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Abstract: In this study, we report a biohybrid oriented fibrous scaffold based on nanofibers of poly(L-
lactic acid) (PLLA)/fibrin produced by electrospinning and subsequent post-treatment. Induced
hydrolytic degradation of the fibers in 0.25 M NaOH solution for various time periods followed by
the immobilization of fibrin on the hydrolyzed fiber surfaces was shown to significantly affect the
mechanical properties, with the tensile strength (40.6 MPa ± 1.3) and strain at failure (38% ± 4.5)
attaining a value within the range of human ligaments and ligament-replacement grafts. Unidi-
rectional electrospinning with a mandrel rotational velocity of 26.4 m/s produced highly aligned
fibers with an average diameter of 760 ± 96 nm. After a 20-min hydrolysis treatment in NaOH
solution, this was further reduced to an average of 457 ± 89 nm, which is within the range of collagen
bundles found in ligament tissue. Based on the results presented herein, the authors hypothesize
that a combination of fiber orientation/alignment and immobilization of fibrin can result in the
mechanical and morphological modification of PLLA tissue scaffolds for ligament-replacement grafts.
Further, it was found that treatment with NaOH enhanced the osteogenic differentiation of hMSCs
and the additional inclusion of fibrin further enhanced osteogenic differentiation, as demonstrated by
decreased proliferative rates and increased ALP activity.

Keywords: electrospinning; ligament; fibrin scaffold; biohybrid scaffold; ACL; polymer nanofiber

1. Introduction

Mimicking the morphological and mechanical properties of native tissue is a key
element of tissue engineering scaffolds. Producing aligned fibers mimetic of collagen
bundles in size, orientation, and mechanical function is desired for ligament engineering
applications. Electrospinning is a technique used to create fibrous polymer scaffolds
with fiber diameters ranging from the micro- to nanoscale, depending on experimental
parameters [1–4]. Accordingly, for the purpose of mimicking oriented fiber morphology
and for increased mechanical properties, the fibers can be collected on a rotating mandrel,
as opposed to a stationary frame [3]. The fiber morphology and orientation in electrospun
polymers are relevant for the mechanical strength of various tissue scaffolds. Similarly,
the aligned orientation of the fibers can have an influence on the growth and orientation
of cells cultured in vitro [3]. Past studies indicate that fibroblasts cultured on aligned
polyurethane nanofibers secreted more extracellular matrix (ECM) collagen than fibroblasts
on randomly oriented fibers [5]. Furthermore, studies have shown that when mechanical
stimuli were applied along the alignment axis, increased ECM production by the fibroblasts
was also observed [5].

Studies have shown that PLA can potentially have suitable characteristics for ligament
engineering, with material properties that can be tailored to obtain function and design flex-
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ibility desirous in a scaffold [6–8]. Due to its hydrophobic nature and smooth morphology,
the surface of PLA alone is not an ideal substrate for cellular integration and the subsequent
synthesis of new tissue. Surface functionalization can be induced by NaOH to modify the
morphology and surface chemistry of the PLA [9–31]. This type of degradation can also
lower mechanical properties through hydrolytic chain scission, leading to a reduction in
molecular weight and a subsequent linear reduction in bulk area. Additionally, it aids
bioactivity through the production of carboxylic acid groups on the PLA surface, allowing
for more effective protein immobilization and improved cell activities, such as adhesion
and proliferation [12,13]. The use of NaOH to introduce carboxyl groups and increase
surface roughness can potentially assist in the effective binding of cells [9], indicating
that the combination of the surface carboxyl groups with an intermediary protein (fibrin)
has a potent effect on cellular attachment and proliferation. Biological materials such as
hyaluronic acid [14], silk [15], collagens and fibrin [16] have been explored as alternatives
to collagen bundles of ligament tissue.

Fibrin is a natural polymer in the human body that is critical for hemostasis and
wound healing. Fibrin can be created ex vivo through the rapid enzymatic polymerization
of fibrinogen with thrombin from either allogeneic or autologous sources [17]. Due to a
natural binding affinity, the immobilization of many growth factors as well as improved
cell seeding efficiency and uniformity of cell distribution is possible [18–20]. Furthermore,
the biocompatibility and ease of processing from autologous sources eliminate immunolog-
ical concerns [21].

The mechanical properties of fibrin have been evaluated in previous studies [22–24].
Elastic moduli were determined on fibrin fibers using laser tweezers in a phosphate-
buffered saline (PBS) environment [24]. The moduli were calculated at 14.5 and 1.7 MPa
in the crosslinked and uncrosslinked states, respectively. A combination of atomic force
microscopy (AFM) and fluorescence microscopy was used to measure the strain at failure
(extensibility) [23]. The strain at failure was surprisingly high, with 332% and 226%
elongation in the crosslinked and uncrosslinked states, respectively. These properties
of fibrin may affect the overall mechanical resilience of poly(L-lactic acid) (PLLA) when
immobilized on the surface.

In this study, unidirectional electrospinning was used to create highly aligned nanofibers
of PLLA, and then NaOH hydrolysis of the PLLA nanofibers was induced over various
time periods. The degree of fiber alignment from the unidirectional electrospinning, as well
as the effects of NaOH hydrolysis on the fiber alignment, fiber diameter, surface morphol-
ogy and immobilization of fibrin, was examined using SEM. The effects of unidirectional
electrospinning and induced hydrolytic degradation on crystallinity were assessed via dif-
ferential scanning calorimetry (DSC). Additionally, the physical effects of NaOH hydrolysis
on in vitro swelling of the PLLA nanofibers were investigated. Furthermore, studies to
evaluate human mesenchymal stem cells’ (hMSCs) behavior on the various conditions of
the PLLA nanofibers were performed, particularly regarding proliferation and differentia-
tion. The goal was to determine the relationship of processing parameters to morphology
as well as the preliminary cellular activity of hMSCs for the ligament-bone interface.

2. Materials and Methods
2.1. Production of an Aligned Electrospun PLLA Nanofiber Mats

A 20% w/v solution of PLLA (Medisorb 100 L Poly(L-Lactide) Lakeshore Biomaterials,
Birmingham, AL, USA) using 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) as a solvent was
prepared. The PLLA/HFIP solution was transferred to a 10 mL syringe. Unidirectional
electrospinning equipment was used (Figure 1); the syringe was affixed to a 20 G × 20 cm
septum penetrating needle (M-4855, Popper & Sons, Inc., New Hyde Park, NY, USA)
connected to a DC high voltage source (M826, Gamma High Voltage Research, Ormond
Beach, FL, USA) which was held constant at 15 kV. The flow rate was maintained by a
syringe pump (Fusion 100, Chemyx, Inc., Stafford, TX, USA) and set at 1 mL/h for 2 h.
Fibers were collected at a distance of 15 cm on a 15 cm × 25 cm sheet of aluminum foil



Pharmaceutics 2022, 14, 277 3 of 22

attached via cellophane tape to a cylindrical aluminum mandrel 67 cm in diameter and
15.5 cm in length, rotating at 7000 rpm (24.6 m/s), with a stationary grounding point 3.5 cm
behind the mandrel. Placing the grounding point behind the mandrel (as opposed to
grounding the mandrel itself) was found to yield fiber uptake over a narrower and more
consistent area (approximately 9 cm width perpendicular to the rotation axis compared to
15 cm using a grounded mandrel) (Figure 1).
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Figure 1. Schematic of electrospinning system consisting of: A—syringe fed by a pump with a charged
lead from the voltage source to the needle, B—polymer solution within the syringe, C—ejected
polymer forming micro- or nanofibers, D—rotating mandrel collecting the fibers, E—grounding point
behind the rotating mandrel, and F—a variable DC voltage supply.

Due to the random deposition of fibers during the electrospinning process, the thick-
ness of the fiber mat was inconsistent over the approximate 9 cm wide fiber uptake area,
with a greater thickness towards the center of the samples. Multiple thickness measure-
ments were taken across the transverse direction of the aligned fibers from each sample
(without the foil) using a thermomechanical analyzer (TMA) (Model Q-400, TA Instruments,
New Castle, DE, USA) [3]; only the areas with a thickness range of 900–1100 µm were used
throughout experimentation (Figure 2). This resulted in two useable sections per PLLA
mat, approximately 20 cm × 2 cm. Multiple PLLA mats were produced in this manner to
accommodate the sample quantity needed throughout this investigation.
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Figure 2. Cross-sectional representation of electrospun PLA mat depicting thickness 900–1100 µm
areas selected for use throughout the study.

The PLLA fiber mats were cut into 5 mm × 45 mm sections, with the 45 mm length
parallel to the alignment of the fibers. Following any surface treatment performed, the
thickness of each sample was measured in three different locations along the sample width
by the TMA and averaged to calculate cross-sectional area for tensile testing [3,9].

2.2. Production of Electrospun PLLA Mats with Altered Mandrel Velocity

For the purpose of evaluating mandrel rotation velocity on fiber diameter, alignment,
and crystallinity, two additional PLLA fiber mats were produced using the same param-
eters with the exception of an altered mandrel rotation speed of 0 rpm (stationary) and
3500 rpm (12.3 m/s), respectively. These two PLLA mats were fabricated as part of opti-
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mizing the fiber alignment and did not undergo any of the subsequent NaOH treatments
described below.

2.3. Surface Treatment by Controlled NaOH Hydrolysis

Samples were placed into a glass beaker containing an aqueous solution of 0.25 M
NaOH at room temperature (21 ◦C). The samples were immersed for 1, 5, 10, 20, 30 and
40 min. A possible surface reaction is given in Scheme 1. Five samples were processed
at a time and monitored to ensure complete immersion at all times and prevent clinging
to each other and the beaker wall. After their respective treatment times, the samples
were removed from the NaOH solution and immediately immersed in a 500 mL beaker of
deionized water to dilute any remaining NaOH solution. The samples were then rinsed
3 times with deionized water, placed on a low-lint paper cloth and dried in a desiccator
for 72 h.
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2.4. Biohybrid Scaffolds by Immobilization of Fibrin onto Electrospun PLLA

Utilizing previously employed methods [9], the combination of bovine thrombin
(T9549, Sigma Aldrich Co., St. Louis, MO, USA) and bovine fibrinogen (F8630, Sigma
Aldrich Co., St. Louis, MO, USA) resulted in the self-assembly of a homogenous surface
layer of fibrin on the PLLA fiber samples. This method was used on a portion of the
20 min NaOH-treated samples, selected as a result of the modified fiber diameter, surface
morphology, and cellular response, determined by the authors [9].

Modifying methods from previous studies to produce a homogenous surface layer of
fibrin on a variety substrate [25,26], 50 mL of an aqueous solution containing 1.1 U/mL of
bovine thrombin (T9549, Sigma Aldrich Co., St. Louis, MO, USA) and 5 mM of calcium
chloride was prepared and immersed in a water bath at 37 ◦C. Similarly, a 50 mL aqueous
solution containing 4 mg/mL of bovine fibrinogen (F8630, Sigma Aldrich Co., St. Louis,
MO, USA) and 50 mM of HEPES-buffered saline was prepared and immersed in a water
bath at 37 ◦C. When combined, the thrombin/fibrinogen solution was observed to fully
polymerize into fibrin within 15 min. To effectively immobilize fibrin on the surface of
the PLLA fiber mats, the thrombin and fibrinogen solutions were combined; this was
immediately followed by immersion of the glass slides with the PLLA. After a few seconds,
the slides were removed and placed in an incubator at 37 ◦C for 15 min, allowing the
thrombin and fibrinogen to self-assemble into fibrin on the exposed surface of the PLLA
mat. The slides were then triple rinsed with PBS to remove unbound/excess fibrin, then
placed in a desiccator overnight to dry.

2.5. Mechanical Testing of the PLLA Nanofiber Mats

A micromechanical testing system (Minimat Model 2000, Rheometrics, Piscataway, NJ,
USA) was used on the various samples to establish mechanical behavior under uniaxial
tension. The distance between the clamps was set at 25 mm. Sections of adhesive-backed
320 grit sandpaper were affixed to the contact surfaces of the test clamps to provide better
contact and minimize slipping of the bulk fibers under load. The samples were placed in
the clamps and centered with calipers (±0.25 mm) to ensure uniaxial loading along the
fiber alignment direction prior to tightening the clamps. A heated chamber was used for
some of the samples to establish mechanical properties at temperatures up to 37 ◦C (normal
human body temperature). Testing was performed in tension mode with a load cell of
200 N and at a strain rate of 5 mm/min until failure. The mechanical properties of the
samples were then defined based on these uniaxial data obtained.
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2.6. Mechanical Properties of Wet/NaOH Treated Samples

Previous studies indicate up to 10% swelling of the NaOH-treated PLLA fiber mats
when incubated at 37 ◦C in PBS solution (pH 7.4) for various times [9]. The study indicated
that swelling of the PLLA mats was relatively consistent following one week of incubation,
with minimal degradation. The effects of the swelling on the mechanical properties of the
PLLA fibers were therefore evaluated by incubating half of the sample varieties in PBS at
37 ◦C for one week, followed immediately by mechanical testing.

2.7. Characterization of Fiber Alignment, Diameter, and Surface Morphology

SEM was used to analyze fiber alignment, diameter, and morphology of the PLLA
samples. Sections of the 7000 rpm, 3500 rpm, stationary (0 rpm), and various NaOH-treated
samples were affixed to an SEM stub, sputter-coated with gold-palladium and observed
under SEM (Quanta 650FEG, FEI Co., Hillsboro, OR, USA) at an accelerating voltage of 5 kV.
The SEM micrographs were analyzed to measure fiber diameter utilizing image-analyzing
software (Image-Pro Insight, Media Cybernetics, Silver Spring, MD, USA).

2.8. Assessment of Crystallinity by Differential Scanning Calorimetry (DSC)

DSC (Model-Q100, TA Instruments, New Castle, DE, USA) analyses were performed
on PLLA samples of the following morphology: as received (pellet), thin film (cast from
the electrospinning solution), unaligned electrospun fibers (0 rpm), aligned electrospun
fibers (7000 rpm), and 20 min NaOH-treated aligned electrospun fibers. The degree of
crystallinity for each sample was calculated using the following formula:

% Crystallinity = ((∆Hexp)/(∆H100)) × 100

where ∆Hexp and ∆H100 are the melting enthalpy values for the experimental sample and a
fully crystalline sample, respectively.

2.9. Swelling Studies

Owing to the decreased hydrophobicity of PLLA in the post-hydrolyzed condition,
swelling of the hydrolyzed PLLA fibers is a consideration that requires investigation. To
evaluate any physical changes that may occur under physiological conditions over time, the
PLLA in the untreated and NaOH-treated conditions were placed in a phosphate-buffered
saline (PBS) solution to evaluate swelling (PBS uptake) over various time periods. The
PLLA fiber mat was cut into 1 cm2 samples, and the foil was removed. Half of the samples
were subjected to the 20 min NaOH treatment protocol previously outlined. Samples of
both conditions (untreated/NaOH treated) were placed into separate 25 mL glass vials
containing PBS solution (pH 7.4), sealed, and incubated at 37 ◦C for 1, 7, 14, 30, and 60 days.
At the end of each interval, the samples were removed from the PBS, dabbed on a lint-free
paper towel to remove surface PBS, and immediately weighed to obtain wet mass. The
samples were then placed in a desiccator for 72 h to dry thoroughly. The samples were
removed from the desiccator and immediately weighed to identify dry mass. Percent
swelling was calculated using the following equation:

Swelling (%) = [(Mw − Md)/Md] × 100

where Mw is the wet mass after the various incubation periods, and Md is the mass after
the sample has been dried. All samples were run in triplicate (n = 3) for statistical validity.

2.10. Preparation of Fibrin Immobilized Samples for Cell Studies

The PLLA fiber mat was cut into 15 mm × 75 mm samples with the longer side parallel
to the alignment of the fibers, and the foil was removed. Half of the samples were subjected
to the 20 min NaOH treatment previously described. All samples (treated/untreated)
were then placed on individual 25 mm × 75 mm glass slides, held in place by their static
charge. Fibrin immobilization methods from previous studies to produce a homogenous
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surface layer of fibrin on a variety substrates [25,26] were carried out as described previ-
ously. This method was utilized with half of the aforementioned 20 min NaOH-treated
samples for subsequent cell studies. Additional sections from the untreated and 20 min
NaOH samples also underwent this technique and were then prepared for SEM as previ-
ously described. SEM micrographs were obtained prior to the cell studies to qualitatively
assess surface morphology and binding efficacy of fibrin on PLLA in the untreated vs.
NaOH-treated condition.

2.11. Sample Fixation to the Tissue Culture Plates

Due to their thin size (approximately 1000 µm), flexibility, and high static attraction
to almost every surface in our laboratory, handling the PLLA samples without damaging
them was very difficult and tedious. Additionally, once immersed in an aqueous cell
culture environment, the samples would float to the top of the surface, fold onto themselves
along the fiber alignment direction, or cling to the sides of the cell culture well, negating
successful results of any cell study. Attempts at attaching the samples directly to the bottom
of the well using tape or biocompatible adhesives also proved to be tedious and highly
destructive of the samples. Previously, Focarete et al. [27] used Tecaflon rings fixed to the
scaffolds using silicone rubber and Gualandi et al. [28] used Cell-Crown rings to hold PLLA
scaffolds. To facilitate a consistent means of obtaining a flat, continuous, and undamaged
sample surface at the bottom of the culture well, a unique sample fixation technique was
implemented as described in Appendix A. The modification resulted in flat PLA mats
affixed to the bottom of each of the wells with 1.26 cm2 of useable surface area. All of the
prepared 24-well plates were placed under a UV hood for 2 h, followed by rinsing the wells
with sterilized deionized water 12 h prior to seeding.

2.12. Human Mesenchymal Stem Cell (hMSC) Culture

The hMSCs were purchased (Lonza, Inc., Walkersville, MD, USA) and passaged, re-
taining only cells from passage numbers 4–6. The cells were cultured in mesenchymal stem
cell basal medium (MSCBM) (Lonza, Inc., Walkersville, MD, USA) and supplemented with
MSCBM SingleQuots (Lonza, Inc., Walkersville, MD, USA). Upon reaching confluence,
cells were removed from the culture surface and deactivated by adding an equal volume
of Dulbecco’s modified Eagle medium (DMEM) (Mediatech, Manassas, VA, USA) supple-
mented with 10% fetal bovine serum (FBS) (Thermo-Fisher Scientific, Watham, MA, USA),
1% amphotericin B, 1% penicillin,1% streptomycin (Mediatech, Manassas, VA, USA), and
1% L-glutamine. The hMSCs were then centrifuged at 1000 rpm for 5 min and re-suspended
at a concentration of 15,000 cells per 677 µL of DMEM.

The solution was measured into 677 µL aliquots and transferred to the 24-well cell
culture plates with the PE tubes prepared for the study. The 12-well cell culture plates were
also prepared for sample imaging. Cell cultures were held constant under standard culture
conditions (37 ◦C, 95% relative humidity, 5% CO2). Every 3–4 days, old media was replaced
with 677 µL of fresh media. For the 24-well plate samples, the hMSCs were cultured,
trypsinized and harvested at days 1, 7, and 14, then cryogenically stored in Eppendorf
tubes at −80 ◦C until analysis of cellularity was performed and ALP activity was assessed.

2.13. Preparation of Samples for SEM Imaging

To characterize the morphology of the hMSCs in response to the various PLLA treat-
ment conditions, separate samples were prepared to be observed by SEM imaging following
cell culture. Unlike the samples prepared for analysis of cellularity, it was not essential
that the PLLA cover the entirety of the well bottom since only the surface of the PLLA was
observed for qualitative characterization of cell morphology. Samples of each of the PLLA
treatment conditions were cut into 1 cm2 sections and affixed to a 15 mm diameter round
glass coverslip (M-26021, Ted Pella Inc., Redding, CA, USA) using the same biocompatible
adhesive used earlier (see Sample Fixation to the Tissue Culture Plates in Appendix A) and
allowed to dry in a vacuum/desiccator overnight. The samples were then inserted face-up
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into sterile 12-well tissue culture plates and placed under a UV hood for 2 h for sterilization,
followed by rinsing the wells with sterilized deionized water 12 h prior to seeding.

For the 12-well plate imaging samples, the samples were fixed using 2.5% glutaralde-
hyde and 2% paraformaldehyde in a sodium cacodylate buffer (0.2 M, pH 7.4) with deion-
ized water. Following initial fixation, the samples were rinsed several times with PBS
for a minimum of 15 min, followed by post-fixation with 1% sodium tetroxide in 0.1 M
phosphate buffer for 1 h. After re-rinsing with PBS several times for 15 min, the samples
were dehydrated using a series of graded ethanol: 70% for 15 min, 95% for 15 min, and
3 changes of 100% for 10 min each. The samples were then subjected to chemical drying
using 2 parts 100% ethanol and 1 part hexamethyldisilazane (HDMS) (Electron Microscopy
Sciences, Ft. Washington, PA, USA) for 15 min, 1 part 100% ethanol and 2 parts HDMS
for 15 min, then 2 changes of 100% HDMS for 15 min each. All residual solution was
aspirated from the samples, and then the samples were allowed to air-dry under a fume
hood overnight. The samples were then affixed to a mount, sputter-coated, and placed in
the SEM. Images were acquired at an accelerating voltage of 5 kV.

2.14. Analysis of Cellular Proliferation

Cellularity was analyzed using hMSCs harvested from the 24-well plates at days 1,
7, and 14. Picogreen assay (Molecular Probes, Eugene, OR, USA) was utilized to identify
the double-stranded DNA content according to manufacturer specifications. 100 µL cell
extracts were placed in 96-well plates for analysis. Picogreen dye was added into the sample
preparations, then incubated in the dark for 15 min. Using a fluorescent microplate reader
(Synergy HT, BIO-TEK Instruments, Winooski, VT, USA) filtered at 485/528 (EX/EM), the
double-stranded DNA content was then measured and compared to a standard curve,
correlating known DNA content.

2.15. Alkaline Phosphatase (ALP)Activity

Quantitative ALP activity was assessed on the hMSCS harvested from the 24-well
plates at 14 days. Using a fluorimetric SensoLyte FDP Alkaline Phosphatase Assay Kit
(Anaspec, San Jose, CA, USA), 50 µL aliquots of each sample were assayed for ALP content
on a fluorescent microplate reader (using the same parameters as described in Analysis of
Proliferation), then compared to a standard correlating known ALP content to fluorescence
levels. A picogreen analysis was performed to normalize ALP expression via DNA content
by determining the specific ALP activity present within each sample.

2.16. Statistical Analysis

The results presented herein are representative data sets with experiments performed
using 6 samples (n = 6) for each condition at 1, 7, and 14 day time points. Values were
expressed as ±standard error of the mean (S.E.M.). Using SPSS software (SPSS, Chicago, IL,
USA), one-way analysis of variance (ANOVA) was performed to quantify any significant
differences between conditions at each time point. Tukey multiple comparison tests were
conducted to further determine significant differences between pairs. A value of p < 0.05
was considered significant for all tests.

3. Results and Discussion
3.1. Mechanical Properties

PLLA nanofibers were produced utilizing electrospinning. Uniaxial tensile tests of
the aligned electrospun PLLA fibers were performed using ten samples (5 dry, 5 wet) per
surface treatment condition, including a control (unmodified aligned electrospun sample).
The data revealed considerable variety in the mechanical properties based on the surface
treatments employed on the samples. Surprisingly, the wet samples did not deviate beyond
the range of the data obtained from the dry samples of each given condition. One-way
ANOVA performed on the wet/dry samples for each treatment condition yielded p-values
ranging from 0.12–0.28, indicating relatively equal sample means. Therefore, the data
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obtained for the wet and dry samples were combined. Numerical results are reported as
mean ± standard error of the mean (S.E.M.) throughout this study.

The yield and maximum stresses for the samples are illustrated in Figure 3. The sample
exposed to NaOH for 1 min indicated a slight loss of yield strength (50.1 MPa ± 0.78), while
the 5 and 10 min exposure samples actually displayed slightly higher yield strength than the
control sample, with values of 54.1 MPa± 0.29, 53.0 MPa± 0.79, and 52.5 MPa ± 0.59, respectively.

Pharmaceutics 2022, 14, x FOR PEER REVIEW 8 of 22 
 

 

comparison tests were conducted to further determine significant differences between 
pairs. A value of p < 0.05 was considered significant for all tests. 

3. Results and Discussion  
3.1. Mechanical Properties 

PLLA nanofibers were produced utilizing electrospinning. Uniaxial tensile tests of 
the aligned electrospun PLLA fibers were performed using ten samples (5 dry, 5 wet) per 
surface treatment condition, including a control (unmodified aligned electrospun 
sample). The data revealed considerable variety in the mechanical properties based on the 
surface treatments employed on the samples. Surprisingly, the wet samples did not 
deviate beyond the range of the data obtained from the dry samples of each given 
condition. One-way ANOVA performed on the wet/dry samples for each treatment 
condition yielded p-values ranging from 0.12–0.28, indicating relatively equal sample 
means. Therefore, the data obtained for the wet and dry samples were combined. 
Numerical results are reported as mean ± standard error of the mean (S.E.M.) throughout 
this study. 

The yield and maximum stresses for the samples are illustrated in Figure 3. The 
sample exposed to NaOH for 1 min indicated a slight loss of yield strength (50.1 MPa ± 
0.78), while the 5 and 10 min exposure samples actually displayed slightly higher yield 
strength than the control sample, with values of 54.1 MPa ± 0.29, 53.0 MPa ± 0.79, and 52.5 
MPa ± 0.59, respectively. 

 

 

Figure 3. Tensile strength and yield strength of the aligned PLLA fibers with various surface 
treatments compared to natural ligament/graft tissue. Values expressed as mean ± S.E.M. (PT = 
patellar tendon, “ligament” includes ACL, PCL, and LCL). Data adapted with permission from 
Butler, et al., J. Biomech. 1986, 19, 425–432. [29]. Copyright Elsevier 2022. 

Figure 3. Tensile strength and yield strength of the aligned PLLA fibers with various surface treat-
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The variety of 20 min samples (20 min, 20 min + fibrin, and 20 min + fibrin at
37 ◦C) exhibited a modest decline in yield stress (47.4 MPa ± 1.1, 48.6 MPa ± 0.66, and
40.6 MPa ± 1.3, respectively), and displayed properties most similar to the ACL and lig-
ament tissue data [29,30], particularly the 20 min + fibrin at 37 ◦C sample. The 30 and
40 min samples had a sharp decline in yield stress with a wider distribution of values
(29.2 MPa ± 3.9 and 21.5 MPa ± 4.5, respectively). The maximum stress values were
higher than the yield stress for the 1, 5, 10, and 20 min + fibrin samples (55.4 MPa ± 1.2,
65.2 MPa ± 0.48, 57.8 MPa ± 1.2, and 58.0 MPa ± 0.89, respectively).

The percent elongation at failure with the 1, 5 and 10 min NaOH-treated sample values
were higher than the control sample (36.4% ± 1.6, 40.5% ± 1.8, 36.7% ± 1.7, and 29.2% ± 1.4,
respectively) (see Supplementary Materials, Figures S1 and S2). The 20, 30 and 40 min
samples (23.3% ± 3.3, 8.4% ± 0.60, and 6.5% ± 1.4, respectively) exhibited elongation at
failure less than the control sample, with the 30 and 40 min samples failing shortly after the
onset of plastic deformation with less than 10% elongation at failure. The highest values of
strain at failure were observed for the 20 min + fibrin (49.6% ± 2.2) and 20 min + fibrin at
37 ◦C (38.0% ± 4.5) samples, both within range of natural ACL tissue [29].
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The elastic modulus for the PLLA was consistent (2542 MPa ± 23) for all of the
samples tested (n = 80) at room temperature. Samples were also tested at 29 ◦C and 37 ◦C
to see the effects of temperature on the modulus, yielding values of 1884 MPa ± 39 and
1636 MPa ± 70, respectively. Figure 4 displays the percent strain at yield stress for the
samples, with an average value of 3.1% ± 0.08 at room temperature and 5.1% ± 0.12
at 37 ◦C.
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For the yield and maximum stress values displayed in Figure 3, it is theorized that the
increase in surface roughness observed from past studies for the 5 and 10 min samples create
friction between fibers during elastic deformation, leading to a subtle increase in strength
when compared to the smooth surface morphology of the control and the (relatively)
smooth surface of the 1 min samples [9]. The maximum stress values of the 1, 5, and 10 min
samples are believed to be influenced by strain-induced crystallization, resulting in an
increase in strength. This is thought to be caused by the hydrolytic degradation by NaOH
and the subsequent lowering of the molecular weight on the PLLA fiber surface, leading
to crystallization of the shorter chains primarily on the surface during strain. In terms of
simple crystallization kinetics, a shorter polymer chain (lower molecular weight) can align
into ordered lamellae more easily and rapidly than a longer chain. This is supported by a
previous study, in which differential scanning calorimetry (DSC) data of electrospun PLLA
fibers subjected to 20 min of hydrolysis exhibited a higher degree of crystallinity than an
untreated sample [9].

There appears to be a combination of factors resulting in an ideal response or “sweet
spot” in this study, where increased strength caused by decreased molecular weight (due to
hydrolysis) is not affected by reduced strength caused by reduced fiber diameter (also due
to hydrolysis). The 5 min and 20 min + fibrin samples both display these properties and are
both within the range of the natural ACL and graft tissue for yield/maximum stress. The
5 min sample has higher stresses (yield and maximum) and greater percent elongation at
failure than all of the other NaOH-treated samples. The 20 min + fibrin sample also displays
a maximum stress higher than the yield stress, believed to be caused by a combination of
strain-induced crystallization kinetics and the large extensibility of fibrin. However, the
percent elongation at failure for the 20 min + fibrin samples is the highest out of all the
samples tested, and it is within the range of natural ACL tissue. It is theorized that the
addition of fibrin on the surface of the fibers fortifies the reduced diameter caused by the
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20 min NaOH-treated PLLA, effectively negating the effects of lowered yield and maximum
stresses and the strain at failure when compared to the 20 min sample without fibrin.

The elastic modulus values of the PLLA are almost 4 times higher than the values of the
patellar tendon (643 MPa ± 53) and between 7–40 times higher than the various ligament
data (65–345 MPa), as seen in Supplementary Figure S1. The 37 ◦C sample is approximately
2.5 times higher than the patellar tendon; however, it indicates a 36% reduction in modulus
compared to samples tested at room temperature. Supplementary Figures S2 and S3 of
tested scaffolds display (the percent strain at yield stress and % failure strain at room
temperature and at 37 ◦C) with values that are approximately 4 and 2.5 times lower than
the yield strain values for the patellar tendon, respectively.

In the present case of using aligned PLA nanofibers to replicate the mechanical function
of an ACL, the modulus and strain at yield stress are outside of the range of values found
in the human ligament and ligament-replacement graft tissue. Altering the molecular
weight of the polymer could further reduce the modulus and subsequently increase the
strain at yield stress, although the effects of NaOH and fibrin treatments would have to be
re-evaluated and optimized.

To visually understand the overall effects of the various surface treatments and tem-
perature on the mechanical behavior of the PLLA fibers, Figure 4 displays the stress-strain
profiles of a control, 20 min NaOH-treated sample, and 20 min NaOH-treated sample with
fibrin at body temperature. A representative stress-strain profile of an ACL was included
for comparison. The stepwise process of electrospinning a highly aligned PLLA nanofiber
mat, followed by a 20 min NaOH hydrolysis treatment and the immobilization of fibrin on
the hydrolyzed surface of the fibers results in a mechanical profile more similar to human
ligament tissue than unmodified PLLA.

The high degree of fiber alignment achieved during the unidirectional electrospinning
technique minimized the inter-fiber spacing considerably when compared to unaligned
electrospun fibers; however, inter-fiber spacing still exists. The macroscopic (bulk) me-
chanical properties of the fibers tested in uniaxial tension may therefore vary from the
microscopic mechanical properties of an individual electrospun fiber tested in uniaxial
tension. Previous studies on aligned electrospun polymer fibers propose that the parallel
stacking of the fibers causes behavior comparable to a thin film [3]. However, due to
the resulting porosity, the samples will have a smaller cross-sectional area than the area
obtained through measurement, yielding potentially different results. Another reason can
be attributed to differences in the testing parameters of this study compared to studies of
natural ligament tissue. The strain rate used by Noyes et al. [9] to study ACL behavior
under uniaxial tension was 30 mm/s.

3.2. Fiber Alignment, Diameter, and Morphology

Fibers were collected on three uptake conditions: stationary (0 rpm), 3500 rpm mandrel
rate, and 7000 rpm mandrel rate. SEM images exhibit nanofibrous morphology for all
conditions with varying degrees of inter-fiber spacing, diameter, and alignment (Figure 5).
The stationary sample has relatively straight fibers that were randomly oriented with an
average diameter of 2608 ± 353 nm (Figure 5A). The 3500 rpm sample shows a more ordered
alignment and orientation perpendicular to the axis of mandrel rotation, reduced inter-fiber
spacing compared to the stationary sample, and an average fiber diameter of 1396 ± 312 nm
(Figure 5B). As the uptake rate increases to 7000 rpm, the fibers achieve a highly-aligned
morphology perpendicular to the axis of mandrel rotation. The inter-fiber spacing is
significantly reduced in comparison to the stationary and 3500 rpm samples. Similarly, the
average fiber diameter is reduced to 760 ± 96 nm with greater regularity (Figure 5C).

These findings indicate that increased uptake rates for electrospun PLLA result in
increased fiber order and alignment, and the rates are inversely proportional to fiber
diameter and spacing. Thomas et al. [3] reported similar findings with electrospun PCL.
They postulated that the fiber diameter decreases and alignment increases due to the fibers
stretching to a greater degree at higher uptake rates.
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measured from SEM images.

As mentioned above, the average fiber diameters ranged from 760–2608 nm depending
on the uptake condition. The range of fiber diameters within a specific uptake condition
is also uptake-rate dependent. Figure 5 also shows the frequency distribution of fiber
diameters for the electrospun PLLA at the different uptake conditions. Increased uptake
rates result in decreasing distributions of the fiber diameters. This is shown with the
stationary, 3500 rpm, and 7000 rpm rates and their standard error of mean (S.E.M.) (n = 50)
distributions of ±50, ±44, and ±14, respectively.

In order to facilitate a fiber diameter mimetic of the 50–500 nm diameter collagen
bundles, the PLLA electrospun at the 7000 rpm rate was subjected to 0.25 M NaOH
hydrolysis treatments of 1, 5, 10, 20, and 40 min time intervals. Table 1 shows the average
diameter and reduction in cross-sectional fiber area because of the NaOH treatments. The
1, 5 and 10 min treatments all had fiber diameters above the upper limit of the collagen
bundles. The two treatments at 20 and 40 min produced fibers that fall within the upper
range of the collagen bundles with average diameters of 457 ± 89 nm and 399 ± 92 nm,
respectively. However, the 40 min fibers were found to be very brittle and would separate
easily during handling, while the 20 min samples maintained their structural integrity
more similarly to the untreated samples.

The final cross-sectional area of the fibers was shown to be dependent on NaOH
treatment time, with the percent reduction in area following a logarithmic trend as treatment
time was increased (Supplementary Figure S4).

The various NaOH treatments also had an effect on the surface morphology of the
fibers, as observed in Figure 6. The control sample (Figure 6A) has a smooth and continuous
surface morphology. There are some small cracks (<100 nm) present at certain points on the
fibers that are barely visible, believed to be caused by expansion/contraction of the polymer
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and subsequent cracking of the gold-palladium coating during sample preparation, or
by thermal damage from the electron beam during SEM imaging. The fibers display no
pitting or altered shape/thickness along the length of the fibers. The 1 min sample displays
relatively smooth fiber morphology with a very minor amount of pitting and surface
roughness, indicated by the arrow in Figure 6B. There are lightly colored spots on the fibers
that were found throughout all of the 1 min samples, believed to be points of increased
surface roughness. When observed at the visible edge of a fiber, there appears to be a
subtle dip in surface topography. Unfortunately, attempts at viewing the spots at a higher
magnification were not possible due to thermal damage caused by the electron beam on
the polymer when magnification was increased. The 5 and 10 min samples in Figure 6C,D,
respectively, exhibit more pronounced degradation compared to the control and 1 min
samples. A higher degree of surface roughness can be observed, and there is visible
pitting at the interface between fibers, indicated by the arrows. The 20 and 40 min samples
display a pronounced degree of surface roughness and interface pitting, as indicated by
the arrows in Figure 6E,F, respectively. Additionally, a reduced overall fiber diameter is
visibly apparent when compared to the control sample. These data presented indicate that
obtaining PLA nanofibers via unidirectional electrospinning with a mandrel rotational
velocity of 24.6 m/s, followed by a 20 min treatment in 0.25 M NaOH solution will result in
a polymer matrix with fiber alignment and diameter mimetic of native collagen bundles
found in human ligament tissue.

Table 1. NaOH treatment effects on 7000 rpm PLA nanofibers.

NaOH Treatment Time (min) Average Diameter
(nm) ± S.E.M *

Reduction in Fiber Area
(%) ± S.E.M *

0 (control) 760 ± 13.6 -
1 700 ± 13.6 13.6 ± 3.4
5 601 ± 11.1 36.4 ± 2.3
10 564 ± 12.3 43.5 ± 2.3
20 457 ± 12.5 62.5 ± 2.1
40 399 ± 13.1 70.9 ± 2.0

* n = 50.

3.3. Analysis of Crystallinity

The results of the DSC analysis are displayed in Table 2. The various morphologies had
little effect on the melting temperatures; however, the melting enthalpy was significantly
reduced with the solution cast compared to the as-received sample. Melting enthalpy
and subsequent crystallization increased when the PLLA solution was electrospun into
randomly oriented fibers. Crystallinity was further increased when the fibers were collected
on the 7000 rpm rotating mandrel. The reduced diameters of the aligned fibers indicate a
significant degree of fiber stretching, and subsequently, strain-induced crystallization. The
20 min NaOH-treated aligned fibers displayed a slight increase in crystallinity compared
to the untreated aligned fibers, presumably due to polymer chain scission caused by the
NaOH hydrolysis and the subsequent reduction in molecular weight on the fiber surface.

3.4. Swelling Data

Figure 7 displays the percent swelling of the PLA fibers in the untreated and NaOH-
treated conditions over a 60-day period. Samples in the untreated condition displayed
minimal swelling (0.07–1.1%), presumably due to the high hydrophobicity of PLA. Con-
versely, the NaOH-treated samples displayed modest swelling (4.04–9.2%) due to their
increased surface roughness and surface carboxyl groups. It is presumed that this effectively
reduces hydrophobicity and increases PBS uptake.
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Figure 6. SEM images of electrospun PLA fibers subjected to the following NaOH treatment times:
(A) 0 min (control); (B) 1 min, arrow indicates minor surface roughness; (C) 5 min, arrows indicate
visible surface roughness and pitting at the fiber interface; (D) 10 min, arrow indicates interface pitting;
(E) 20 min, arrows indicate significant surface roughness and pitting at the fiber interface; (F) 40 min,
arrow indicates significant pitting and visibly decreased fiber diameter. Magnification = 50,000×.
Scale bars = 1 µm.

Table 2. Differential scanning calorimetry (DSC) data of various PLA morphologies.

Sample
As

Received
(Pellet)

Solution
Cast Thin

Film

Espun
Fibers

(Random)

Espun
Fibers

(Aligned)

Espun Fibers
(Aligned, 20 min
NaOH Treated)

Melting Enthalpy
(J/g) 60.58 34.06 41.54 54.14 54.62

Melting
Temperature

(◦C)
178.72 174.93 174.74 174.17 174.55

Crystallization
(%) 80.16 45.07 54.97 71.64 72.28

3.5. Immobilization of Fibrin

Samples of the 7000 rpm PLA in the untreated and 20 min NaOH treatment conditions
were subjected to surface immobilization of fibrin. As can be seen in Figure 8, there is a
significant difference in the surface morphology of the untreated PLLA (Figure 8A) and
the NaOH treated sample (Figure 8B). The surfaces of the untreated fibers are smooth,
continuous, and closely resemble the control sample in Figure 6A, with the exception of
particles randomly scattered along the surface, presumably comprised of fibrin (indicated
by an arrow in Figure 8A). Conversely, the NaOH-treated sample displays a different
morphology from the untreated sample with the added fibrin, as well as the sample
with the same NaOH treatment in Figure 6E. The pitting and rough surface topography
seen in the samples with the same 20 min NaOH treatment has been eliminated and is
generally smooth with an apparently confluent superficial layer of fibrin. Another indicator
of confluence is the presence of connecting membranes at the interface between fibers,
indicated by the arrows in Figure 8B. It is presumed that the highly hydrophobic nature
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of the untreated PLLA may inhibit effective adhesion of fibrin, but when hydrolytically
degraded by NaOH, the subsequent addition of the carboxyl groups and increase in surface
roughness results in an increased binding affinity of fibrin. These findings correspond to the
aforementioned studies indicating the binding affinity of fibrin to surface carboxyl groups
via hydrolytic degradation Scheme 1, Supplementary Figure S5. There is a pronounced
decrease in the intensity of the ester group peak due to NaOH treatment, and additional
peaks for protein appeared due to amide carbonyl and amino groups in the fibrin-treated
sample in the infrared spectra (Supplementary Figure S5).
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3.6. In Vitro Human Mesenchymal Stem Cell (hMSCs) Studies

Alternative ACL replacement grafts using non-resorbable materials have been in-
vestigated over the last 40 years with limited success, due to in part to difficulties with
implementing an effective and durable fixation point for integrating the synthetic graft
to bone [31,32]. Because enthesis between graft and bone is essential for musculoskele-
tal motion, the fixation of any grafts is crucial in the repair of injuries to ligaments and
tendons [33].

In order to determine the state of osteogenic differentiation of hMSCs, they must be
assessed for changes in morphology, protein production, and proliferation over time. At
the onset of differentiation, hMSCs slowly up-regulate genes indicative of an osteogenic
phenotype. Furthermore, as hMSCs differentiate into osteoblasts, their rate of proliferation
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should slow [34,35]. ALP plays an important role in the mineralization of bone tissue. As
differentiation proceeds, ALP activity rises and cleaves organic phosphates to produce
free, inorganic phosphates [36,37]. ALP activity has become an important indication of
osteogenic differentiation [34,38].

To address how the surface characteristics can affect the attachment and proliferation
of hMSCs, a previous study involved fabricated titanium, aluminum, and HA ceramics
with grain sizes of 1500, 200, and 50 nm [39]. hMSCs were seeded on these constructs and
assessed for attachment at 1 and 4 h as well as proliferation at days 1, 3, and 7. Results
indicated that attachment was greatest on the 1500 nm grain-size constructs and the lowest
on the 50 nm grain-size constructs. However, cellular growth proceeded the quickest on
the 200 nm constructs and the slowest on the 50 nm constructs. Taking these results into
account, it was demonstrated that surface characteristics can affect the short-term behavior
of hMSCs. Therefore, the surface characteristics of the PLLA mats must be considered
when assessing cellular behaviors.

Three conditions of the PLA fiber mats (untreated, 20 min NaOH, and 20 min NaOH
+ fibrin) were prepared for the evaluation of the hMSC response over 1, 7, and 14 day
time intervals. As mentioned earlier, withdrawal from the cell growth cycle ifs an im-
portant indication of the onset of differentiation towards an osteogenic lineage from an
undifferentiated state [35,40]. To determine their proliferative rate over time, hMSCs were
cultured on three conditions of the PLLA fiber mats (untreated, 20 min NaOH, and 20 min
NaOH + fibrin), and their long-term proliferation was assessed over 14 days (Figure 9).
By day 14, cellular proliferation had progressed in a fashion highlighting a decrease in
proliferative rate based on modifications to the PLLA fiber mats. Proliferation proceeded
the quickest on the untreated PLLA fiber mats, approaching a cellular DNA content of
113.13 ± 3.66 ng/well, with cells cultured on 20 min NaOH-treated PLA mats displaying
slightly less proliferation over time. The addition of fibrin onto the 20 min NaOH-treated
PLLA mat further slowed proliferation, showing little increase in cellularity between days
1 and 14. Considering that proliferation is known to plateau at the onset of differentiation,
it is possible that NaOH treatment modified the PLLA surface properties in a manner that
facilitated osteogenic differentiation, and that the addition of fibrin does so further.
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Figure 9. Cellular proliferation over 14 days. Over the 14-day time frame, there was an overall
increase in proliferation at day 7, followed by a stepwise increase manifesting at day 14. Values
expressed as mean ± S.E.M. (** p < 0.01).

As mentioned earlier, ALP is an important protein responsible for cleaving organic
phosphates to produce free, inorganic phosphates for the process of mineral deposition. In
order to assess mineralization, hMSCs were cultured on the modified PLA fiber mats for up
to 14 days, following which physical ALP activity was determined utilizing a quantitative
biochemical assay (Figure 10). These values are normalized by DNA content as a means in
order to assess the activity of each individual cell as opposed to total ALP activity. By day
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14, the 20 min NaOH + fibrin condition exhibited statistically greater ALP activity relative
to the other conditions.
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Figure 10. ALP activity over 14 days. At day 14, ALP activity was greatest in the NaOH-treated
PLLA + fibrin samples. Values expressed as mean ± S.E.M. (** p < 0.01).

SEM images of the hMSCs on the various PLLA samples at day 14 are displayed
in Figure 11. Figure 11A displays the untreated PLLA sample at low magnification; a
fairly confluent layer of cells can be seen on the sample with individual cells displaying an
elongated and spindle-like morphology aligned in the general direction of the PLLA fibers.
A higher magnification (50,000×) image of the same sample is displayed in Figure 11B. The
PLLA fibers are visible, with the cells exhibiting finger-like projections extending towards
the fibers. Figure 11C displays the 20 min NaOH-treated sample with a visible cell density
slightly less than what can be seen on the untreated sample and with a higher degree of
cell alignment but similar cell morphology. The higher magnification image corresponding
to the 20 min NaOH sample is shown in Figure 11D. There is not a significant amount of
discernible difference at high magnification between the untreated sample and the 20 min
NaOH sample. Figure 11E shows the fibrin-coated NaOH treated sample. There is a clear
reduction in cell density on the surface compared to the other samples at that magnification.
The morphology of some of the cells appears to be slightly less elongated or spindle-like,
adopting a more rectangular or cuboidal shape. The high-magnification image shows small
interconnecting strings of fibrin between the PLLA fibers and more pronounced cellular
processes integrating with the fibers and fibrin.

The various images in Figure 11 correlate to the quantitative data obtained from the
analysis of proliferation and the ALP study: the untreated sample had a visibly higher
quantity of cells on the surface with a diminishing amount for the NaOH treated and the
NaOH + fibrin treated samples, respectively. It is also interesting to note that the cells
spread and oriented themselves along the direction of the fibers. This is of importance
in the present case of an engineered ligament due to the fact that an aligned orientation
of cells and collagen fibers is found in native ligament tissue; subsequent differentiation
and ECM production of the hMSCs on the scaffold could theoretically follow the same
morphology due to the presence of the aligned PLLA fibers.

The addition of fibrin led to even further enhanced ALP activity. This is a possible re-
sult of the cell-ECM interactions taking place due to integrin-mediated binding mechanisms
between the hMSCs and fibrin.

Cells interact with the ECM via various integrin and non-integrin binding mechanisms,
in which different cell types will recognize and bind to cellular adhesive ligands transcribed
into ECM proteins, such as collagen, fibronectin, vitronectin, and laminin. Cellular adhesive
ligands are signaling mechanisms built into various ECM proteins and are designed to bind
to transmembrane receptors (integrins) to induce conformational changes in the receptor,
leading to various cellular responses. Depending on the type of integrin signaling molecules
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present within the ECM, cellular behaviors such as proliferation, growth, migration, and
differentiation will be modified. In this regard, previous studies have demonstrated
osteogenic differentiation driven by integrin-mediated binding mechanisms both with and
without the presence of osteogenic supplement media [41,42].
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4. Conclusions

Mechanical and morphological studies of unidirectionally electrospun and fibrin-
immobilized PLLA fiber mats with various stepwise surface treatments were reported.
Induced hydrolytic degradation of the fibers in 0.25 M NaOH solution followed by immo-
bilization of fibrin on the hydrolyzed fiber surfaces was shown to significantly affect the
mechanical properties of hybrid scaffolds. NaOH hydrolysis treatment displayed signif-
icant surface roughness with pitting at the interface between fibers. DSC data indicated
the degree of crystallinity of the PLLA followed the following trend: solution cast thin
film < unaligned electrospun fibers < aligned electrospun fibers < aligned electrospun
fibers treated by NaOH hydrolysis < as-received PLLA pellets. Fibrin was immobilized on
the surface of the electrospun PLLA; SEM images show a confluent layer of fibrin on the
hydrolyzed samples compared to random fibrin particles randomly found on the surface
of the untreated PLLA fibers.

The preliminary proliferation and differentiation response of the hMSCs in vitro was
quantitatively assessed using Picogreen dsDNA and ALP assays and qualitatively assessed
using SEM. It was found that treatment with NaOH and fibrin immobilization enhanced
the osteogenic differentiation of hMSCs. Additionally, SEM images indicated an aligned
orientation of cells along the direction of the fibers in all samples. Overall, the present study
indicated that unidirectional electrospinning of PLLA at a rotational velocity of 26.4 m/s
produced highly aligned nanofibers that, when subjected to a 20 min hydrolysis treatment
in 0.25 M NaOH solution and subsequent immobilization of fibrin on the fiber surface,
produced a scaffold with increased in vitro bioactivity and which was mimetic in size and
morphology of collagen bundles found in ligament tissue.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pharmaceutics14020277/s1, Figure S1: Elastic modulus of the
aligned PLA fibers at various temperatures, compared to natural ligament/graft tissue. Values
expressed as Mean ± S.E.M. (PT = patellar tendon, “Ligament” includes ACL, PCL, and LCL). Data
adapted with permission from “Comparison of material properties in fascicle-bone units from human
patellar tendon and knee ligaments”. by D. L. Butler, M. D. Kay, and D. C. Stouffer, J Biomech,
vol. 19, pp. 425-32, 1986. DOI: 10.1016/0021-9290(86)90019-9 Copyright Elsevier 2022, Figure S2:
Percent strain at yield stress of the aligned PLA fibers at various temperatures, compared to natural
ligament/graft tissue. Values expressed as Mean ± S.E.M. (PT = patellar tendon, “Ligament” includes
ACL, PCL, and LCL). Data adapted with permission from “Comparison of material properties in
fascicle-bone units from human patellar tendon and knee ligaments”. by D. L. Butler, M. D. Kay, and
D. C. Stouffer, J Biomech, vol. 19, pp. 425-32, 1986. DOI: 10.1016/0021-9290(86)90019-9 Copyright
Elsevier 2022, Figure S3: Percent strain at failure of the aligned PLA fibers with various surface
treatments, compared to natural ligament/graft tissue. Values expressed as Mean ± S.E.M, Figure S4:
Percent reduction in area of 7000 rpm PLA nanofibers from various NaOH treatment times. Values
expressed as Mean ± S.E.M. Percent reduction in area is dependent on NaOH treatment time and
displays a logarithmic trend, r2 = 0.9816, Figure S5: Chemical surface variation of fibers treated with
protein (C) and NaOH (B) and untreated (A).
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Appendix A Sample Fixation to the Tissue Culture Plates

Polyethylene (PE) tubing (LLDPE Value-Tube PE58ANA, Advanced Technology Prod-
ucts, Milford Center, OH, USA) with 15.875 mm O.D and 12.7 mm I.D. was cut into 18 mm
sections (Figure A1A). The dimensions selected resulted in the PE sections fitting snugly
in the wells of a 24-well cell culture plate (M-353047, Beckton Dickinson and Co, Franklin
Lakes, NJ, USA). One end of the tubes was ground flat and smooth using progressively finer
grit sandpaper (240, 320, 400, and 600, respectively). The sections were washed with water,
sonicated in a bath of acetone to remove any surface oils and ink product identification
markings, followed by a 1 h soak in ethanol for sterilization. To create a frame to hold the
samples during preparation, a 24-well plate was modified by inserting 10 mm sections
of the PE tubing at the base of four of the wells on one side of the plate to act as risers
(Figure A1B). Four PE sections were inserted into the modified 24-well plate at a time
(polished side up) and a biocompatible adhesive (Mastisol, Ferndale Laboratories, Inc.,
Ferndale, MI, USA) was brushed onto the polished surface (Figure A1C,D). Sections (15 mm
× 75 mm of the various PLA treatments were placed on a 25 mm × 75 mm glass microscope
slide (held by static charge), aligned with the four PE tubes, and pressed firmly and evenly
on the tubes. This resulted in the effective transfer of the PLA section to the row of PE tubes
(Figure A1E,F). The PLA was then cut with scissors between the PE tubes (Figure A1G),
and the separated tubes were removed from the well plate frame, individually “stamped”
against a rubber surface to ensure complete adhesion of the PLA to the PE tube, and placed
in a vacuum/desiccator to allow the adhesive to fully dry overnight. After the adhesive
was dry, the PLA was trimmed around the PE tubes, then the tubes were placed in sterile
24-well culture plates (Figure A1H,I).
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