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Abstract: Materials based on calcium carbonate (CaCO3) are widely used in biomedical research (e.g.,
as carriers of bioactive substances). The biocompatibility of CaCO3 and dependence of its stability on
pH make these materials promising transporters of therapeutic agents to sites with low pH such as
a tumor tissue. In this work, we developed an approach to the preparation of nanoscale particles
based on CaCO3 (CaNPs) up to 200 nm in size by coprecipitation and analyzed the interaction
of the nanoparticles with an anticancer drug: DOXorubicin (DOX). We also showed a prolonged
pH-dependent release of DOX from a CaNP nanocarrier and effective inhibition of cancer cell growth
by a CaCO3-and-DOX–based composite (CaNP7-DOX) in in vitro models.

Keywords: calcium carbonate nanoparticle; DOXorubicin; prolonged release

1. Introduction

Calcium carbonate (CaCO3) is one of the most common inorganic materials with
a wide range of applications in biomedical fields, for example, as the basis for delivery
systems of biologically active substances or for biosensor construction [1]. Studies on
the use of CaCO3 particles in biomedicine date back to the 1990s. The advantages of
CaCO3-based materials include good availability of reagents, the absence of toxicity, and
the gradual biodegradation of CaCO3 nanoparticles (CaNPs) [2]. The biocompatibility of
CaNPs toward cells has also been reported, as has the suitability of such materials as safe
drug carriers [3].

A large number of studies have been published aimed at the design of Ca2+-based
delivery systems for anticancer drugs (including DOXorubicin; DOX) [4,5]. Most of the
studies on the preparation and characterization of nanomaterials based on CaCO3 involve
porous particles in the micrometer size; the advantages of such materials include the large
surface area (due to the porosity of such structures) available for interaction with the drug;
however, the large particle size imposes significant limitations in the use of such materials
in vivo [6,7]. The literature indicates that for the development of cancer drug delivery
vehicles, promising strategies are those that combine both an active targeting modality (for
example, transferrin) and a passive one (i.e., a targeting system based on the enhanced
permeability and retention effect in deformed cancerous tissues). In the case of passive
targeting, nanomaterials with sizes <200 nm are optimal; such nanoparticles have a better
ability to penetrate into (and accumulate at) the tumor site due to defects in endothelial
cells [8].

There are significantly fewer scientific publications about the preparation of CaNP
materials with sizes less than 200 nm than publications about their micrometer scale
analogs because of difficulties (i) with the development of the methods for constructing
such materials and (ii) with their subsequent stabilization. Zhao Y et al. presented a
technique for the fabrication of nanoscale monodisperse CaNPs, but the material was
not stable in an aqueous solution, therefore, it was functionalized with a silicate shell
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for further applications. This modification significantly lowered the efficiency of drug
encapsulation and reduced the ability of DOX to desorb from the CaNP-based particles,
namely, those authors failed to achieve a release of more than 25% of the loaded drug at a
physiological temperature [9]. Hamidu A. et al. conducted a lot of work on the preparation
and characterization of CaNPs loaded with DOX, but were unable to prevent aggregation
of the nanomaterials into macro objects [10]. Wenliang Fu and colleagues [11] worked
with similar nanomaterials. The poor monodispersity significantly limits prospective
applicability of CaNPs to biomedicine due to a substantial increase in the size of the
particles because they tend to adhere to each other.

Despite the current absence of FDA-approved CaCO3-based delivery vehicles (carriers)
of cancer drugs for clinical use, this material undoubtedly holds promise. Scientists
continue to develop protocols of CaNP construction for subsequent biomedical applications
including in vivo experiments [12,13].

Wenliang F. et al. demonstrated the potential utility of CaNPs (a size distribution
of 20–60 nm; prepared from seashells) as a drug delivery system for the treatment of
osteosarcoma in an orthotopic rat model of this cancer. After measuring body weight and
analyzing serum biochemical parameters and histopathological data, the authors showed
that DOX administration caused its accumulation (and the manifestation of toxic side
effects) in major organs such as the heart, liver, and kidneys. In contrast, during CaCO3-
DOX therapy, the manifestation of the adverse effects was weaker and the survival rate
of the rats was higher compared to the rat group receiving free DOX. These researchers
argued that this benefit was due to increased passive targeting to tumor tissues because of
the enhanced permeability and retention effect (EPR) and pH sensitivity of CaCO3, namely,
that this sensitivity reduced systemic toxicity and unintended exposure of normal tissues
to DOX while increasing the chemotherapeutic action on solid tumors [14]. Maleki Dizaj S.
and colleagues investigated the efficacy of DOX-loaded pH-dependent CaNPs (<600 nm)
in dogs with tumors including osteosarcoma in a single-center open-label clinical trial;
they registered osteoid matrix production, death of osteogenic cells, and inhibition of their
proliferation [4]. Ghaji M. S. et al. studied CaNPs (20–50 nm) as a carrier of cytarabine
acting against human leukemic HL-60 cells and as an antitumor therapy in SCID mice with
leukemia; half-maximal inhibitory concentrations (IC50) of cytarabine and CaNP-cytarabine
were 5 and 2.5 µg/mL, respectively, after 72 h. CaNP-cytarabine was more effective at
inducing apoptosis than free cytarabine [15]. Nonetheless, due to a high polydispersity
index (PDI), heterogeneity and aggregation of CaNPs, protocols for the synthesis of such
nanomaterials require modification. Nanoparticles can be entrapped in some organs
and tissues, this problem is relevant for all nanoparticles. However, the advantages of
nanoparticles based on calcium salts are their non-toxicity and biodegradability, which are
confirmed by studies in the literature [16]. Moreover, for calcium phosphate nanoparticles
of a submicron size, the distribution over organs and the subsequent excretion including
through the decomposition of nanoparticles has been shown [17]. Thus, we expect that
the biodegradability of nanoparticles based on calcium carbonate will avoid the negative
effects of the accumulation of nanoparticles in organs.

Natural properties of CaCO3-based materials such as biocompatibility, biodegrad-
ability, and pH sensitivity make CaCO3 a promising candidate carrier for the delivery of
various biologically active substances, especially anticancer drugs [18,19]. In the present
work, we focused on the materials science part of this topic to develop a fundamental ap-
proach to the fabrication of nanomaterials with the special characteristics that will increase
the efficacy of CaCO3 applications in biomedicine.

CaCO3 particles that meet several criteria—monodispersity, stability under physiolog-
ical conditions, partial or complete degradation at low pH levels, and size <200 nm—are
attractive carriers for pH-dependent drug delivery [20]. In the literature, there are several
basic approaches to the preparation of CaCO3 particles. Depending on the synthesis tech-
nique, it is possible to obtain particles of various shapes and sizes. Options for constructing
CaNPs are subdivided into three main categories: aeration or carbon dioxide barbotage,
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coprecipitation of appropriate salts, and microemulsion approaches [21]. The easiest option
to implement is the coprecipitation method because it does not require special equipment
and reagents. Despite the apparent simplicity of the existing techniques and numerous
studies aimed at obtaining CaNPs [22–24], there is no simple and reproducible way to
synthesize monodisperse CaCO3 particles of the nanometer size (up to 200 nm) that pre-
serves their stability in solution for prospective in vivo applications. Thus, the main aim
of this study was to find a way to prepare a suspension of nanoscale CaNPs including
complete screening of various synthesis conditions and assessing the effects of reaction
mixture composition, solvents, pH, and various additives on the morphological properties
of the formed particles, with subsequent testing of the interaction of the particles with a
drug (DOX). Additionally, we aimed to study the efficiency of conjugation of CaNPs with
the drug, the kinetic release profile of DOX from the matrix (CaNPs) depending on pH,
and the effectiveness of the inhibition of cancer cell proliferation by CaNP carrying DOX
in vitro.

In this work, we developed and described a simple approach to the fabrication of
nanocomposites based on CaCO3 and researched the physical and chemical properties
of these nanoparticles. We noted the absence of toxicity and proved the effectiveness of
CaNPs as a drug carrier.

2. Materials and Methods
2.1. Materials

Sodium hydrogen carbonate, calcium chloride, magnesium chloride, and Tween 20
were purchased from Sigma-Aldrich, Co (St. Louis, MO, USA) whereas DOX from Teva
Pharmaceutical Industries Ltd. (Petach Tikva, Israel). 3-(4,5-Dimethyl-2-thiazolyl)-2,5-
diphenyl-2H-tetrazolium bromide (MTT) was acquired from Panreac Química (Barcelona,
Spain), and polyethylene glycol (PEG) 1000 Da, 2000 Da, and 6000 Da from Carl Roth (Karl-
sruhe, Germany), FBS (fetal bovine serum), DMEM (Dulbecco’s modified Eagle medium),
and antimycotic antibiotic solution from GIBCO, Life Technologies (Carlsbad, CA, USA).

2.2. Synthesis of CaNPs by Coprecipitation

This procedure was performed by mixing two salts on an ultrasonic bath or dispersant:
100 µL of a CaCl2 solution (0.007–0.100 M) was added dropwise to 1 mL of a NaHCO3
(0.1 M) aqueous solution in the absence and presence of additives such as PEG (MW = 1000,
2000, or 6000) at 0.1 mg/mL, detergents (Tween 20, Triton X-100, sodium dodecyl sulfate, or
cetyltrimethylammonium bromide) at 0.1 vol.%, DMEM at 0.2–10.0 vol.%, and/or MgCl2
(0.005–0.010 M) [25]. The additives were introduced both individually and as a mixture.
The reaction of CaNP formation in a mixture of Tween 20 and PEG-2000 was performed
similarly to the reaction in an aqueous solvent replaced by isopropanol [1].

2.3. Characterization of CaNPs

This was carried out by dynamic light scattering (DLS) methods on a Malvern Zeta-
sizer nano particle characterization system in water at room temperature. Suspensions
of CaNPs were analyzed by transmission electron microscopy (TEM). For this purpose, a
drop of a sample was allowed to adsorb for 1 min on a copper grid covered with formvar
film; the excess liquid was then removed, and the grids were examined under a Jem1400
microscope (Jeol, Tokyo, Japan). Images were captured by a side-mounted Veleta digital
camera (EM SIS, Muenster, Germany).

2.4. Reversible Binding of CaNPs to DOX

Conjugation was performed with stirring (700 rpm, 25 ◦C, 12 h) in 10 mM borate buffer
(pH 8.5) containing 0.1–1.0 mg/mL CaNPs and 50–500 µg/mL DOX. Next, the CaNPs
were washed with 10 mM borate buffer pH 8.5 (3 times × 1 mL), and the supernatant was
separated by centrifugation (10 min, 13,400 rpm, miniSpin from Eppendorf). The residual
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concentration of DOX in the supernatant was determined spectrophotometrically in the
wavelength range of 400–600 nm at room temperature.

The amount of the drug bound to the nanoparticles was determined as capacity (E) of
CaNPs for the drug and calculated according to the formula:

E =
DOX0 − DOX

N

where E is particle capacity (µg DOX/mg CaNPs); DOX0 represents the initial amount of
DOX (µg); DOX is the amount of DOX in the supernatant (µg); and N denotes the amount
of CaNPs (mg).

The release of DOX was investigated at room temperature (unless stated otherwise;
in some cases, the temperature was varied from 15 to 45 ◦C) in 1 mL of 100 mM acetate
buffer (pH of 3.0 to 7.0) containing CaNP-DOX (132 µg of DOX with 0.2 mg of CaNP7) with
constant stirring (750 rpm). The amount of DOX released into the solution was determined
by means of optical density and/or fluorescence intensity of the solution.

2.5. The Cytotoxicity of CaNPs, CaNP-DOX, and DOX

These properties were evaluated on A549 and HEK293 cells in a standard MTT as-
say. For this purpose, cells at (2.0 ± 0.5) × 103 per well were seeded in a 96-well plate
containing the culture medium and incubated for 24 h at 37.0 ± 1.0 ◦C in an atmosphere
containing 5.0% ± 0.5% of CO2. HEK293 and/or A549 cells were then incubated with
CaNPs (0.2–22.5 mg/mL), CaNPs carrying DOX (0.1–10.0 µM), or free DOX (0.1–10.0 µM)
in the culture medium for 48 h at 37.0 ± 1.0 ◦C in an atmosphere containing 5.0% ± 0.5% of
CO2. After that, the medium was removed from all wells, and 200 µL of an MTT solution
(0.25 mg/mL in the culture medium containing 1% of an antimycotic antibiotic solution)
was added and incubated for 4 h under the same conditions. Next, the medium and MTT
were removed from the wells, and 100 µL of dimethyl sulfoxide (DMSO) was added, and
optical density was measured on a multichannel plate reader at wavelengths of 570 and
450 nm. The percentage of surviving cells was calculated from the obtained optical density
values for each concentration of a tested agent.

2.6. Statistical Evaluation of Experimental Error

This was performed on at least three parallel biological samples. Data obtained
in each experimental series are presented as mean ± standard deviation calculated by
Excel software.

3. Results and Discussion
3.1. Synthesis and Assessment of CaCO3 Properties

The synthesis of CaNPs by coprecipitation is a simple, inexpensive, and efficient method
for producing nanomaterials for biomedical applications. On the other hand, micrometer scale
particles (DLS data: 2950 ± 400 nm hydrodynamic diameter [d], PDI = 0.1 ± 0.05) are obtained
by equimolar mixing of CaCl2 and NaHCO3 in the absence of additional reagents and do not
meet our criteria. To obtain stable monodisperse particles up to 200 nm, we investigated the
influence of the reaction mixture composition on the morphological characteristics of CaNPs.
The workflow of CaNP fabrication is shown in Figure 1.

An ultrasonic bath (for small-scale synthesis up to 1.5 mL) and a dispersant (up to
50 mL) were employed in the synthesis setup for all CaNPs.
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0.03). Supplementation with PEG, irrespective of molecular weight (MW), yielded parti-
cles larger than 700 nm, which were still smaller than the particle sizes obtained in the 
absence of additives. Accordingly, the effects of the combined addition of high-molecular-
weight PEG (1000, 2000, or 6000) and detergent Tween 20 were investigated next. The 
combined addition of these compounds reduced the size of CaNPs in comparison with 
the nanomaterials obtained above by separate supplementation with either compound 
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(Figure 2A) and PEG-2000 (Figure 2B) as well as their combination (Figure 2C). 

Figure 1. An outline of the fabrication of CaNPs.

The effect of stoichiometric ratios of the reagents on the size of the resulting particles
was evaluated first. By varying the calcium chloride concentration (0.007–0.100 M) at a
constant concentration of the carbonate anion and vice versa, we found that the size of
formed particles at all tested concentrations was greater than 1 micron. According to DLS
data, the use of a 10-fold excess of CO3

2− over Ca2+ allows particles of the smallest size in
the examined range to be obtained (d = 1470 ± 180 nm, PDI = 0.635 ± 0.002). Therefore,
the optimal concentrations (0.1 M NaHCO3 and 0.01 M CaCl2) were chosen for further
experiments. The addition of surfactants and high-molecular-weight compounds is widely
utilized for preparing nanoparticles (up to 200 nm) [26]. The effects of adding the following
surfactants to the reaction mixture were studied here: sodium dodecyl sulfate (anionic
detergent), cetyltrimethylammonium bromide (cationic detergent), Tween 20 and Triton
X-100 (nonionic detergents), and biocompatible high-molecular-weight compounds (PEG-
1000, -2000, and -6000) [26]. According to the DLS data, only the addition of detergent
Tween 20 led to a significant reduction in particle size (d = 450 ± 30 nm, PDI = 0.11 ± 0.03).
Supplementation with PEG, irrespective of molecular weight (MW), yielded particles larger
than 700 nm, which were still smaller than the particle sizes obtained in the absence of
additives. Accordingly, the effects of the combined addition of high-molecular-weight PEG
(1000, 2000, or 6000) and detergent Tween 20 were investigated next. The combined addition
of these compounds reduced the size of CaNPs in comparison with the nanomaterials
obtained above by separate supplementation with either compound alone. The smallest
hydrodynamic size (d = 340.2 ± 0.3 nm, PDI = 0.177 ± 0.003) of CaNPs at this stage of
the work was achieved upon the combined addition of PEG-2000 and Tween 20 to the
reaction mixture. To determine the influence of codoping with PEG-2000 and Tween 20
on the CaNP formation process, both additives and their combination were examined by
TEM. Figure 2 presents the fine structure of the initial solutions of Tween 20 (Figure 2A)
and PEG-2000 (Figure 2B) as well as their combination (Figure 2C).
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Figure 2. TEM images of Tween 20 (A), PEG-2000 (B), and the mixture of Tween 20 and PEG-2000 (C).

According to the figure, each individual additive has an ultrastructure that is different
from that seen when they are mixed. From the TEM data (Figure 2), it was concluded
that PEG-2000 and Tween 20 together formed a polymeric structure that acts as a matrix
limiting particle growth during nucleation.

The CaNPs obtained in the presence of PEG-2000 and Tween 20 (called CaNP1) were
also characterized by TEM (Figure 3).
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Figure 3. TEM images of the suspensions of the nanomaterial called CaNP1, which was produced in
the presence of Tween 20 and PEG-2000.

An analysis of the TEM micrographs (Figure 3) revealed that the obtained CaNPs
were heterogeneous in size and shape, and polydispersity was considerable: particle size
ranged from 135 to 700 nm.

To increase the stability and monodispersity of the CaNPs and to reduce their size,
we then screened other conditions for CaNP fabrication. It is known that the addition of a
nutrient medium, DMEM, consisting mainly of amino acids, inorganic salts, and vitamins,
and Mg2+ cations, to the reaction mixture results in the formation of small CaNPs and in
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their stabilization [25]. The reason is presumably competing processes and the slowing
of crystal formation. Accordingly, we investigated the effects of adding DMEM, MgCl2,
or their combination—to the reaction mixture consisting of a salt solution with a 10:1
ratio of CO3

2− to Ca2+ and containing PEG-2000 and Tween 20—on the physicochemical
properties of the CaNPs formed. Aside from the additives, the influence of the solvent on
the characteristics of the obtained CaNPs [1] was also evaluated (Table 1).

Table 1. The influence of changing a single parameter in the CaNP1 fabrication workflow.

# (Figure 4 Panel) Sample Special
Conditions D, nm PDI

1 (A) CaNP1 - 339 ± 4 0.20 ± 0.01

2 (B) CaNP2
Solvent:

isopropanol 2637 ± 125 0.33 ± 0.05

3 (C) CaNP3 MgCl2, 0.01 M 278 ± 4 0.15 ± 0.01

4 (D) CaNP4 DMEM, 2 w.% 333 ± 2 0.26 ± 0.01

5 (E) CaNP5
MgCl2, 0.01 M;
DMEM, 2 w.% 326 ± 6 0.26 ± 0.01

6 (F) CaNP6
MgCl2, 0.05 M;
DMEM, 2 w.% 332 ± 1 0.19 ± 0.01

7 (G) CaNP7
MgCl2, 0.01 M;
DMEM, 10 w.% 249 ± 1 0.10 ± 0.01

8 (H) CaNP8
MgCl2, 0.05 M;
DMEM, 10 w.% 276 ± 4 0.10 ± 0.01

All of the obtained samples were stable in solution (hereafter stability is defined as
the preservation of the physical and chemical properties of CaNPs) and were analyzed by
TEM to examine the fine structure of the materials (Figure 4).

It was obvious that the composition of the reaction mixture during the CaNP syn-
thesis significantly affected the morphological properties of the nanoparticles: size and
ultrastructure (Table 1 and Figure 4). As above-mentioned, the presence of PEG-2000 and
Tween 20 (CaNP1, Figure 4A) yielded reproducible fabrication of CaNPs with a wide size
distribution beyond the range optimal for biomedical applications, and this phenomenon
is related to the tendency of CaNPs to aggregate. Replacing the aqueous solvent with an
organic one caused an increase in crystal growth efficiency, which significantly enlarged
the particles (CaNP2, Figure 4B). The samples obtained in the presence of Mg2+ (CaNP3,
Figure 4C) were visibly different from those above, according to the DLS and TEM data.
This is because the DLS method cannot determine the size of individual particles; instead,
it only quantifies the clusters arising via aggregation of the material, as demonstrated in the
TEM images. Because it was not possible to overcome the problem of particle aggregation
by either chemical or physical methods, these CaNPs were not used in further work, despite
their small size. The addition of DMEM in the absence of magnesium chloride did not
cause cardinal differences from the sample obtained in the presence of Tween 20 and PEG
(Figure 4A,D). In the comparison of panels E–H (Figure 4), the combined supplementation
with 10% DMEM and 0.01 M MgCl2 (CaNP7, Figure 4G) was found to be optimal. Stable
monodisperse spherical 249.0 ± 0.8 nm CaNPs were obtained, which were closest to the
requirements of the task in question.

Storage and scalability tests of the nanoscale CaNPs fabricated by the newly developed
procedure were performed on CaNP7. The stability of these CaNPs was investigated by
remeasuring the hydrodynamic dimensions of the CaNPs three months after the synthesis.
The physical characteristics of the samples did not change much. The scalability of the
proposed approach was assessed by increasing the reaction mixture volume by 30-fold,
which made it necessary to replace the ultrasonic bath with a dispersant. According to the
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DLS (d = 200 ± 20 nm, PDI = 0.10 ± 0.04) and TEM data (Figure 5), the larger synthesis
volume did not increase the hydrodynamic size of the CaNPs.
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As discussed elsewhere, obtaining stable CaNPs in an aqueous solution without
additional modifications of the procedure is not an easy task [9], and an aqueous solution
is a prerequisite for subsequent successful application of the nanomaterials. The stability
of our CaNPs in aqueous solutions, the scalability of our synthesis methodology, and good
availability of the reagents will allow for the convenient use of these nanomaterials in the
chemical and pharmaceutical industries: the synthesized nanomaterial called CaNP7 can
be stored while retaining its original properties for >3 months.

To evaluate the characteristics and stability of CaNP7 in the bloodstream, we con-
ducted a model experiment on the storage of the nanoparticles in a 50% serum solution
(Figure 7).

The increase in the hydrodynamic particle size, in comparison with the initial one (t = 0
and t = 5 min, Figure 7), can be primarily explained by the change in the solution in which
the DLS analysis was performed; this alteration can affect the obtained hydrodynamic
radius. Because the particles between the time points of 5 min and nine days retained their
size within the margin of error, it can be said that their stability in serum is sufficient for
prospective biomedical applications [27].

Accordingly, the impact of solution composition (addition of a surfactant, DMEM,
MgCl2, and a change of the solvent) on the characteristics of the obtained materials was
investigated experimentally based on the literature data. As a result, several simple and
accessible approaches to obtaining monodisperse CaNPs of different shapes (spherical and
rod-shaped) and sizes (from 40 to 200 nm) were developed here. Then, a methodology
yielding CaNPs suitable for further biomedical research (CaNP7) was selected. The ob-
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tained nanomaterial was found to have the parameters necessary for further investigation
of the potential usefulness of CaNPs as a carrier of model antitumor agents.
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3.2. Interaction of DOX with CaNP7

There are three techniques for conjugating a biologically active compound with a
carrier. Water-soluble therapeutic agents can be coprecipitated during nanomaterial syn-
thesis [28]. Another approach is based on the impregnation of the prepared particles with
a solution of the drug with constant stirring or shaking [29]. In this case, the binding of the
obtained nanoparticles to the drug can be achieved either via adsorption or encapsulation.
The third option for the conjugation of the nanomaterial with the drug is based on evapora-
tion of a solvent containing the drug under reduced pressure. The latter two methods are
suitable for our purpose because they can load drugs that are poorly soluble in water, aside
from other advantages. In our study, we chose the method of postsynthetic impregnation
of CaNPs with the drug.

It is likely that the efficiency of adsorption of macromolecules inside CaCO3 particles
or onto their surface is determined by electrostatic interactions. In heterogeneous systems
(solid–liquid), the relevant factors are steric effects, molecular weight of the drug being
immobilized, and its affinity for the CaNP surface. Via adjustment of pH in the reaction
mixture, it is possible to change electrostatic interactions and, as a consequence, to manage
the adsorption–desorption of the drug by controlling the number of its released/loaded
molecules [30].

For example, drug-loaded CaNPs are applicable to the controlled release and delivery
of various biomolecules.

DOX is an antibiotic that is also a common broad-spectrum antitumor agent used in
chemotherapy. DOX was chosen here as the model therapeutic agent for the evaluation
of CaNPs as drug carriers. The disadvantages of this drug are several serious adverse
effects, ineffective penetration through the cell membrane, rapid excretion from the body,
and poor water solubility due to hydrophobicity [31]. The development of a selective
prolonged delivery system for a given drug is a highly relevant task. Maximal absorption
of DOX in the visible spectral region (480 nm) enables quantitative analysis of the effective-
ness of DOX conjugation with CaNPs by spectrophotometry without the introduction of
additional labels.

The efficiency of CaNP7 conjugation with DOX was evaluated by means of the drug
capacity index, which was calculated as the amount of DOX (in µg) bound to 1 mg of
CaNP7. The amount of the drug bound to the nanoparticles was calculated as the difference
between added DOX and DOX remaining in solution (supernatant) after incubation with
CaNP7. The CaNP7 capacity index was found to be 659 ± 5 µg/mg. On the basis of
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the literature data, we believe that the nanocomposites obtained in this work have good
prospects for practical applications because they are more than threefold superior to most
analogs in terms of DOX encapsulation efficiency [7,32].

One of the advantages of materials based on CaCO3 is pH-dependent stability of the
particles: with a decrease in pH, the rate of hydrolysis of the nanocarrier matrix increases,
thereby facilitating the release of the encapsulated drug. In the next step, we investigated
this phenomenon.

The drug release efficiency of the CaNP7–DOX nanocomposite as a function of
medium acidity was assessed in 100 mM acetate buffer at pH from 3.0 to 7.0. To study the
release of DOX from the CaNP7–DOX complex, the amounts of the components (CaNP7
and DOX) were identical among the assays with different pH levels: 132 µg of DOX per
0.2 mg of CaNP7.

CaCO3 is considered unstable under acidic conditions; a similar property was expected
in CaNPs. Figure 8 shows a pH-dependent release of the drug: as pH of the medium
diminished, the proportion of released DOX increased, partly due to complete or partial
degradation of the nanocarrier matrix. At pH 3.0, complete liberation of loaded DOX was
achieved, whereas at pH close to physiological, the degree of DOX liberation was the lowest:
at pH 7.0, the drug liberation rate was 25% after 180 min. Therefore, the pH-dependent
release of DOX from its complex with CaNP7 was demonstrated successfully.
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High efficiency of a drug release at endosomal pH has been reported elsewhere [33].
In the present study, at physiological pH values, CaNP7 retained more than 75% of the
loaded drug within the nanocomposite, and this property may ensure high selectivity of
drug distribution in the context of a site-activated therapy.

It is worth mentioning that the nanomaterials developed by us here had a high release
efficiency of >80% when pH was lowered. This effect can help to implement passive
targeting of the drug to tumor tissues, which are known to have more acidic pH than that
of healthy tissues [34]. We expect that in future applications, the sensitivity to the weakly
acidic pH of the tumor microenvironment will ensure effective highly specific delivery and
a sustained release of anticancer drugs in in vivo experiments.

Next, at pH values close to physiological (pH 6.5), where only low drug release
efficiency was seen (Figure 8), we examined the impact of temperature (15, 25, 37, and
45 ◦C) on the release efficiency of DOX from its complex with CaNP7 (Figure 9).
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The efficiency of DOX liberation increased with the increasing temperature: the
difference between 45 and 15 ◦C was ~7% at each data point in the experiment (Figure 9).

Thus, it was successfully demonstrated that the obtained CaCO3-based materials
can form the basis of drug delivery systems. CaNP7 effectively binds to the model thera-
peutic agent. During our investigation into the kinetic profiles of the DOX release from
CaNP7-DOX, it was found that CaNPs are pH-sensitive: the drug liberation increases
with decreasing pH. This is a promising property for drug delivery to low-acidity sites
including malignantly transformed tissues. When the temperature was raised from 15 to
45 ◦C, the drug release from the tested CaNPs increased. These results suggest that CaNP7
can be further investigated as a nanocarrier for drug delivery. On the other hand, the main
prerequisite for the use of CaNPs in vivo is the absence of toxicity.

3.3. Cytotoxicity Assays of CaNP7 and Its Composites with DOX

The cytotoxicity of the obtained CaNPs and nanocomposites before and after complex-
ation with DOX (CaNP7-DOX) was assessed in the standard MTT assay, which estimates
the percentage of surviving cells after exposure of the cells to the agent being tested. To
evaluate the effectiveness of cell growth inhibition by the CaNP7–DOX nanocomposite,
a comparison was made with DOX alone and CaNPs alone in an assay involving a lung
carcinoma cell line (A549). The absence of toxicity of CaNPs was successfully proven in
an assay involving a human embryonic kidney 293 cell line (HEK293) and A549: at CaNP
concentrations up to 22.5 µg/mL, the viability of the treated cells did not diminish below
98%. The literature data confirm the safety of CaCO3 micro- and nanoparticles according to
MTT assays [6,35]. Nonetheless, we needed to confirm this for the nanomaterial prepared
by our method: CaNP7.

Figure 10 indicates the effective inhibition of the growth of cancer cells (A549) by
the CaCO3-based nanocomposite containing an antitumor agent (DOX) compared to the
drug alone.
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The CaNP7–DOX composite proved to be comparable in efficacy to free DOX. This
was confirmed by determining IC50: the concentration of the inhibitory agent (either
CaNP7-DOX or DOX) required to reduce the cell proliferation rate by 50% (Table 2).

Table 2. IC50 values.

Sample IC50, µM

CaNP7–DOX 0.97 ± 0.04
DOX 2.41 ± 0.02

The non-monotonicity of the MTT test data may be explained by the following: we
expect that at a low concentration of DOX and CaNP7–DOX, the efficiency of penetration
of both the pure drug and the composition of nanoparticles affects cell survival. DOX
in nanocomposites (CaNP7–DOX) most probably has better penetration and so is more
effective at a concentration of 0.1 µM. With an increase in concentration, it has less effect,
because nanostructures release DOX gradually and 0.5 µM is the maximum concentration
of DOX in solution in the case of 100% release, which does not occur immediately, when
free DOX is immediately added to this solution in full concentration. With a further
increase in the concentration, DOX tends to be sorbed onto the surface (plate side) because
of its hydrophobic properties [36–38]. In this case, DOX orubicin in the composition of
nanocomposites is more effective. With a further increase in concentration, all these effects
have less effect, since the concentration of DOXorubicin is high.

This experiment was primarily aimed at proving that the therapeutic properties
of DOX are preserved when it is encapsulated in CaNP7. These CaNPs can serve as a
delivery vehicle for a prolonged pH-dependent release of DOX, as depicted in the model
experiments in Figure 7. Unfortunately, the MTT assay does not permit testing a pH-
dependent release of DOX on the same cell type. Nonetheless, there is evidence in the
literature that pH-sensitive materials manifesting high efficiency in vitro can be even more
effective in vivo [4,12–15].

CaNP7–DOX turned out to be more cytotoxic than the free drug. Accordingly, we
advanced a hypothesis that the greater reduction in the percentage of surviving cells is due
to the gradual release of DOX from the CaNP7–DOX composite. In contrast, free DOX was
added to the cells at a single time point at a final concentration and probably precipitated
due to its hydrophobicity.
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Thus, the CaNP7 nanocarrier proposed in this work was found to be nontoxic in vitro.
The efficiency of inhibiting cancer cell growth by the CaNP7–DOX composite was not
inferior to that of the free therapeutic agent. Nevertheless, due to the pH-dependent
stability of the CaNP7 carrier, according to the kinetic profiles of the DOX release from
CaNP7–DOX (Figure 8), a therapeutic efficacy is expected to be higher in vivo due to the
selective dosed accumulation of the drug at a tumor site.

Our findings warrant further research into the application of CaCO3-based nanostruc-
tures in vivo.

4. Conclusions

Methods were developed for the preparation of monodisperse inorganic nanoparticles
based on a CaCO3 (e.g., CaNP7) stable in suspension having sizes of 200 ± 20 nm. The syn-
thesized nanoparticles were characterized by TEM and DLS. Due to their monodispersity
and small size, the obtained materials were optimally suited for biomedical applications
including intravenous drug delivery. Efficient conjugation of the obtained nanoparticles
with an anticancer drug (DOX) was demonstrated, as was a pH-dependent profile of a DOX
release from CaNP7–DOX. It is expected that the high efficiency of DOX encapsulation
and the pH-dependent profile of its release will make it possible to reduce the amount of
the administered drug in future in vivo experiments while increasing the effectiveness of
the therapy; this is because the CaNPs provides a more efficient release of the drug from
the nanoparticles in a site with lowered pH corresponding to a tumor macroenvironment.
In the concentration range of 0.5–50.0 µg/mL, no toxicity of the CaNPs to the tested cell
lines (HEK293, A549) was detectable. The properties of CaNPs should help to prevent
unwanted accumulation of these nanomaterials in major organs such as the liver, heart,
and kidneys, due to CaNP biodegradation. The effectiveness of cell growth inhibition by
CaNP7–DOX turned out to be comparable to that of free DOX in the DOX concentration
range of 0.1–10.0 µM. By means of the model drug DOX in the MTT assay, we proved that
when our methodology is employed for constructing a pH-dependent transporter with a
prolonged release ability, therapeutic efficacy of the drug is preserved. Our results indicate
that the newly developed CaNPs hold great promise for further in vivo experiments.
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