence microscopy 15 50

4 Mitochondria 14 57

4 DSTORM 13 60

4 Electron microscopy 12 64

4 Synapse 12 68

4 Nanoparticles 11 72

4 Neurodegeneration 11 73

4 Protein aggregation 11 74

4 Alpha-synuclein 10 77

4 Parkinson's disease 10 82

4 Tau 9 90

4 Confocal microscopy 8 93

4 Expansion microscopy 8 95

4 Super-resolution fluorescence 
microscopy

8 98

5 Diffusion MRI 34 18

5 Brain 23 31

5 DTI 15 49

5 High resolution 14 56

5 Tractography 13 62

5 Fetal MRI 12 65

5 Track density imaging 11 76

5 3D reconstruction 8 92

5 Neuroimaging 8 96

MRI, magnetic resonance imaging; CT, computed tomography; 
COVID-19, coronavirus disease 2019; PET, positron emission 
tomography; STED, stimulated emission depletion microscopy; 
DSTORM, direct stochastic optical reconstruction microscopy; 
DTI, diffusion tensor imaging; 3D, three-dimensional. 

Analysis of data from the previous 5 years indicates that the 
integration of SR with AI has surpasses traditional image 
processing methods. 

Out of the top 20 most productive journals, 7 journals 
were related to the field of radiology and the field of 
nuclear medicine and medical imaging, 4 journals were 
related to multidisciplinary sciences, and 2 journals were 
related to computer science and information systems. The 
remaining journals were related to acoustics or chemistry, 
multidisciplinary engineering, biomedical engineering, 
electronics or optics, and nuclear physics. This also suggests 
that SR is a prominent topic in medical imaging.

Over 17,000 authors from 3,562 research institutions 
across 81 countries published research in SR for medical 
imaging, aligning with the prevailing trend of comprehensive 
development. According to Figure 5, Dinggang Shen has 
been the most prolific author in this field but does not have 
an extensive collaboration network. Figure 3 illustrates that 
global collaboration is not constrained by geographical 
boundaries. The United States, being the most productive 
country and a central hub of international collaboration, 
holds a leading position in this field. Among the top 10 most 
productive institutions, 5 were from England, 3 were from 
the United States, and the remaining 2 were from China. 
The institutions of these 3 countries hold a leading position 
in this field. Figure 4 demonstrates that more than 90% of 
the institutions contributing to SR in medical imaging were 
part of a collaborative network. However, collaboration was 
predominantly between institutions within the same country, 
with Chinese institutions dominating the red and American 
institutions dominating the green.

In conclusion, SR has historically been widely used for 
enhancing medical images. The advent of AI in recent years 
has introduced novel pathways. Collaborative efforts among 
leading countries and institutions from the United States, 
China, and England have been instrumental in achieving 
advancements in this field.

Examining the state of the art through clustering analysis

According to co-occurrence analysis of the top 100 most 
frequent keywords, five predominant research directions in 
focusing on SR in medical imaging were identified (Figure 6),  
which enabled us to classify the primary knowledge 
structures and discern research hotspots. In the co-
citation analysis presented in Table 6, the top 10 most cited 
references are categorized within one of the five clusters. In 



He et al. SR in medical imaging 5122

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(7):5109-5130 | https://dx.doi.org/10.21037/qims-24-67

Figure 6 Cluster analysis of keywords. The circle size represents frequency of occurrence, line thickness represents the level of co-
occurrence between two keywords, and color represents the clustering of distinct research directions.

the subsequent sections, we examine the different directions 
in SR research, drawing from articles obtained through 
keywords from various clusters.

Cluster 1: SR and AI for medical image enhancement
SR is extensively used in numerous medical imaging 
modalities, including CT and MRI, due to its capability to 
enhance LR images into HR ones. The accurate diagnosis 
of subtle lesions necessitates the extraction of intricate 
details from HR medical images. Setting aside specific 
diseases, we focused on summarizing the articles regarding 
the use of SR with AI for medical image enhancement. 
The analysis revealed that achieving HR medical images 
encompasses two dimensions: SISR and 3DSR.
SR in HR CT images from two dimensions
In the context of SISR, the presence of foggy edges and 

unreadable textures in conventional CT images often 
hinders the assessment of radiologists or clinicians (22). 
The integration of different diagnostic results pertaining 
to CT image characteristic can be challenging, with it 
being difficult to establish coherent mapping. To address 
this issue, a transformer model is commonly employed, 
leveraging the combined training of natural and medical 
images to attain SISR (23).

Regarding 3DSR, the level of anatomical detail and image 
segmentation accuracy are typically associated with meeting 
surgical demands (24). However, CT images are acquired with 
a certain slice thickness, resulting in anisotropic resolution. 
The partial volume effects caused by the slice thickness 
further hinder the accurate segmentation of small structures 
relative to the pixel size (25). Conversely, the anisotropic 
resolution along the z-axis direction impacts the precision of 
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Figure 7 Overlay map of the keywords (2017–2023). The color gradient in the image indicates the average appearing year, transitioning 
from dark to light, with lighter shades representing keywords of higher current popularity.

3D segmentation. In response to these challenges, multiple 
approaches have been proposed, such as Super Resolution 
Generative Adversarial Networks (SRGAN) (26).
SR in HR MRI from two dimensions
In the context of SISR, various factors, including the quality 
of the MRI device, noise, and low image resolution can 
negatively impact the quality of MRI images. However, 
these issues can be mitigated through the application 
of SR algorithms (27). Traditional methods that rely on 
interpolation techniques for enhancing the resolution 
of MRI images tend to compromise the accuracy of the 
subsequent diagnostic processes (28). Therefore, the advent 
of DL has revitalized the field of magnetic resonance 
SR reconstruction technology (29). By leveraging the 
capacity of deep CNNs (DCNNs) to identify nonlinear 
relationships, we can enhance the resolution of isotropic 

pixels in MRI images along the X–Y plane (30). However, 
pre-processing is often necessary to align the original 
image with the parameter requirements of the CNN (31), 
yet it diminishes the correlation of feature information 
across convolutional layers, thus resulting in suboptimal 
SR outcomes (32). To overcome these challenges, residual 
networks have been widely employed.

Regarding 3DSR, thin-layer, as opposed to thick-layer, 
MRI offers superior interlayer information and enhances 
the accuracy of structural relationships. Nonetheless, 
acquiring thin layers tends to be time-consuming and 
challenging in practical scanning scenarios (33). In order to 
address these challenges, several reconstruction frameworks 
have been proposed to reconstruct thin-layer MRI images 
in both the transverse or sagittal planes. These frameworks 
have used 3D U-net, GANs, and 3D CNNs (34).
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SR medical image enhancement based on imaging principles
Compressed sensing and sparse encoding are frequently 
discussed in the field of SR. The use of these algorithms 
in CT indicates their potential to attain the precise 
reconstructions of imaged objects, and the management a 
low-dose in CT acquisition through the use of compressed 
sensing techniques is also promising (35). Compressed 
sensing may further facilitate high spatial resolution in MRI 
while reducing scanning time. However, to avoid any loss of 
fine analytical details, edges, and boundaries resulting from 
energy leakage and artifacts, the integration of GANs is 
required (36,37).

Cluster 2: SR and inverse problem processing concepts 
for PET image processing
Cluster 2 (Figure 6, green cluster) includes 20 high-
frequency keywords, such as PET, inverse problems, image 
reconstruction, image restoration, and neural network.

In this cluster, the majority of keywords related to the 
concept of inverse problem processing within the domain 
of medical image processing. The inverse problem is a term 
commonly used to describe the ill-posed problem in image 
processing. Examples of typical ill-posed problems in image 
processing include image denoising, image restoration, and 
image SR. These types of problems are typically addressed 
using regularization methods, sparse representation methods 
such as dictionary learning, and statistical methods. In recent 
years, the use of image morphological component analysis 
and DL methods has become prevalent. Given the imaging 
principles and hardware limitations of PET, the inverse 
problem processing concept has been broadly applied, 
particular as it concerns SR in PET image processing.
Use of SR in overcoming hardware limitations
In terms of hardware, the resolution of PET is primarily 
constrained by the physical size of the crystals or the inherent 
spatial resolution of the detector (38). From the perspective 
of imaging principles, the image quality is affected by both 
the administered dose of 18F-fluorodeoxyglucose and the 
duration of the acquisition time (39). The costly equipment 
and dosage constraints together limit the achievable image 
resolution.

In achieving SR images, hardware upgrades can be 
avoided by leveraging the spatial location information 
extracted from the MR images of the input image patches. 
To account for the spatially variant nature of the blur kernels, 
this information is subsequently integrated into the CNN as 
additional inputs (40). Another approach involves combining 
consecutive acquisitions with an iterative algorithm (41).

Use of SR and PET imaging principles to mitigate radiation 
exposure
One approach for reducing radiation exposure is obtaining 
the SR images involved in predicting the standard PET 
images through the use of multiple MRI sequences as 
inputs (42). Furthermore, the use of the SRPET-Net allows 
for the learning of the intricacies and structural attributes 
of PET images across varying doses, facilitating effective 
transformation (43).

Sparse representation plays a significant role in PET 
SR in two distinct respects, as demonstrated by cluster 1. 
In this method, two dictionaries are extracted from raw 
PET images, each with different resolutions, and these are 
subsequently trained separately as part of the optimization 
process for enhancing image resolution (44). Furthermore, 
the application of dictionary learning methods can also 
extend to dose parameters in PET (45).

Cluster 3: SR ultrasound through use of microbubbles
Cluster 3 (Figure 6, blue cluster) includes 20 high frequency 
keywords, such as ultrasound, ultrasound localization microscopy, 
microscopy, microbubbles, optical imaging, fluorescence, and cancer.

In ultrasound imaging, aside from hardware conditions, 
image resolution is primarily limited by wavelength, depth, 
diffraction phenomena, and acoustic scattering. To address 
this issue, ultrasonic microbubble technology has emerged. 
Within this context, the primary application involves 
acquiring SR ultrasound images using ultrasound microbubble 
methods (46), while ultrasound localization microscopy is 
commonly employed for visualizing microbubbles. 
Ultrasound microbubble methods for SR
Ultrasonic microbubbles typically consist of a gas-liquid 
mixture and produce echo signals in the ultrasonic field to 
improve the contrast and resolution of ultrasound images (13).  
This technology allows for the observation of fine structures 
and details at the micrometer level, as well as deep 
penetration without causing damage to the organizational 
structure. Its advantages, including high resolution, deep 
penetration, safety, and real-time capabilities, have made 
it a widely applied technology in non-invasive biological 
imaging research and in clinic. In ultrasound vascular 
imaging, the implementation of ultrafast frame rate 
algorithms in ultrasound imaging enables the capturing of 
instantaneous signals from ultrasound microbubbles, leading 
to accurate extraction of blood flow velocity in the plane. 
The advancement of this technology has introduced a novel 
diagnostic approach for those diseases linked to microvascular 
blood flow, such as stroke and arteriosclerosis (47).
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The infusion of microbubble contrast agent into the 
entire microvascular network requires a specific duration 
of time. To enhance the visualization of blood vessels, it is 
necessary to individually locate and track microbubbles for 
achieving SR. The use of low microbubble concentrations 
is necessary and provides acquisitions that can last several 
minutes. However, the current conventional processing 
pipelines face difficulties in handling the interference caused 
by multiple nearby microbubbles, which in turn further 
decreases the concentrations (48).
Integration of DL for optimizing ultrasound microbubble 
methods
The collected radio frequency (RF) signals of microbubbles 
often overlap, and deep ultrasound localization microscopy 
(Deep-ULM) helps clari fy their  nonlinear image 
characteristics. This approach provides an improvement over 
the traditional method mentioned above (49). Additionally, 
in contrast to the aforementioned methods, CNNs have 
the ability to directly deconvolute a single ultrasonic RF 
channel signal, thereby achieving SR (50). Furthermore, 
the beamformer can accomplish SR at high frame rates by 
using RF signals as inputs and training them with enhanced 
networks, including GoogLeNet and U-Net (51).
Algorithm-enhanced ultrasound localization microscopy 
Standard ultrasound localization microscopy can be enhanced 
through the integration of algorithms that incorporate 
sparsity in a transform domain. For instance, the fast iterative 
shrinkage-thresholding algorithm (FISTA algorithm, 
despite requiring numerous iterations for convergence, can 
extend the capabilities of ultrasound localization microscopy  
(ULM) (52). Similarly, the Kalman tracking framework, 
which offer benefits comparable to those of sparsity-based 
deconvolution techniques, can also serve as an extension to 
ultrasound localization microscopy (53).

Cluster 4: SR microscopy for AD and PDs
Cluster 4 (Figure 6, yellow cluster) includes 18 high-
frequency keywords, such as AD, PD, DSTORM, electron 
microscopy, structured illumination microscopy, STED, alpha-
synuclein, and neurodegeneration.

AD and PD are two neurodegenerative disorders 
frequently characterized by protein misfolding, disorder, 
and the formation of insoluble amyloid protein structures. 
Optical imaging, particularly optical SR imaging, can be 
used to observe the dynamic processes of biomarkers at the 
molecular level, which traditional imaging techniques are 
unable to capture, and SR microscopy has begun to emerge 
to address this issue.

Diagnostic biomarkers for AD and PD
Amyloid-beta peptides (Aβ) and tau protein aggregates are 
two biomarkers that can serve as neurological indicators 
of AD (54). The genetic characteristics of sporadic AD 
are primarily influenced by variations in the cholesterol 
transporter apolipoprotein E (apoE) (55). 

In PD, both mitochondrial function and morphology 
are affected, with there being a clear relationship between 
mitochondrial function and morphology (56). The 
interaction between alpha-synuclein and mitochondria plays 
a crucial role in the degeneration observed in various types 
of PD (57). Studies have been conducted using microscopy-
based methods to investigate mitochondrial morphological 
changes and the interaction with alpha-synuclein.
The limitations and advancements in SR microscopy
Electron microscopy initially observed the aforementioned 
biomarkers in the research on AD and PD, however, despite 
the higher resolution it offers, it frequently generates 
artifacts and distortions during the imaging process, while 
the field of view and depth are significantly constrained (58).

To address these issues, confocal microscopy, STED, 
SIM, SR fluorescence microscopy, DSTORM, and 
expansion microscopy were successively developed and used 
in the research of AD and PD.

Cluster 5: SR in brain fMRI for rapid acquisition and 
precise imaging 
Cluster 5 (Figure 6, purple cluster) includes 9 high-frequency 
keywords, including diffusion MRI, DTI, tractography, track 
density imaging, neuroimaging, and brain, all of which are 
related to fMRI. Currently, the use of diffusion-weighted 
imaging (DWI) and DTI is pervasive. Shortening scanning 
duration to alleviate patient discomfort may compromise 
image resolution, but the integration of SR with DL 
effectively addresses this issue.
SR and DL for DWI and DTI
DWI is a well-established technique employed to investigate 
both the functionality and structure of the white matter. This 
method commonly involves the use of fiber reconstruction 
algorithms in combination with tractography (59). DWI 
allows for the assessment of axonal density in specific 
regions of the white matter (60). Shortening the scanning 
time during an actual scan reduces the signal-to-noise 
ratio of the image, making it impossible to capture HR 
images with accurate anatomical details. DTI is a data-
driven analytical approach that uses DWI data to compute 
the orientation and connection patterns of fiber bundles. 
DTI facilitates the depiction of fiber bundle distribution 
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in a variety brain regions and structures. Both techniques 
are often synergistically employed to acquire a more 
comprehensive understanding of structural features and 
connectivity networks.

Therefore, SR has assumed a pivotal role in DWI and 
tractography imaging. The emergence of DL has led to 
the development and application of a new approach for 
enhancing DWI. One example of this is the q-Space DL (q-
DL) method, which effectively reduces diffusion gradients 
while maintaining image quality to fulfil anatomical 
requirements (61). Building upon this, multimodal SR-
q-DL has been proposed for HR tissue microstructure 
estimation (62). However, the majority of existing 
methodologies primarily concentrate on deterministic 
models. Additionally, various approaches have been 
suggested to accurately characterize uncertain components 
and accomplish SR diffusion MRI (63).
Algorithms for mitigating fetal MRI artifacts and 
achieving SR
Fetal brain development encompasses the two crucial 
aspects of volume growth and structural formation, the 
observation of which can be facilitated by fetal MRI. Fetal 
MRI is typically conducted using uterine scans, but these 
are often affected by motion artifacts, such as breathing, 
thus reducing image quality.

Despite the widespread use of single-shot RF pulse 
sequences, artifacts can still affect the interlayer anatomical 
information, leading to deformation and distortion. The 
application of interlayer SR can effectively address these 
issues (64). The use of faster echo planar imaging (EPI) 
sequences is not feasible due to the geometric distortion 
induced by the main B0 field, which disrupts the data 
consistency on which diffusion and functional MRI 
rely (65). Interslice motion results in significant motion 
artifacts that are visible in out-of-plane views. Acquiring 
slices sequentially does not allow for the representation 
of a 3D volume (66). Slice-to-volume registration (SVR) 
method can effectively resolve motion artifacts during MR 
scanning and obtain HR images (67). However, traditional 
registration and correction methods are incapable of 
resolving significant motion artifacts during fetal scanning. 
An emerging method “Affinity Fusion-Based Framework 
for Iteratively Random Motion Correction” (AFFIRM) 
that uses iterative fusion algorithms may offer a solution 
for random motion artifacts (68). Additionally, a stable 
SR algorithm with a single parameter and CNN can be 
employed to first complete registration and SR and then 
segment the entire brain (69).

Emerging frontiers in SR for medical imaging

Figure 7 illustrates the hotspots in the field of SR for 
medical imaging that have emerged within the past 5 years, 
including DL, GANs, attention mechanisms, medical 
diagnostic imaging, task analysis, transfer learning, 
feature extraction, location awareness, and 3D displays. 
With the rapid advancement of computing power, SR has 
transitioned from traditional algorithms to AI methods, 
such as CNN and GANs. These approaches not only 
enhance the quality of medical images but also provide 
valuable references for diagnosis through techniques such 
as feature extraction. Additionally, the use of GANs and 
compressed sensing in SR in medical imaging to facilitate 
easy and rapid access to medical images represents a new 
direction within this field.

Limitations

We acknowledge that the bibliometric method has inherent 
limitations. All publications included in this article are 
indexed in the WoSCC database. However, despite 
WoSCC being the most commonly used and authoritative 
comprehensive database, there is still a possibility that 
other articles from Scopus, PubMed, or Google Scholar 
were not included in our analysis. To rectify this limitation, 
we intend to employ a broader range of search engines to 
comprehensively retrieve publications in subsequent studies. 
Another limitation is the absence of quality evaluation of 
publications, which resulted in assigning equal weight to 
high-quality and low-quality publications. Additionally, 
there is a potential issue in accurately extracting authors’ 
names using VOSviewer. Different name spellings or the 
usage of multiple names by authors might have led to 
inaccurate research results for these individuals.

Conclusions

Overall, the yearly publication volume of SR has shown a 
consistent increase over the past two decades, with the most 
rapid growth observed in the past five years. This trend 
suggests that the utilization of SR has gained popularity as 
the technology has advanced, particularly in hardware and 
AI implementation.

Our analysis revealed that all the top 20 journals in 
the field of medical imaging, excluding multidisciplinary 
journals, highlight the importance and research value of 
SR. We observed that international cooperation in the field 
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of SR is chiefly spearheaded by the United States, China, 
Germany, and England, while the collaboration among 
institutions tends to be more domestic. Countries, regions 
and institutions cluster exhibit strong tendencies toward 
international collaboration. The domain of medical imaging 
research is increasingly emphasizing multicenter and 
multimodal studies, highlighting the crucial role of potential 
collaborative relationships in funding and joint projects. 
Productive authors possess a robust research foundation, 
conduct coherent studies, and offer valuable research 
concepts for the scholarly community. The clustering of 
authors shows that collaborative efforts are centered around 
the leading researchers, while other researchers have also 
focused on similar research concepts. Analysis of keyword 
frequencies and co-occurrence networks confirmed the 
widespread and effective integration of AI in the field of 
SR. Notably, our findings align with highly cited articles, 
reinforcing the significance of the five key research areas 
identified in our study.

In summary, this analysis provides a comprehensive and 
robust foundation for researchers to use as a reference for 
future studies.
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