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ABSTRACT: In the fields of molecular design, material design, process
design, and process control, it is important not only to construct models
with high predictive ability between explanatory variables X and objective
variables y but also to interpret the constructed models to clarify
phenomena and elucidate mechanisms in the fields. However, even in
linear models, it is dangerous to use regression coefficients as contributions
of X to y due to multicollinearity among X. Thus, the focus of this study is
the model of partial least-squares with only the first component (PLSFC). It
is possible to use regression coefficients as contributions of X to y for the
PLSFC model. In addition, selecting the combination of X that can
construct a predictive PLSFC model using a genetic algorithm (GA) is
proposed, which is called GA-based PLSFC (GA-PLSFC). The constructed
model would have both high predictive ability and high interpretability with
regression coefficients that can be defined as contributions of X to y. The
effectiveness of the proposed PLSFC and GA-PLSFC is verified using
numerically simulated data sets and real material data sets. The proposed
method was found to be capable of constructing predictive models with
high interpretability. The Python codes for GA-PLSFC are available at https://github.com/hkaneko1985/dcekit.

1. INTRODUCTION
Inmolecular design, material design, process design, and process
control, it is common to utilize regression model y = f(X)
constructed between objective variables y and explanatory
variables X using a data set. One of the important things in
regression analysis is to construct models with high predictive
ability. Examples of linear modeling methods include partial
least-squares regression (PLS),1 ridge regression, and the least
absolute shrinkage and selection operator (LASSO),2 and
nonlinear regression methods include support vector regres-
sion,3 Gaussian process regression,4 decision tree (DT),5

random forests (RF),6 gradient boosting (GB),7−9 and deep
neural networks.10 Since there is no optimal regression analysis
method, it is necessary to select a method that is appropriate for
each data set.
However, it is also important to interpret the constructed

regression models and clarify relationships between y and X, to
elucidate the mechanism of expression of properties and
activities, and to explain the phenomena. For example, the DT
model can be interpreted as a relationship between y and X by
using the combination of thresholds of X. In addition, feature
importance in RF and GB can be used to determine the
importance of each X in predicting y. Variable importance in
projection1 can be used for linear PLS. Although this importance
is calculated considering the entire value of y, the importance of
each X can vary depending on whether the y value is high,

middle, or low. Shimizu and Kaneko proposed the DT and RF
hybrid model that successfully interpreted global and local
relationships between y and X.11

In addition to RF, there are other contribution indexes such as
the local interpretable model-agnostic explanations (LIME)12

and Shapley additive explanations (SHAP)13 that can be
combined with any regression analysis methods. In LIME and
SHAP, by obtaining an approximation of the shape of the model
at a certain sample point, the slope of X with respect to y around
that sample point is obtained.
When relationships between y and X are linear, robust models

can be constructed with linear regression methods. Further-
more, weights of X to y or regression coefficients are provided in
linear models. However, it is dangerous to use regression
coefficients as the contributions of X to y because there is
multicollinearity among X. When X variables are highly
correlated, the regression coefficient of an X variable becomes
positively high and that of another correlated variable becomes
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negatively high, which has nothing to do with the true
relationship between y and X. For example, when y is yT = [2
4 6 8],X is x1

T = [1 2 3 4], and x2
T = [2 4 6 8], andmultiple linear

regression is conducted, there are infinite solutions of the
regression coefficients b, such as bT = [2 0], bT = [0 1], and bT =
[− 10 4]. It is inaccurate to consider the regression coefficient as
the magnitude of the contribution of each variable to a model.
When X is correlated, regression coefficients cannot be trusted.
Although active learning was applied to select informative

samples and construct predictive PLS models,14,15 other PLS
methods such as orthogonal PLS,16 biorthogonal PLS,17 and
kernel PLS18 and sparse modeling methods such as LASSO,
sparse PLS,19 and envelope-based sparse PLS20 were proposed.
These contributed to the improvement of prediction perform-
ance and variable selection; the regression coefficients ofX could
not be interpreted. Therefore, regression coefficients can be
used as the contributions of X to y only when there is no
multicollinearity among X and when X is a single variable. Since
the former is not realistic, this study focuses on regression
analysis with one variable.
A PLS model with only the first component is applied. A

regression coefficient of one component can be used as the
contribution of the component to y because there is only one
component in PLS. Therefore, the regression coefficients of X,
calculated by using loading and weight vectors, can be the
contributions of X to y. This method is called PLS with only the
first component (PLSFC). In this study, the contributions of X
to y are interpreted with regression coefficients using PLSFC.
However, as only one component is used in PLSFC, it is

difficult to construct models with high predictive ability,
especially when the number of X is large and noise variables
are included in X. It is pointless to interpret a model with low
predictive ability. Therefore, this study combines PLSFC and a
genetic algorithm (GA),21 selecting only important X variables,
to construct a PLSFC model with high predictive ability. By
setting the fitness in GA as the predictive accuracy of the PLSFC
model verified with cross-validation, a set of X variables from
which the predictive PLSFC model is constructed can be
obtained, and their regression coefficients can be handled as
contributions ofX to y, indicating that themodel is interpretable.
When multiple linear regression, that is, PLS with all the
components and PLS with more than one component are used
instead of PLSFC, the regression coefficients of the constructed
model cannot be interpreted. In addition, although the
combination of GA and multiple linear regression has a high
risk of overfitting, it is much lower in PLSFC, compared to a case
where the number of components is optimized using cross-
validation. This is because the PLSFC model, which has only
one component, is simple. The proposed method is called a GA-
based PLSFC (GA-PLSFC).
We focus on GA-based wavelength selection with PLS

(GAWLS-PLS),22 which selects variables as units of wavelength
region for spectral analysis, and GA-based process variables and
their dynamics selection with PLS (GAVDS-PLS),23 which
selects variables while considering dynamics in a process or time
delays of process variables to y for soft sensor analysis as variable
selection methods based on GA and PLS. The variable selection
methods using PLSFC in GAWLS and GAVDS are called
GAWLS-PLSFC and GAVDS-PLSFC, respectively. In this
study, predictive ability and interpretability of the proposed
methods are verified using numerical simulation data sets,
molecular and material data sets, spectral data sets, and time
series data sets.

This study makes the following contributions to the literature.
First, it shows that regression coefficients of PLSFC model can
be interpreted as the contributions ofX to y. Second, GA-PLSFC
allows us to construct a highly predictive model whose
regression coefficients can be interpreted by selecting only the
important X variables with GA. Third, GAWLS-PLSFC can be
used to construct an interpretable model with high predictive
ability by selecting the combination of wavelength regions in
spectral analysis. Fourth, GAVDS-PLSFC can be used to
construct an interpretable model with high predictive ability by
selecting the important process variables and their time delays
simultaneously in a time series data analysis or soft sensor
analysis.

2. METHOD
2.1. Partial Least Squares with Only the First

Component (PLSFC). The basic equations for PLS are given
as follows
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where X and y are data sets of X and y after autoscaling,
respectively, ti and pi are score and loading vector of ith
component, respectively, E and f denote the error matrix of X
and error vector of y, respectively, qi is a regression coefficient of
ith component, and a is the number of components. Assuming
that t1 is represented with a linear combination ofX, t1 is given as
follows
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where m is the number of X, xi is the vector of the ith X, w1
(i) is

the weight of xi to t1, and w1 is a vector whose elements are w1
(i).

As a constraint, the magnitude of w1 is set to one as follows:
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While satisfying eq 4, w1 is calculated to maximize the
covariance or inner product of y and t1, which is given as follows

=w
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X y1

T

T
(5)

wherew1 is calculated fromX and y and then t1 is calculated with
eq 3.
p1

(i), which corresponds to ith X in p1, is obtained by
minimizing the sum of the squares of the errors in x1, and q1 is
obtained by minimizing the sum of the squares of the errors in y,
as follows:
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The parts of X and y that cannot be represented with the first
component are denoted by X1 and y1, respectively, which are
given as follows:

= −X X t p1 1 1
T

(8)

= − qy y t1 1 1 (9)

By using X1 and y1 as X and y in the previous equations,
respectively, w2, t2, p2, q2, X2, and y2 can be calculated for the
second component as well, and then wi, ti, pi, qi, Xi, and yi are
calculated for the third and subsequent components in turn.
Standardized regression coefficient b for PLS is given as

follows

= −b W P W q( )T 1
(10)

where W is a matrix including w1, w2, and so on.
It is necessary to determine the number of components used.

In general, cross-validation is performed for each number of
components in PLS, and the number of components that
maximize the coefficient of determination r2 between actual y
values and y values predicted in cross-validation is used.
However, in the proposed PLSFC, only the first component is
used.
In this study, the PLS calculation uses cross_decomposi-

tion.PLSRegression24 from the scikit-learn library.
2.2. Genetic Algorithm-Based PLSFC (GA-PLSFC).

Given that only the first component is used in PLSFC, it is
not possible to calculate the informative component to explain y
when multiple X-variables exist and noise variables are included
in X. A model is proposed to select a set of important X variables
that can construct a PLSFC model with high predictive ability
using GA, which is called GA-PLSFC. GA is a metaheuristic
inspired by the process of natural selection. GA prepares several
chromosomes representing candidates for selectedX numbers as
genes and searches for solutions by selecting chromosomes with
high fitness values preferentially and repeating operations such
as crossover and mutation.
Figure 1 shows the flowchart of GA-PLSFC modeling. While

the fitness in GA for GA-PLS is the maximum value of r2

between actual y values and y values predicted with cross-
validation in adding components of PLS, the fitness in GA for
the proposed GA-PLSFC is the r2 value between the actual y
values and y values predicted in cross-validation with PLSFC.
GA-PLSFC provides a set of X variables with high r2 after cross-
validation, and the contributions of X to y can be obtained by
interpreting the regression coefficients of the PLSFCmodel with
the X variables selected with GA-PLSFC.
DEAP25 was used to calculate the GA. The Python code for

GA-PLSFC is available at https://github.com/hkaneko1985/
dcekit.
2.3. GAWLS-PLSFC and GAVDS-PLSFC.GAWLS-PLS is a

GA-based wavelength selection method for spectral analysis that
can optimize the combination of wavelength regions. When the
number of wavelength regions to be selected is k, a chromosome
in GA is represented by k sets, where the first wavelength
number and width to be selected comprise one set. Accordingly,
a chromosome is a sequence of 2k values.
The fitness in GA for GAWLS-PLS is the maximum value of r2

between the actual y values and y values predicted in cross-

validation while adding components of PLS. The fitness in GA
for the proposed method GAWLS-PLSFC is the r2 value
between the actual y values and y values predicted in cross-
validation with PLSFC. GAWLS-PLSFC provides a set of
wavelengths with high r2 after cross-validation, and the
contributions of X to y can be obtained by interpreting the
regression coefficients of the PLSFC model with the X variables
selected with GAWLS-PLSFC.
The GAVDS is a variable selection method based on the GA,

which can optimize the process variables and their time delays
simultaneously. Furthermore, time-delayed variables are se-
lected continuously in time. For each process variable, time-
delayed variables are prepared for eachmeasurement time; when
m process variables and time-delayed variables are considered
within a unit time of n, the number of all variables is equal tom×
(n + 1). When the time width that is selected for a process
variable indicates a region, the number of selected regions and
maximum value of regions is set.
The fitness in GA for GAVDS-PLS is the maximum value of r2

between actual y values and y values predicted in cross-validation
while adding components of PLS, and the fitness in GA for the
proposed method GAVDS-PLSFC is the r2 value between the
actual y values and y values predicted in cross-validation with
PLSFC. GAVDS-PLSFC provides a set of process variables and
their time delays with high r2 after cross-validation, and the
contributions of X to y can be obtained by interpreting the
regression coefficients of the PLSFC model with the X variables
selected with the GAVDS-PLSFC.
The GAWLS-PLS, GAWLS-PLSFC, GAVDS-PLS, and

GAVDS-PLSFC programs in this study were written in
Python26 using DEAP.25

3. RESULTS AND DISCUSSION
To verify the predictive ability of the proposed methods, two
numerical simulation data sets were used first. To compare PLS
and PLSFC, the first data set (SIM1) used was a data set of 100
mutually correlated X and y that is linearly related to X. The ith
X, Xi, was generated as follows:

Figure 1. Flowchart of GA-PLSFC modeling.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.1c07379
ACS Omega 2022, 7, 8968−8979

8970

https://github.com/hkaneko1985/dcekit
https://github.com/hkaneko1985/dcekit
https://pubs.acs.org/doi/10.1021/acsomega.1c07379?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c07379?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c07379?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c07379?fig=fig1&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.1c07379?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


= + × ×z z NX 0.2 std( ) (0,1)i (11)

Here, z denotes uniform random numbers between 0 and 1,
std(z) is the standard deviation of z, and N(0, 1) denotes
standard normal random numbers. y is set to z plus standard
normal random number with 10% of its standard deviation as
noise. From the above operations, the contributions of X for y
are equivalent for all X, and 50 samples of training data and 50
samples of test data were generated.
The prediction results for test data in PLS and PLSFC are

shown in Table 1 and Figure 2. r2TEST is r2 for test data, and

RMSETEST is the root-mean-squared error for test data. There is
no significant difference between PLS and PLSFC in r2TEST and
RMSETEST. The RMSETEST of PLSFC was slightly lower than
that of PLS because the PLS model was overfitted by optimizing
the number of components with cross-validation. The plots of
actual y values and predicted y values indicate that the samples of
both PLS and PLSFC are clustered around the diagonal and the
y values could be predicted with high accuracy. It was confirmed
that PLSFC model had high predictive ability.
The standardized regression coefficients for PLS and PLSFC

are shown in Figure 3. Although the standardized regression
coefficients in the PLS model were varied positively and
negatively, they are not appropriate because the data set of SMI1
was generated such that the contributions of X for y were the
same for allX. This would occur due to the collinearity amongX.
Thus, it is dangerous to interpret the standardized regression

coefficients of the general PLSmodel as the contributions ofX to
y. Conversely, Figure 3b shows that the standardized regression
coefficients of the PLSFC model are almost the same for all X,
which is consistent with the fact that the data set of SMI1 was
generated such that the contributions of X for y were the same
for all X. Hence, it was confirmed that the standardized
regression coefficients of PLSFC could be used to properly
determine the contributions of X to y.
To compare PLS, PLSFC, GAWLS-PLS, and GAWLS-

PLSFC, a second data set (SIM2) was prepared assuming
spectral data. X was generated as follows:

=
=

× + × =−

U i

U i

X

(0, 1) ( 1)

0.95 X 0.05 (0, 1) ( 2, 3, ..., 500)

i

i 1

l
m
ooo
n
ooo

(12)

Here, U(0, 1) denotes uniform random numbers between 0
and 1. The coefficients of the linear combination of X with
respect to y were generated, as shown in Figure 4, using the

probability density function of the normal distribution. Standard
normal random numbers with 10% of the standard deviation of y
was added to y as noise, and 200 samples of training data and 100
samples of test data were generated.
The prediction results of test data in PLS, GAWLS-PLS,

PLSFC, andGAWLS-PLSFC are shown in Table 2 and Figure 5.

Table 1. Prediction Results in the Test Data of SIM1

PLS PLSFC

r2TEST 0.984 0.989
RMSETEST 0.0354 0.0294

Figure 2. Actual y vs predicted y in the test data of SIM1.

Figure 3. Standardized regression coefficients in SIM1.

Figure 4. Weights of X to y in SIM2.

Table 2. Prediction Results in the Test Data of SIM2

PLS GAWLS-PLS PLSFC GAWLS-PLSFC

r2TEST 0.970 0.981 0.872 0.945
RMSETEST 0.0098 0.0078 0.0203 0.0133
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The r2TEST of GAWLS-PLSFC is much higher than that of
PLSFC and the RMSETEST of GAWLS-PLSFC is much lower
than that of PLSFC, indicating that the predictive ability of
PLSFCmodel is greatly improved by selecting wavelengths with
GAWLS. Although the r2TEST of GAWLS-PLSFC is lower than
that of PLS and that of GAWLS-PLS, the samples in Figure 5d
are distributed close to the diagonal line in the whole y values.
Thus, it was confirmed that the predictive ability of PLSFC
model can be successfully improved by selecting variables using
GAWLS.
Figure 6 shows the standardized regression coefficients for

PLS, GAWLS-PLS, PLSFC, and GAWLS-PLSFC. While the
actual weights of X for y change continuously for each X number

as shown in Figure 4, the standardized regression coefficients of
the PLS model were discontinuous values and those of GAWLS-
PLS also varied positively and negatively in each wavelength
region, which could be due to the effect of collinearity among X.
This confirmed that the standardized regression coefficients of
the general PLSmodel were not appropriate as the contributions
of X to y. However, Figure 6c shows that standardized regression
coefficients are continuous to a certain extent with respect to the
number of X in PLSFC, which is similar to the weights in Figure
4. Although original weights of X are zero or nearly zero and
their X variables do not affect y, y values change due to noise,
which means that y values increase in spite of little change of the
X values, and thus, the standardized regression coefficients of the
X variables become negative. In addition, GAWLS-PLSFC
accurately selects only the regions of X with large weights in
Figure 4, and all the values of the standardized regression
coefficients are appropriately given as positive. Therefore, it is
confirmed that the proposed methods can construct models
with high predictive ability and that standardized regression
coefficients for PLSFC and GAWLS-PLSFC can be used to
interpret the relationship between X and y appropriately.
Next, to verify the predictive ability of the proposed methods,

data sets of boiling points (BP),27 solubility in water (logS),28

and environmental toxicity (Tox)29 were used as data sets for
compounds or materials. The tablet data set of Shootout200230

(API1) and the tablet data set of Shootout201231 (API2) were
used as spectral data sets. The time series data sets of a
debutanizer column (DEB)32 and a sulfur recovery unit
(SRU)32 were used as process data sets. These data sets are
real data.
In the data sets for compounds, RDKit33 was used to calculate

the molecular descriptors. To test the interpretability of the
model, another BP data set with only interpretable descriptors
was prepared, which is referred to as BP(selected). Time-
delayed X-variables were added to X from 1−60 unit time for
DEB and SRU. The data were randomly split so that the training
set contained 70% of samples and the testing set contained the
remaining 30% for BP(selected), BP, logS, Tox, API1, and API2,

Figure 5. Actual y vs predicted y in the test data of SIM2.

Figure 6. Standardized regression coefficients in SIM2.
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and the data were randomly split so that the training set
contained 1000 samples and the testing set contained the
remaining samples for DEB and SRU. Those X variables for
which the ratio of samples with the same values in the training
data accounted for 80% or more were deleted. One of the pairs
of X variables for which the absolute value of the correlation

coefficient attained a value of 1 was subsequently deleted. Each

variable selection of the GA-PLS andGA-PLSFCwas conducted

ten times. In the GAWLS-PLS, GAWLS-PLSFC, GAVDS-PLS,

and GAVDS-PLSFC, the number of regions was set to 1−8, and
each variable selection was conducted 10 times.

Figure 7. Prediction results in the test data of BP (selected). Red lines, blue lines, red points, and blue points indicate the results of the PLS, PLSFC,
GA-PLS, and GA-PLSFC, respectively.

Figure 8. Standardized regression coefficients in BP(selected).
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Figure 7 shows the prediction results of test data for PLS, GA-
PLS, PLSFC, and GA-PLSFC in BP(selected). Although there
were ten results for GA-PLS and GA-PLSFC, some results had
the same r2TEST and RMSETEST

; GA-PLS and GA-PLSFC
appeared to have one and three points, respectively. Figure 7
indicates that the r2TEST of GA-PLSFC was higher than that of
PLSFC and the RMSETEST of GA-PLSFC was lower than that of
PLSFC, and predictive ability was improved by using GA-
PLSFC. Although the r2TEST of GA-PLS was lower than that of
PLS and the RMSETEST of GA-PLS was higher than that of PLS,
indicating overfitting due to GA-PLS, GA-PLSFC improved the
prediction accuracy over PLSFC without overfitting. In GA-
PLS, X variables would be selected to fit the cross-validation
result, which led to the overfitting of training data, compared to
PLS. The plots of actual y values and predicted y values for test
data in eachmethod are available in the Supporting Information.
Hence, it was confirmed that GA-PLSFC can appropriately
select X variables to improve predictive ability of the PLSFC
model.
Figure 8 shows the standardized regression coefficients for

PLS, GA-PLS, PLSFC, and GA-PLSFC. In the PLS and GA-
PLS, the standardized regression coefficient of HeavyAtom-

MolWt (molecular weight including only heavy atoms) was
negative, for example, even though molecular weight should
contribute positively to boiling point. This inconsistence would
occur due to the collinearity among X. It was confirmed that it is
dangerous to use the standardized regression coefficients of PLS
and GA-PLS models as the contributions of X to y. Additionally,
absolute standardized regression coefficients were high for PLS
andGA-PLS.When a regression coefficient is high, the predicted
y value for the same value of X corresponding to the regression
coefficient becomes high, and the extrapolation regions of X
indicate high values. Thus, the predicted y value can be an
outlier. It difficult to predict y values for extrapolation regions of
X using the PLS and GA-PLS models.
Meanwhile, from Figure 8c, the standardized regression

coefficients of PLSFC indicate that the coefficients of
descriptors that are considered to contribute positively to
boiling point, including molecular weight-related descriptors,
are appropriately positive. In addition, the standardized
regression coefficients of the descriptors selected by GA-
PLSFC are also appropriately positive. This confirmed that
the proposed methods can properly handle the standardized
regression coefficient as the contributions of X to y.

Figure 9. Prediction results in the test data of BP. Red lines, blue lines, red points, and blue points indicate the results of the PLS, PLSFC, GA-PLS, and
GA-PLSFC, respectively.

Figure 10. Prediction results in the test data of logS. Red lines, blue lines, red points, and blue points indicate the results of the PLS, PLSFC, GA-PLS,
and GA-PLSFC, respectively.

Figure 11. Prediction results in the test data of Tox. Red lines, blue lines, red points, and blue points indicate the results of the PLS, PLSFC, GA-PLS,
and GA-PLSFC, respectively.
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The prediction results of test data for BP, logS, and Tox are
shown in Figures 9, 10, and 11, respectively. Ten GA
calculations were performed, and accordingly, there were 10
results for each data set for GA-PLS and GA-PLSFC. In all of the
data sets, the r2TEST of GA-PLSFC was higher than that of
PLSFC and the RMSETEST was lower than that of PLSFC,
confirming that variable selection with GA could appropriately
improve the predictive ability of PLSFC models. Although the

r2TEST of GA-PLS was higher or lower than that of PLS
depending on the data set, GA-PLSFC showed consistently
higher r2TEST compared to PLSFC, confirming that GA-PLSFC
could select variables stably that improved the predictive ability.
Furthermore, for BP and logS, the results indicated that GA-
PLSFC outperformed PLS and GA-PLS in terms of predictive
accuracy. The plots of actual y values and predicted y values for
test data in each method are available in the Supporting

Figure 12. Prediction results in the test data of API1. Red lines, blue lines, red points, and blue points indicate the results of the PLS, PLSFC, GAWLS-
PLS, and GAWLS-PLSFC, respectively.

Figure 13. Prediction results in the test data of API2. Red lines, blue lines, red points, and blue points indicate the results of the PLS, PLSFC, GAWLS-
PLS, and GAWLS-PLSFC, respectively.

Figure 14. Standardized regression coefficients in API1. There are three regions in GAWLS-PLS and GAWLS-PLSFC.
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Information. Therefore, it was confirmed that the proposed
methods could construct linear model with both high predictive
ability and high interpretability.
The prediction results of test data in PLS, GAWLS-PLS,

PLSFC, and GAWLS-PLSFC for API1 and API2 are shown in
Figures 12 and 13, respectively. Since the GA was calculated ten
times for each number of regions, there were 10 results for
GAWLS-PLS and GAWLS-PLSFC for each region number. The
r2TEST was improved and RMSETEST was reduced greatly by
selecting wavelengths with GAWLS-PLSFC, compared to
PLSFC. In particular, the average of prediction y errors was
reduced to less than half of those in PLSFC. Furthermore,
GAWLS-PLSFC produced results comparable to those of PLS
and GAWLS-PLS. The plots of actual y values and predicted y
values for test data in each method are available in the
Supporting Information. This confirmed that the predictive
model could be constructed by using the proposed GAWLS-
PLSFC.
Figures 14 and 15 show standardized regression coefficients

for PLS, GAWLS-PLS, PLSFC, and GAWLS-PLSFC in API1
and API2, respectively. GAWLS-PLS and GAWLS-PLSFC
depict the results when the number of regions is three. In
both API1 and API2, compared to the standardized regression
coefficients of PLS, those of PLSFC change smoothly according
to wavelength numbers, and the smoothness is appropriate
when considering the spectral shape. Additionally, the absolute

standardized regression coefficients were lower in PLSFC than
in PLS, and overfitting is less likely to occur. Although there were
several wavelengths where the standardized regression coef-
ficients were negative, it would not be a problem. In the pure
spectrum of the target component to be predicted as y, even
when the intensity of a certain wavelength is zero or nearly zero,
theX values of mixture spectra will become large for low y values,
that is, a small amount of the target component, since the
amount of the other components is large. Conversely, when y
values are high, the X values of mixture spectra become small
since the amount of the other components is small. These mean
that there is a negative correlation between y and X at the
corresponding wavelength, and the standardized regression
coefficient can be negative.
Figures 14b and 15b show that when wavelengths were

selected with GAWLS-PLS, the standardized regression
coefficients were not consistent between positive and negative
values in the same wavelength region, and the absolute
standardized regression coefficients were exceptionally large,
which could be because of the influence of collinearity among X.
Hence, it is difficult to use the standardized regression
coefficient as the contributions of X to y. Furthermore, the
large absolute standardized regression coefficients make
prediction unstable, especially for new samples in extrapolation
of X. Meanwhile, from Figures 14d and 15d, the positive and
negative standardized regression coefficients for GAWLS-

Figure 15. Standardized regression coefficients in API2. There are three regions in GAWLS-PLS and GAWLS-PLSFC.

Figure 16. Prediction results in the test data of DEB. Red lines, blue lines, red points, and blue points indicate the results of the PLS, PLSFC, GAVDS-
PLS, and GAVDS-PLSFC, respectively.
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PLSFC were consistent for each selected wavelength region,
suggesting that the weights of X to y can be calculated
appropriately. Furthermore, the absolute standardized regres-
sion coefficients were not large, which suggests that new samples
in extrapolation of X can be predicted stably. Thus, it was
confirmed that the proposed methods can construct models in
spectral analysis with both high predictive ability and high
interpretability.
The prediction results of test data for PLS, GAVDS-PLS,

PLSFC, and GAVDS-PLSFC in DEB and SRU are shown in
Figures 16 and 17, respectively. Since 10 GA calculations were
performed for each number of regions, there were 10 results for
each region in GAVDS-PLS and GAVDS-PLSFC. By selecting
process variables and their dynamics with GAVDS-PLSFC, the
r2TEST was improved and RMSETEST was reduced, compared to
PLSFC. In DEB, GAVDS-PLSFC achieved predictive accuracy
comparable to GAVDS-PLS; however, in SRU, the r2TEST of
GAVDS-PLSFC was much lower than that of PLS and GAVDS-
PLS. In SRU, y values varied due to various effects of process
variables, and the variations could be handled with the one-
component model even after the selection of process variables
and their dynamics. The plots of actual y values and predicted y

values for test data in each method are available in the
Supporting Information. Thus, it was confirmed that the
prediction accuracy of the PLSFC model can be improved by
appropriately selecting the process variables and their time
delays simultaneously.
Figures 18 and 19 show the standardized regression

coefficients for PLS, GAVDS-PLS, PLSFC, and GAVDS-
PLSFC in DEB and SRU, respectively. For X1, X2, and so on,
standardized regression coefficients of time-delayed variables are
shown in order from left to right. The number of regions in both
GAVDS-PLS and GAVDS-PLSFC is six for DEB and four for
SRU. In both DEB and SRU, the standardized regression
coefficients change more smoothly according to time delays in
PLSFC than in PLS, and the smoothness is appropriate when
considering the dynamic characteristics of the process. In SRU,
the absolute standardized regression coefficients of PLSFC are
lower than those of PLS, which indicates overfitting is less likely
to occur for PLSFC than PLS.
Figures 18b and 19b show that when process variables and

their dynamics were selected with GAVDS-PLS the stand-
ardized regression coefficients were not consistent in terms of
positive and negative values for each of the same process

Figure 17. Prediction results in the test data of SRU. Red lines, blue lines, red points, and blue points indicate the results of the PLS, PLSFC, GAVDS-
PLS, and GAVDS-PLSFC, respectively.

Figure 18. Standardized regression coefficients in DEB. For X1−X7, standardized regression coefficients of time-delayed variables are shown in order
from left to right. There are six regions in GAVDS-PLS and GAVDS-PLSFC.
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variables, and the absolute values became exceptionally large.
Because the influence of collinearity among X, it was dangerous
to use the standardized regression coefficients as the
contributions of X to y. Furthermore, the large absolute
coefficients make prediction unstable, especially for new samples
in extrapolation of X. Conversely, for GAVDS-PLSFC in Figures
18d and 19d, the positive and negative standardized regression
coefficients are consistent for each of the selected process
variables, suggesting that the contributions of X to y were
appropriately calculated. Furthermore, since the absolute
standardized regression coefficients were not large, y values of
new samples in extrapolation of X would be predicted stably. In
process data analysis or soft sensor analysis, it was hence
confirmed that the proposed methods can be used to construct
models with both high predictive ability and high interpret-
ability.

4. CONCLUSION

This study focused on the PLSFC model with the aim of
constructing linear regressionmodels with high predictive ability
and high interpretability. PLSFC has only one component, and
standardized regression coefficients can be used as the
contributions of X to y, which means high interpretability.
However, it is difficult to construct models with high predictive
ability. To improve the prediction accuracy of PLSFC, GA-
PLSFC, a method to select only the X variables that are
important for the PLSFC model with GA, was proposed. By
using GA-PLSFC and selecting the combination of X variables
that can construct predictive PLSFC model, linear regression
models with both high predictive ability and high interpretability
can be constructed. The proposedmethod for spectral analysis is
GAWLS-PLSFC, and the proposed method for process data
analysis or soft sensor analysis is GAVDS-PLSFC.
The proposed methods were validated using compound data

sets, spectral data sets, and time series data sets, and it was
confirmed that the prediction accuracy of PLSFC could be
improved for all data sets by using the proposed methods. In
addition, the proposed methods could perform the predictive

ability of linear regression models that were comparable to or
surpassed the predictive ability of PLS models that were not
limited to a single component, depending on the data set.
Furthermore, even when the standardized regression coef-
ficients of the conventional PLS models differed from scientific
backgrounds of the data sets, the proposed methods obtained
the standardized regression coefficients that were consistent
with the scientific backgrounds. It was confirmed that the
proposed methods can construct linear regression models with
high predictive ability and that the standardized regression
coefficients of the constructed models can be used as the
contributions of X to y.
However, the proposedmethod is a linear method and cannot

represent nonlinear relationships between X and y. In addition,
when relationships between X and y are complex and cannot be
represented with the single component-based model even with
variable selection, the prediction accuracy will remain low.
These are some challenges that need to be addressed in the
future.
It is expected that the proposed methods will facilitate the

elucidation of mechanisms in molecular design, material design,
process design, and process control by constructing models with
high predictive ability and interpreting the models.

5. DATA AND SOFTWARE AVAILABILITY

The data that support the findings of this study are available in
refs 22−24 and 27.
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Figure 19. Standardized regression coefficients in SRU. For X1, X2, ..., and X5, standardized regression coefficients of time-delayed variables are shown
in order from left to right. There are four regions in GAVDS-PLS and GAVDS-PLSFC.
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