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Increasingly, metabolic potential is proving to be a critical determinant governing a pathogen’s
virulence as well as its capacity to expand its host range. To understand the potential contribution of
metabolism to strain-specific infectivity differences, we present a constraint-based metabolic model
of the opportunistic parasite, Toxoplasma gondii. Dominated by three clonal strains (Type I, II, and
III demonstrating distinct virulence profiles), T. gondii exhibits a remarkably broad host range.
Integrating functional genomic data, our model (which we term as iCS382) reveals that observed
strain-specific differences in growth rates are driven by altered capacities for energy production. We
further predict strain-specific differences in drug susceptibilities and validate one of these
predictions in a drug-based assay, with a Type I strain demonstrating resistance to inhibitors that
are effective against a Type II strain. We propose that these observed differences reflect an
evolutionary strategy that allows the parasite to extend its host range, as well as result in a
subsequent partitioning into discrete strains that display altered virulence profiles across different
hosts, different organs, and even cell types.
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Introduction

Toxoplasma gondii is an opportunistic single-celled parasite
with the capacity to infect any warm blooded animal. Thought
to infect one in three people worldwide, infection by T. gondii
results in toxoplasmosis, typically associated with flu-like
symptoms in adults that resolve into a life-long chronic illness.
More significantly, T. gondii can result in serious ocular disease
in healthy adults and may be life threatening for pregnant
women, transplant patients, and the immunocompromised
(e.g., those living with HIV/AIDS) (Jeannel et al, 1988; Luft
and Remington, 1992; Wong and Remington, 1994; Belanger
et al, 1999). Despite its significance, few treatments are
available and those that do exist do not promote sterile cure.
The situation is further exacerbated with the emergence of
new strains of parasites resistant to or tolerant of available
prophylactics (Aspinall et al, 2002; Djaman et al, 2007).
Indeed, it is increasingly evident that parasite strain ‘Type’ is a
predictor of virulent disease (Grigg et al, 2001b; McLeod et al,
2012). Among extant T. gondii lines, three strains (referred to
as Types I, II, and III) dominate human infections in Europe
and North America (Boothroyd and Grigg, 2002). Compared to

Type II and Type III, Type I strains display relatively high

growth rates and are acutely virulent in mice (LD100¼1

parasite) (Howe and Sibley, 1995). Recent work has identified

that murine virulence is highly dependent on the expression

level of virulence factors, such as ROP18, GRA15, and SRS29C

(Melo et al, 2011; Wasmuth et al, 2012), proteins that target

host immune signalling pathways. At the same time, due to its

importance in providing energy and the basic building blocks

required for growth, metabolic potential is increasingly being

viewed as a critical element governing a pathogen’s virulence

potential, as well as its ability to survive in infected hosts

(McKinney et al, 2000; Olszewski et al, 2009; Willger et al,

2009; Ensminger et al, 2012). Through modulating metabolic

capacity, parasites are able to tune growth in response to

changes in host environment, offering a potential route to a

broad host range. Genome comparisons reveal identical sets of

genes encoding enzymes with the same predicted functional

roles across the three strains. However, what is not known is

how the differential expression of these genes across different

Toxoplasma strains may influence their growth potential and

hence virulence.
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Genome-scale metabolic reconstruction has emerged as an
effective strategy for systems-based investigations of an
organism’s metabolic potential, serving to crystallize current
knowledge of an organism’s metabolism as well as providing a
framework for in silico investigation (Becker et al, 2007;
Oberhardt et al, 2009; Thiele and Palsson, 2010). Metabolic
reconstruction is an iterative process, beginning with the
initial creation of a draft metabolic network based on the
available enzyme annotation data. Subsequent rounds of
simulation and refinement help resolve errors and fill gaps in
otherwise incomplete networks (Green and Karp, 2004). With
the increasing availability of high quality metabolic recon-
structions, a variety of modeling procedures have been
developed to analyse how these reconstructions are organized
and operate. Arguably the most established method is flux
balance analysis (FBA) (Kauffman et al, 2003; Lee et al, 2006),
which solves for a steady-state distribution of reaction fluxes
while satisfying a priori constraints (Orth et al, 2010). During
an FBA simulation, the algorithm identifies sets of metabolic
fluxes that optimize a specified function, for example,
maximizing growth potential. This is achieved through the
derivation of a ‘biomass equation’, which details the propor-
tions of all metabolites required for growth (e.g., DNA, RNA,
protein, lipids, and cofactors). In the absence of constraints
within the system, FBA can yield a range of optimal pathways
to achieve maximal growth. To reduce the number of
pathways, constraints can be placed on individual fluxes.
Ideally these are obtained through systematic surveys of
enzyme activities. However, in the absence of such data,
mRNA expression data have been found to be an effective
substitute (Colijn et al, 2009; Huthmacher et al, 2010). FBA
has been successfully applied to a number of pathogens
including Mycobacterium tuberculosis, Leishmania major, and
Plasmodium falciparum (Raman et al, 2005; Chavali et al,
2008; Plata et al, 2010) to predict enzymes critical for growth
and virulence.

Motivated by the need for a clearer understanding of the
relationship between strain-specific metabolic capacity and a
pathogen’s ability to replicate and cause disease across a broad
range of intermediate hosts, we present the first high quality
metabolic reconstruction and constraint-based model of
T. gondii. Our reconstruction, termed as iCS382, consists of
382 gene annotations, 282 enzymes, 384 unique metabolites,
and 571 reactions, and provides a valuable reference resource
detailing current state of knowledge of T. gondii metabolism.
Integrating mRNA expression data, we use this model to
identify strain-specific differences in metabolic potential that
correlate with their observed growth rates. Drug inhibition
assays are then applied to three enzymes to validate findings
from our model.

Results

A metabolic reconstruction crystallizes our
current knowledge of T. gondii metabolism

Here, we present a systematic high quality reconstruction of
the metabolic capabilities of T. gondii. We began by
constructing an initial set of 258 enzymatic reactions (unique
EC identifiers) that captures: (1) expert curation provided

through the established T. gondii knowledgebase—ToxoDB
(Gajria et al, 2008); (2) the curated Braunschweig Enzyme
Database (BRENDA) (Barthelmes et al, 2007); (3) 43 pre-
viously published studies in T. gondii metabolism supporting
89 enzymatic reactions; and (4) 132 high confidence predic-
tions of enzymes using the DETECT pipeline (Hung et al, 2010)
(Figure 1A; Supplementary Table S1). Among these predic-
tions were two genes that appear misannotated in ToxoDB
(Supplementary Figure S1). TGME49_088450 is annotated as
an aldehyde dehydrogenase (EC 1.2.4.1), but is predicted by
DETECT to be 1-pyrroline-5-carboxylate dehydrogenase (EC
1.5.1.12), completing the pathway for autotrophic L-proline
biosynthesis from L-glutamate. TGME49_109730 is annotated
as a glutathione-disulfide reductase (EC 1.8.1.7), but is
predicted by DETECT to be a thioredoxin-disulfide reductase
(EC 1.8.1.9), which allows for the regeneration of thioredoxin
and consequently the reduction in RNA nucleotides to their
DNA counterparts. Note that reactions EC 1.2.4.1 and EC
1.8.1.7 are associated with other genes and are therefore also
included in our reconstruction (Supplementary Table S2).
During initial FBA simulations (see below), we found it is
necessary to include an additional 24 so-called ‘gap-filling’
enzymes to produce the full complement of biomass compo-
nents required for parasite growth. Literature surveys were
used to assign 282 enzymes (258 curatedþ 24 gap filling) to
five defined subcellular compartments: apicoplast; cytosol;
endoplasmic reticulum; mitochondrion and mitochondrial
intermembrane space. Some reactions were assigned to
more than one compartment; thus 282 unique enzymatic
activities (i.e., EC identifiers) were assigned to 400 reactions
(Supplementary Table S1). Of these, 352 reactions are
predicted through ToxoDB and DETECT to be encoded by
382 genes. Of the remaining 48 reactions, 19 represent 11
unique enzyme activities for which there is biochemical
support only (see below), while the remaining 29 reactions are
provided by the 24 ‘gap-filling’ enzymes.

In addition to the 400 enzymatic reactions, we included 107
transport reactions comprising 85 organellar transport reac-
tions that shuttle metabolites between different subcellular
compartments, as well as 22 extracellular transport reactions
that allow metabolites to enter and leave the system. For
extracellular transport reactions, 21 represent known trans-
porter proteins or auxotrophies supported by literature
evidence, while one (tyrosine transport) represents an
auxotrophy predicted by our model. In addition we include
seven reactions that allow the diffusion of small molecules
previously shown not to require a catalytic transporter (Boyle
and Radke, 2009), as well as six sink reactions: metabolite
exchanges with no support of prior knowledge but required for
the production of defined biomass components. The 85
organellar transport reactions include both those catalyzed
by active transporters as well as reactions that permit the
passive diffusion of metabolites between different cell loca-
tions (Chavali et al, 2008; Thiele and Palsson, 2010).

In addition to enzymatic and transport reactions, our
reconstruction includes three spontaneous molecular inter-
conversions, three reactions required for recycling of currency
metabolites through undefined cofactors, one reaction
accounting for oxidative stress and nine reactions representing
artificial conversions of biomass components to cell growth

Metabolic modeling of Toxoplasma gondii
C Song et al

2 Molecular Systems Biology 2013 & 2013 EMBO and Macmillan Publishers Limited



required by the model. Finally, our model includes an
additional 33 so-called ‘dead-end reactions’, which involve
metabolites that are neither produced nor consumed by other
metabolic reactions in the network and additionally lack
evidence supporting the import or the export of the metabo-
lites implying that the flux for the reaction must be zero.
Enzymatic reactions, as defined by EC identifiers, were cross-
referenced with the Kyoto Encyclopedia of Genes and
Genomes (KEGG) database (Kanehisa et al, 2006), to obtain
reaction details including substrates and product metabolites,
as well as reaction stoichiometry and direction. From an
overall set of 571 reactions, the metabolic reconstruction is
represented as a network incorporating 492 (384 unique)
metabolites (Figure 1B); details of the reconstruction are
provided in Table I.

To provide a guide for future hypothesis generation and
model refinement, we provide two independent categories of

confidence associated with the annotation of each reaction:
Genomic confidence indicates that the reaction is supported by
a gene association; Biochemical confidence indicates that the
reaction is supported by experimental evidence (Figure 1B).
Genomic confidence is assigned on the basis of either DETECT
predictions (194 reactions; 132 unique EC IDs) or annotations
provided by ToxoDB (348 reactions; 244 unique EC IDs).
Similarly, Biochemical confidence is assigned on the basis of
entries in the BRENDA database (63 reactions; 35 unique EC
IDs) or the general literature (126 reactions; 89 unique EC IDs).
During the reconstruction, we identified 19 reactions, invol-
ving 11 enzymes, for which there is biochemical evidence but
for which a gene has yet to be assigned (Table II). These
include 2-methylisocitrate dehydratase (EC 4.2.1.99), the
only member of the 2-methylcitrate cycle (2-MCC), which
generates acetyl CoA from the degradation of branched chain
amino acids, for which no gene has currently been assigned
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Figure 1 Overview of iCS382. (A) Evidence associated with reactions included in the metabolic reconstruction of T. gondii (iCS382), broken down by source of reaction
evidence. Numbers in bold indicate the total number of reactions supported in iCS382 by the specific resource. (B) Bipartite network representation of iCS382 in which
nodes represent either reactions (diamonds) or metabolites (circles). Edges between nodes represent enzyme–substrate relationships. Shaded backgrounds indicate
groups of enzymes organized into pathways as defined by the Kyoto Encyclopedia of Genes and Genomes (KEGG—Kanehisa et al, 2006). A close-up of the TCA cycle
showing details of names of enzymes and substrates is also shown as an inset. Reaction nodes are colored according to evidence for gene annotation as well as
biochemical data (see inset key). Visualization of the network was performed using Cytoscape (Shannon et al, 2003). Edges to common currency metabolites have been
removed for clarity.
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(Seeber et al, 2008). Diamine N-acetyltransferase (EC 2.3.1.57)
is a member of the pathway required for the production of
spermidine and putrescine from uptake of host spermine.
Intriguingly we note two genes, TGME49_219760 and
TGME49_289900, both of which are annotated by ToxoDB as
N-acetyltransferase family proteins in ToxoDB with the EC
identifier corresponding to peptide alpha-N-acetyltransferase
(2.3.1.88). We propose that since peptide alpha-N-acetyltrans-
ferase activity is not required by our model, these genes are
potential candidates for diamine N-acetyltransferase (EC
2.3.1.57) activity. Finally, we note that pyridoxine 5-phosphate
synthase (EC 2.6.99.2) consists of a heterodimer composed of
two subunits, pdx1 and pdx2, which have been assigned to
TGME49_237140 and TGME49_281490, respectively (Muller
and Kappes, 2007). Both genes are annotated in ToxoDB as
involved in pyridoxal phosphate (Vitamin B6) metabolism but
without associated EC identifiers. These examples serve to
illustrate the use of metabolic reconstructions to refine future
annotation efforts.

Among the six classes of enzymes, transferases represent
the most abundant followed by oxidoreductases (Figure 2A).
The 492 metabolites involved in these reactions are predicted
to be localized in five different subcellular compartments
(Figure 2B). The large number of reactions in the cytosol is
likely an overestimate as it is the default compartment for
reactions without detailed localization data. Figure 2C shows
the breakdown of reactions by general metabolic activity.
Contrary to a previous metabolic reconstruction of an
unrelated unicellular parasite, L. major, which highlighted

the importance of lipid and amino-acid metabolism (Chavali
et al, 2008), T. gondii, like P. falciparum (Huthmacher et al,
2010), possesses a large number of reactions involved in
nucleic-acid metabolism. This reflects the impact of purine
auxotrophy on apicomplexan parasites, resulting in the
retention of multiple purine salvage pathways that can utilize
a variety of purine precursors obtained from the host
environment (Chaudhary et al, 2006). The final model is
named ‘iCS382’ consistent with metabolic reconstruction
naming conventions (Reed et al, 2003); further details are
provided in Supplementary Table S1. In the next section, we
illustrate the use of this model through the application of
constraint-based modelling to predict strain-specific metabolic
behaviour.

FBA applied to iCS382 reveals strain-specific
differences in metabolic potential

Previous studies have shown that T. gondii can be classified
into three dominant clonal lineages, with each possessing
different virulence profiles (Howe and Sibley, 1995). Given the
relationship between parasite growth and virulence potential,
we examined whether strain-specific differences in metabolic
capabilities could account for changes in growth rate and
hence virulence. Since genome sequencing reveals identical
enzyme complements across strains, any metabolic differ-
ences will occur either at the level of gene/protein expression
or through sequence variation. Here, we explore the former
by integrating gene expression data into a series of FBA
simulations to model the metabolic capabilities of the
proliferative, tachyzoite form of the parasite across different
strains. To our knowledge, this is the first time FBA has been
applied to examine the potential impact of enzyme expression
across different strains of pathogens.

To determine flux distributions for each reaction, the FBA
framework requires a so-called objective function, defined
here as maximizing the production of biomass components
(i.e., growth; Table III). In the absence of a complete set of
biochemical data detailing the kinetics of each T. gondii
enzyme, flux constraints were assigned on the basis of gene
expression profile data (see Materials and methods). These
constraints define upper and lower bounds for each reaction.
While gene-expression profiles provide only an approximation
of enzyme activity, recent studies demonstrate that they
significantly enhance model predictions through defining

Table I Details of iCS382 metabolic reconstruction of T. gondii (for further
details, see Supplementary Table S1)

Genes 382
Unique EC identifiers 282
Metabolites 492
Unique metabolites 384
Reactions 571

Enzymatic reactions 400
Single gene associations 217
Multiple gene associations 135
Biochemical evidence only 19
Gap filling 29

Transport reactions 107
Organellar transport 85
Extracellular transport 22

Biomass/utility reactions 31
Dead-ends 33

Compartments 5

Table II List of biochemical reactions in iCS382 for which literature evidence exists but for which no gene has yet been assigned

EC identifier Enzyme name Pathway Reference

2.1.3.3 Ornithine carbamoyltransferase Arginine/Proline Cook et al (2007)
2.3.1.57 Diamine N-acetyltransferase Polyamines Cook et al (2007)
2.6.99.2 Pyridoxine 5-phosphate synthase Misc Muller and Kappes (2007)
2.7.2.2 Carbamate kinase Pyrimidine Cook et al (2007)
3.5.3.6 Arginine deaminase Arginine/Proline Cook et al (2007)
3.5.4.2 Adenine deaminase Purine Chaudhary et al (2004)
4.2.1.60 3-Hydroxydecanoyl-[acp] dehydratase Fatty-acid synthesis Dautu et al (2008)
4.2.1.61 3-Hydroxydecanoyl-[acp] dehydratase Fatty-acid synthesis Dautu et al (2008)
4.2.1.75 Uroporphyrinogen-III synthase Porphyrin Seeber et al (2008)
4.2.1.99 2-Methylisocitrate dehydratase MC cycle Seeber et al (2008)
5.5.1.4 Inositol-3-phosphate synthase Phospholipid Smith et al (2007)
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maximum flux constraints through reactions (Colijn et al,
2009; Plata et al, 2010). Our model relies on the assumption
that flux associated with an enzyme is dependent on its mRNA
expression, for example, strains expressing higher levels of
enzyme transcripts will possess a higher flux for that reaction.
Consequently, we integrated mRNA expression data pre-
viously generated for four strains of T. gondii (the Type I
strains: RH and GT1, and the two Type II strains: Me49 and
Prugniaud) as flux constraints in our FBA model (see Materials
and methods). Flux constraints based on the expression data
could be added for 209 reactions. These were further scaled to
yield a predicted doubling time of 11.8 h for strain Me49 (see
Materials and methods). On the basis of the scaling applied to
Me49 and consistent with previous experimental studies
(Radke et al, 2001; Saeij et al, 2005), our model correctly
predicts that Type I strains of T. gondii have much higher
growth rates (3.0 and 4.5 h for RH and GT, respectively) than
Type II strains (11.8 and 14.0 h for Me49 and Prugniaud,
respectively; Figure 3A). On the basis of the expression data,
we find that among the pathways upregulated in RH relative to
Me49 are pyrimidine biosynthesis, the TCA cycle and the
pentose phosphate shunt (Supplementary Figure S2A). These
differences suggest that Type I strains produce higher levels of
ATP (driving an increased production of biomass) relative to
Type II strains. In subsequent simulations, we explore these
links in more detail (see below).

It should be appreciated that FBA rarely results in a single
solution of optimal reaction fluxes. Nevertheless, by perform-
ing flux variability analysis (FVA) (Mahadevan and Schilling,
2003), it is possible to identify reactions that operate only at
their maximum constraint for all possible solutions. Such
reactions may be deemed ‘bottleneck’ reactions, since the
expectation is that by relaxing the constraint on these
reactions, biomass production will similarly increase. We
therefore applied FVA to identify potential bottleneck reactions
in our four strains that appear to be constrained in different
parts of the network (Supplementary Figure S2B). Consistent
with our observations on growth rate, four of the eight
bottlenecks for the production of biomass for all four
strains involve the production of energy. Both ubiquinol-
cytochrome-c reductase (EC 1.10.2.2), an essential enzyme in
the production of ATP via oxidative phosphorylation, and
phosphoglycerate kinase (EC 2.7.2.3a and b) are found to be
limiting across three strains. Strain RH is predicted to be only
constrained by acetyl-CoA carboxylase (EC: 6.4.1.2b),
involved in one of the first steps of fatty-acid biosynthesis in
the apicoplast. While bottleneck analysis identified the various
chokepoints in the model that give rise to the optimal growth
rates specific to each strain, it should be appreciated that these
findings are reliant on the steady-state assumptions implied in
the model, and may therefore not represent the true bottle-
necks in a dynamic biological environment. Furthermore,
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removal of a bottleneck (e.g., by enzyme overexpression) may
demonstrate little impact on organism growth in vitro/in vivo,
as this may simply result in the identification of a new
bottleneck reaction restricting growth to a similar (albeit
lesser) degree. On the other hand, since these bottlenecks
dictate the growth rate of the model, they allow reactions to be
prioritized for further in silico and in vitro experiments that
seek to refine associated flux constraints and consequently
increase the accuracy of the model.

FBA of iCS382 identifies 39 new potential drug
targets

An advantage of in silico modelling is the ability to rapidly
investigate the impact of gene knockouts. On the basis of the
Me49 reconstruction, just less than half of the enzymatic,
extracellular, and organellar transport reactions (242 of 507
total) are predicted to be essential for biomass production and
may therefore represent suitable targets for therapeutic
intervention (Figure 3B and C; Supplementary Table S3). An
additional 27 (5.3%) are predicted to have a ‘major’ impact on
growth rate (o80% optimal growth). Of the essential reactions,
171 are encoded by 129 metabolic enzymes. The model
correctly predicts the essentiality of dihydrofolate reductase
(EC 1.5.1.3) in the folate biosynthetic pathway (targeted by
the current anti-Toxoplasma therapeutic, pyrimethamine).
However, dihydropteroate synthase (EC 2.5.1.15), the target

of sulfadiazine, was not predicted to be essential, presumably
due to the presence of thymidylate synthase activity (EC
2.1.1.45) offering an alternative route for the production of
dihydrofolate. Further model predictions of essentiality con-
sistent with previous studies include two enzymes involved in
fatty-acid synthesis (acetyl-CoA carboxylase, EC 6.4.1.2 and
enoyl reductase, EC 1.3.1.9) (Zuther et al, 1999; Tipparaju et al,
2010). Due to a reliance on purine salvage, adenosine kinase
(EC 2.7.1.20) has been suggested as a putative target due to its
high level of expression (Rodriguez and Szajnman, 2012).
However, the presence of alternative routes for the production
of AMP leads the model to predict a non-essential role for this
enzyme, with its knockout predicted to have only a modest
impact on growth rate (99.6% optimal growth). Finally,
contrary to previous experimental studies (Fox and Bzik,
2003), our model does not predict the knockout of carbamoyl
phosphate synthetase II (CPSII, EC 6.3.5.5) to impact Tox-
oplasma growth. CPSII catalyses the production of carbamoyl
phosphate, a substrate that is acted on by both ornithine
carbamoyltransferase (EC 2.1.3.3) and carbamate kinase (EC
2.7.2.2). However, both reactions were set as reversible in the
model, allowing them to provide alternate routes to the
production of carbamoyl phosphate. But when both reactions
were set as irreversible, our model subsequently predicted
CPSII to be essential, confirming the experimental data and
suggesting that both ornithine carbamoyltransferase and
carbamate kinase reactions are irreversible under physiological
conditions. In addition, our simulations also correctly predict

Table III List of biomass constituents with stoichiometric coefficients

Biomass component KEGG ID Coefficient (mmol/gDW) Biomass component KEGG ID Coefficient (mmol/gDW)

DNA Lipids
dATP C00131 0.002855 1-phosphatidyl-1D-myo-inositol C01194 0.007777
dCTP C00458 0.003128 Phosphatidylcholine C00157 0.08017
dGTP C00286 0.003128 Phosphatidylserine C02737 0.01084
dTTP C00459 0.002855 Sphingomyelin C00550 0.01141

Phosphatidylethanolamine C00350 0.0153
RNA Cholesterol C00187 0.03525

ATP C00002 0.01678 Free fatty acids 0.252268
CTP C00063 0.02167 Dodecanoic acid C02679 0.073
GTP C00044 0.02263 Tetradecanoic acid C06424 0.09
UTP C00075 0.01523 Palmitic acid C00249 0.166

Stearic acid C01530 0.108
Proteins Oleic acid C00712 0.306

L-alanine C00041 0.684 Linoleic acid C01595 0.198
L-cysteine C00097 0.1297 Arachidonic acid C00219 0.058
L-aspartate C00049 0.3194
L-glutamate C00025 0.5263 Essential molecules
L-phenylalanine C00079 0.2276 Coenzyme A C00010 0.00563
Glycine C00037 0.5002 Tetrahydrofolate C00101 0.00563
L-histidine C00135 0.1426 Heme C00032 0.00563
L-isoleucine C00407 0.1603 Undecaprenyl diphosphate C04574 0.00563
L-lysine C00047 0.2747 Pyridoxal phosphate C00018 0.00563
L-leucine C00123 0.5988 Tetrahydrobiopterin C00272 0.00563
L-methionine C00073 0.095 ADP glucose C00498 0.00563
L-asparagine C00152 0.155 UDP-N-acetyl-D-glucosamine C00043 0.00563
L-proline C00148 0.4197 GDP mannose C00096 0.00563
L-glutamine C00064 0.2652 Oxaloacetate C00036 0.00563
L-arginine C00062 0.5445 Octanoyl-[acp] C05752 0.00563
L-serine C00065 0.7092 Geranylgeranyl diphosphate C00353 0.00563
L-threonine C00188 0.3327
L-valine C00183 0.3902 Growth assoc. maintenance
L-tryptophan C00078 0.06729 ATPþH2O-ADPþphosphate 28.76
L-tyrosine C00082 0.09781

Note that the composition of free fatty acids is used both as a subcomponent of Lipids and as the acyl portion of other phospholipids.

Metabolic modeling of Toxoplasma gondii
C Song et al

6 Molecular Systems Biology 2013 & 2013 EMBO and Macmillan Publishers Limited



tryptophan, cysteine and arginine auxotrophy (Pfefferkorn
et al, 1986; Fox et al, 2004). Contrary to previous findings
(Chaudhary and Roos, 2005), our model predicts Toxoplasma
to be an auxotroph for tyrosine. Recent work has identified a
putative phenylalanine hydroxylase (EC 1.14.16.1) (Gaskell
et al, 2009); inclusion of this reaction results in tyrosine
import no longer being essential. These results highlight the
iterative process of refining metabolic reconstructions through
integration of additional experimental data to increase the
accuracy of simulations.

To further prioritize this list, we identified 39 enzymes
(unique EC identifiers), catalyzing 67 essential reactions,
which lack homologs in humans (Supplementary Table S3).
For example, we identified three major biosynthetic pathways
essential to the parasite, with enzymes lacking homology
in human: isoprenoid biosynthesis, pantothenate bio-
synthesis, and lysine biosynthesis. Previous studies have
already implicated isoprenoid and pantothenate pathways for
therapeutic intervention (Muller and Kappes, 2007; Moreno
and Li, 2008), however, for lysine biosynthesis, we note mRNA

expression levels of genes encoding five enzymes in the
pathway are low, suggesting a reliance on host uptake.

Moving beyond single reaction knockouts, the availability
of a robust metabolic model enables the rapid investigation
of epistatic interactions within the network (i.e., pairs of
reactions with redundant activities). The identification of such
reaction pairs offers additional opportunities for therapeutic
intervention through targeted drug combination strategies.
Ignoring trivial reaction combinations in which one of the
reactions is predicted to be essential, we systematically
explored the impact of 26106 pairs of reaction knockouts
based on the Me49 reconstruction (Supplementary Table S4).
We derived a genetic interaction score, calculated as the ratio
of double knockout growth ratio to the product of single
knockout growth ratios (see Materials and methods). Of all
enzyme pairs simulated for double knockout, 1721 (6.6%)
demonstrated any degree of epistasis, of which only 322
(1.2%) were predicted to be lethal (Figure 4). Our results
predict that the TCA cycle and the pentose phosphate pathway
are functionally redundant for a vital metabolic process,
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Figure 3 Strain-specific differences in T. gondii metabolism. (A) Predicted strain-specific doubling times for four strains of T. gondii: Strains RH and GT are Type I
parasites, and strains Me49 and Prugniaud are Type II parasites. (B) Breakdown of single knockout predictions is classified according to growth ratio with respect to wild
type: essential, major effect, minor effect, and no effect. (C) Network visualization of predicted impact of reaction knockouts. In addition to identifying reaction knockouts
that impact growth of Me49, enzyme reactions (diamond nodes) are colored according to their relative impact between strains Me49 and RH. (D) Essential enzymes (EC
identifiers) predicted by iCS382 compared to Plasmodium falciparum model iCH579, and a gold standard of biochemically determined essential enzymes. Numbers in
brackets show enzymes unique to that species.
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namely the regeneration of NAD(P)H and the subsequent
production of ATP via oxidative phosphorylation. Other
pathway-centric epistatic interactions of note are the glycolysis
pathway in the apicoplast with both the TCA cycle and the
pentose phosphate shunt, as well as reactions involved in the
inter-conversion of nucleic-acid bases.

Comparisons of flux balance models identify both
species- and strain-specific metabolic
dependencies

In previous work, we showed that core metabolic functions
encoded by different apicomplexans are provided both by sets of
highly conserved enzymes, together with those that are lineage
specific (Hung and Parkinson, 2011). The former group of

enzymes is of particular interest as they represent putative pan-
apicomplexan therapeutic targets. With the recent availability of
a metabolic reconstruction for Plasmodium falciparum
(Huthmacher et al, 2010), as well as a non-exhaustive list of
anti-malarial enzyme drug targets determined through previous
biochemical studies, we were therefore interested in examining
how the different strategies adopted by the parasites to perform
similar core metabolic activities might impact reaction essenti-
ality. Figure 3D shows the overlap in predicted essential
enzymes (see also Supplementary Figure S2C). Interestingly,
while some (64 unique EC identifiers) of the 346 enzymes
conserved between T. gondii and P. falciparum are either
predicted (Hung and Parkinson, 2011) or confirmed to be
essential in both species, we also note species-specific depen-
dencies. For example, 33 of the conserved enzymes are predicted
to be essential only in T. gondii, while 31 are either predicted or

Summary of double knockout simulations

Non-essential enzymatic reactions    229
Total pairs of interactions (double knockouts)   26 106
 No predicted epistatic interaction    21 311
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Figure 4 Epistatic relationships between pairs of enzymes in iCS382. (A) The total number of reactions paired for double knockout simulations and summary of results.
(B) Reactions participating in epistatic interactions were clustered on the basis of strength of interaction using cluster 3.0 (average linkage absolute correlation centered)
and are visualized as a heatmap.
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confirmed to be essential only in P. falciparum. Pathways
predicted to be essential only in T. gondii include lysine
biosynthesis and beta-alanine biosynthesis. Of the shared
enzymes predicted to be essential in both species are compo-
nents of glycolysis, pantothenate metabolism, heme biosynth-
esis, isoprenoid biosynthesis, pyrimidine metabolism, and fatty-
acid metabolism—the latter four validated in P. falciparum. Due
to the conserved nature of predictions, these pathways
may be considered as most likely to yield targets for pan-
apicomplexan therapeutics.

Moving beyond obvious lifestyle differences at the species
level, we were interested in examining how changes in
metabolism between different strains of the same species might
impact metabolic dependencies. While Type I and Type II strains
of T. gondii share identical enzyme complements, they possess
markedly different growth rates. Here, we hypothesize that
differences in enzyme expression result in significant changes in
enzyme essentiality. Strains Me49 and RH are predicted to share
228 essential reactions (enzymatic, organellar, extracellular
transport and excluding sink reactions), of which 162 are

Table IV Strain-specific differences in response to single reaction knockout

Reaction Name Pathway Relative growth rate
(% of optimal)

RH Me49 Difference

lGa1.1.3.5 ycolysis 75.7 7.7 -68.0
5.3.1.9 lG ycolysis 59.7 1.9 -57.9
1.2.1.12a Glycolysis 54.8 0.0 -54.8
2.7.2.3a lG ycolysis

lG ycolysis
54.8 0.0 -54.8

2.7.1.90 42.5 0.0 -42.5
lGa31.2.1.4 ycolysis 42.5 0.0 -42.5
lG ycolysis 42.1 0.0 -42.1

tropsnarT 42.1 0.0 -42.1
lG ycolysis 41.0 0.0 -41.0

rohpsohP.xO ylation 73.0 40.5 -32.5
tropsnarT 31.3 0.0 -31.3

rohpsohP.xO ylation 69.5 43.7 -25.8
rohpsohP.xO ylation 23.5 0.0 -23.5
rohpsohP.xO ylation 23.5 0.0 -23.5

CACT ycle 86.3 63.0 -23.3
CACT ycle 86.3 63.0 -23.3

 TCA Cycle 86.3 63.0 -23.3
etahpsohPesotnePR 62.6 41.3 -21.3
etahpsohPesotneP 62.6 41.3 -21.3
etahpsohPesotneP 62.6 41.3 -21.3

lG ycolysis 62.6 41.3 -21.3
Pentose Phosphate 62.3 41.1 -21.2
Pentose Phosphate 62.3 41.1 -21.2

etahpsohPesotneP 62.3 41.1 -21.2
lG ycolysis 100.0 79.7 -20.3

Glycolysis 100.0 79.8 -20.2
lG ycolysis 100.0 79.8 -20.2

rohpsohP.xO ylation 55.9 43.6 -12.4

Arginine/Proline 72.6 82.8 10.2
Arginine/Proline 72.2 82.8 10.6

etaloF 77.1 91.9 14.8
tropsnarT 77.1 91.9 14.8

enimatulG/etamatulG 80.3 97.1 16.8
Branched Amino Acid 82.6 100.0 17.4

dicAonimAdehcnarB 82.6 100.0 17.4
c Branched Amino Acid 82.6 100.0 17.4

Amino Acid 82.6 100.0 17.4
dicAonimAdehcnarB 82.6 100.0 17.4
dicAonimAdehcnarB 82.6 100.0 17.4

csiM 82.6 100.0 17.4
dicAonimAdehcnarB 82.6 100.0 17.4

noitadixOateB 82.6 100.0 17.4
tropsnarT 73.7 97.1 23.3

CACT ycle 52.9 95.8 42.9
CACT ycle 52.9 95.8 42.9

ylation 55.9 100.0 44.1
CACT ycle 31.8 93.8 62.0
CACT

Branched

Ox. Phosphor

1.1.1.27
T22
2.7.1.40a

4.2.6.1
3.6.3.6
1.6.5.3
1.9.3.1
3.6.3.14
1.1.1.37
4.2.1.2
1.3.5.1

1.3.1.5
b1.1.2.2
a1.1.2.2

2.1.2.2
1.1.1.44
1.1.1.49
3.1.1.31

b1.1.3.5
1.2.1.12b
2.7.2.3b
1.10.2.2

2.6.1.13
1.5.1.12b
1.5.1.3b

5T
1.4.1.4
1.2.4.4b
1.3.99.10
2.3.1.168

02T

2.6.1.42a
4.1.3.4
4.2.1.18
6.2.1.16
6.4.1.4
2.3.1.9

1.1.1.42
4.2.1.3
1.5.5.1
2.3.3.1
6.4.1.1

esaremosietahpsohp-esoiTr
G esaremosietahpsohp-6-esocul
Glyceraldehyde-3-phosphate dehydrogenase
Phosphoglycerate kinase
Diphosphate-fructose-6-phosphate 1-phosphotransferase

esalodlaetahpsohpsib-esotcurF

(S) tropsnartetatcal-
y esaniketavur

esatcudernietorpomeh-HPDAN
H+-exporting esaPTA
NADH dehydrogenase (ubiquinone)
Cy esadixoc-emorhcot
H+-transporting esaPTArotces-owt

ydrogenase (ubiquinone)
esaremipe-3etahpsohp-esolubi

esaloteksnarT
esaloteksnarT
esalodlasnarT

gluconate dehydrogenase (decarboxylating)
Glucose-6-phosphate dehydrogenase
6-phosphog esanotcalonocul

esaremosietahpsohp-esoirT
Glyceraldehyde-3-phosphate dehydrogenase

gly esaniketarec
y esatcuderc-emorhcot

y esatcuderetaloford
tropsnartdicaciloF

Glutamate dehydrogenase (NADP+)
3-methyl-2-oxobutanoate dehydrogenase

yl)transferase
Isovaleryl-CoA dehydrog esane
Dihydrolipoyllysine-residue (2-methylpropano
Branched-chain-amino-acid transaminase
Hydroxymethylglutaryl-CoA ly esa
Methylglutaconyl-CoA hy esatard
Acetoacetate-CoA lig esa
Methylcrotonoyl-CoA carboxy esal
Acetyl-CoA C-acety esarefsnartl
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Aconitate hy esatard
Electron-transferring-flavoprotein dehydrogenase
Citrate (Si)-sy esahtn

L-lactate dehydrogenase

P

Malate dehydrogenase
Fumarate hydratase
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Phospho

Phospho
Ubiquinol-c

Ornithine aminotransferase
1-pyrroline-5-carboxylate dehydrogenase
Dih

Pyruvate carboxy esal ycle 31.1 100.0 68.9

Only enzymatic and extracellular transport reactions with a predicted strain difference of 410% optimal growth are shown.
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catalyzed by 121 metabolic enzymes (Supplementary Table S3).
A further 14 reactions are predicted to be essential for strain
Me49 but not RH. Ten of these involve metabolic enzymes or
extracellular transporters, including six encoded by metabolic
enzymes associated with glycolysis (Figure 3C; Table IV;
Supplementary Table S3). These include lactate dehydrogenase
(EC 1.1.1.27) and diphosphate-fructose-6-phosphate 1-phospho-
transferase (EC 2.7.1.90), both predicted to reduce growth to
42% of optimal for strain RH. In addition, while not essential to
Me49, knockout of glucose-6-phosphate isomerase (EC 5.3.1.9),
also involved in glycolysis, was predicted to reduce Me49 growth
to 0.2% of optimal compared to 60% of optimal for strain RH.
Conversely, our model does not predict any enzymes to be
essential for strain RH. Model predictions also identified 18

enzymatic reactions, in which knockout was predicted to result
in a significantly greater effect on growth rate (difference of
410% in optimal growth rate between the two strains)
for strain Me49 compared to strain RH (Figure 3C; Table IV;
Supplementary Table S3). These include enzymes in the
pentose phosphate, glycolysis, and TCA cycle pathways. In
contrast, 18 enzymatic and 2 extracellular transport reactions
were predicted to result in a significantly greater effect on growth
rate (difference of 410% in optimal growth rate between the
two strains) for strain RH compared to strain Me49 (Figure 3C;
Table IV; Supplementary Table S3). These include enzymes in
the leucine degradation, oxidative phosphorylation, and TCA
cycle pathways. For example, knockout of 3-methyl-2-oxobu-
tanoate dehydrogenase (EC 1.2.4.4), hydroxymethylglutaryl-
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Figure 5 Impact of four drug candidates on two enzymes involved in glycolysis. (A) Seven-day growth assays for Type I (RH) and Type II (Me49) strains under
treatment with alendronate and clodronate targeting EC 2.7.1.90. (B) Seven-day growth assays for Type I and Type II strains under treatment with 8-hydroxyquinoline
and 5-chloro-8-quinolinol targeting EC 4.1.2.13. Red indicates WT (no drug treatment), blue indicates drug treatment, and green indicates diluent control treatment.
Dotted lines show lowest molarity at which 100% inhibition of parasite growth occurred. RFUs¼ relative fluorescent units. (C) Micrographs of RH parasites treated for
24 h with 0–25 mM of 8-hydroxyquinoline. (D) Expression of target enzymes. To normalize expression we subtracted the 18S Ct value from the Ct value of the gene of
interest. For EC 2.7.1.90, only TGME49_226960 is expressed at a significant level. SRS29B serves as a positive control as it is highly expressed in the tachyzoite stage
of the parasite. ENO2 serves as a negative control as it is only expressed in the bradyzoite stage.
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CoA lyase (EC 4.1.3.4), methylglutaconyl-CoA hydratase (EC
4.2.1.18), and methylcrotonoyl-CoA carboxylase (EC 6.4.1.4) in
the leucine degradation pathway were predicted to reduce
growth of strain RH to 83% of optimal, with no predicted effect
on Me49. Similarly, knockout of citrate synthase, EC 2.3.3.1, was
predicted to result in 32% optimal growth for strain RH,
compared to 94% optimal growth in strain Me49. Together, these
findings indicate how the strains differ in their reliance on
energy production pathways, with strain Me49 predicted to be
more susceptible to the knockout of enzymes involved in
glycolysis compared to RH, while both strains appear to be more
reliant on different subsets of enzymes in the pentose phosphate
pathway and TCA cycle.

To investigate the robustness of our conclusions and their
dependence on the constraints assigned to individual reactions,
we performed a systematic set of sensitivity analyses
(Supplementary Figure S3). We first investigated the impact
of increasing the maximum constraints for each individual
metabolic reaction and examined their effect on the single
reaction knockout predictions for strain Me49. Of the 400
reactions investigated, changing the constraints of only four
reactions had any significant impact on the growth rates
predicted for the single reaction knockouts (Supplementary
Figure S3A). We also explored the dependence of the observed
strain differences in growth rate, on the assigned constraints for
eight reactions, mostly involved in energy production path-
ways (Supplementary Figure S3B). Results from these analyses
suggest that our model predictions are robust to changes in the
constraints assigned to individual reactions; observed strain
differences appear to be driven by relative differences in global
enzyme expression across the entire set of energy production
pathways.

In the next section, we apply drug intervention screens to
validate the observed strain-specific differences for two
enzymes involved in glycolysis.

Drug sensitivity assays validate predicted
strain-specific metabolic behavior

The strain-specific differences predicted by the model raise
important questions regarding the impact of metabolic
regulation on parasite virulence. In an attempt to validate
these predictions, we selected three enzyme targets for drug
inhibition assays: coproporphyrinogen oxidase (EC 1.3.3.3),
fructose-bisphosphate aldolase (EC 4.1.2.13), and dipho-
sphate-fructose-6-phosphate 1-phosphotransferase (EC
2.7.1.90). Coproporphyrinogen oxidase is predicted to be
essential for both strains Me49 and RH, while knockout of
fructose-bisphosphate aldolase or diphosphate-fructose-6-
phosphate 1-phosphotransferase is predicted to be lethal for
strain Me49, but to only reduce growth to 42% for strain RH
(Table IV). Five drug candidates from a list of 400 possibilities
were prioritized based on previous work showing inhibition of
growth in other microorganisms (Bai et al, 1982; Camadro
et al, 1986; Bruchhaus et al, 1996; Rukseree et al, 2008). The
five compounds used were 5,5-dithiobis(2-nitrobenzoic acid),
alendronate, clodronate, 8-hydroxyquinoline, and 5-chloro-8-
quinolinol. Two assays were conducted to measure growth of
parasites under drug treatment: a 24-h doubling kinetic assay
using microscopy and a 7-day growth assay using

fluorescence. Assays at two different time points were
necessary; it has been shown that many drugs, including
atovaquone and clindamycin, do not act immediately to inhibit
growth (Camps et al, 2002). Thus, while an inhibitory effect
may not be observable at 24 h, at 7 days such an effect should
be detectable. To assay for the predicted strain-specific
differences in growth, drugs were tested in both RH GFP
(Type I) and Me49 RFP (Type II) strains of the parasite.

5,5-dithiobis(2-nitrobenzoic acid) is predicted to inhibit
coproporphyrinogen oxidase in the heme pathway (Bogard
et al, 1989). Under treatment with 5,5-dithiobis(2-nitrobenzoic
acid) for 24 h, no inhibitory effect was seen in RH GFP or Me49
RFP. However, after 7 days of treatment, both strains displayed a
similar 50% inhibition of growth at a concentration of 900mM of
5,5-dithiobis(2-nitrobenzoic acid) (Supplementary Figure S4).
We next targeted the two enzymes in the glycolytic pathway.
First, we applied the bisphosphonate, alendronate, to inhibit the
activity of diphosphate-fructose-6-phosphate 1-phosphotrans-
ferase (Bruchhaus et al, 1996), which our model predicts should
have a greater impact on growth of Me49 compared to RH.
Consistent with these predictions we found that by day 7, while
the growth of RH was not inhibited by alendronate up to a
concentration of 100mM, growth of Me49 was completely
inhibited at the same concentration (Figure 5A). The 7-day
assay confirmed that alendronate inhibits parasite growth in a
strain-specific manner. Previous studies have shown that
alendronate can also target the enzyme farnesyl pyrophosphate
synthase in the mevalonate pathway (Montalvetti et al, 2001).
To confirm that the observed strain-specific inhibition was the
result of targeting diphosphate-fructose-6-phosphate 1-phos-
photransferase in the fructose/mannose pathway, and not a
result of off-target effects, we also examined the impact of
clodronate (also a known inhibitor of diphosphate-fructose-6-
phosphate 1-phosphotransferase; Bruchhaus et al, 1996) on
parasite growth. Consistent with our findings for alendronate,
we observed no effect on RH growth at 7 days up to 300mM,
whereas growth of Me49 was completely inhibited at this
concentration (Figure 5A). Finally to determine the importance
of the glycolytic pathway on parasite growth, we tested the
impact of two additional drugs (8-hydroxyquinoline and 5-
chloro-8-quinolinol) that target the enzyme fructose-bispho-
sphate aldolase immediately downstream of diphosphate-
fructose-6-phosphate 1-phosphotransferase (Bai et al, 1982;
Rukseree et al, 2008). After 7 days, treatment with 8-
hydroxyquinoline at 25mM and higher concentrations inhibited
growth completely in both RH and Me49 strains, and treatment
with 5-chloro-8-quinolinol at 12.5mM and higher concentra-
tions inhibited growth completely in both RH and Me49 strains
(Figure 5B and C). Note parasite growth inhibition is not simply
a consequence of the compounds impacting host cell viability
(Supplementary Figure S5).

To confirm the relative expression levels of the targeted
enzymes, quantitative PCR (qPCR) assays were performed.
Four genes (TGME49_226960, 240890, 281390, and 281410)
are annotated with diphosphate-fructose-6-phosphate 1-phos-
photransferase activity, and are predicted to be targeted by
alendronate and clodronate. qPCR revealed that only one of
these genes was expressed at an appreciable level, confirming
a strain-specific difference in its expression, with RH having
significantly higher expression than Me49 (Figure 5D). Two
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genes (TGME49_236040 and 236050) are associated with
fructose-bisphosphate aldolase activity that 8-hydroxyquino-
line and 5-chloro-8-quinolinol are predicted to inhibit; both
genes were expressed in a strain-specific manner (although
expression of TGME_236040 was greater than TGME_236050)
with RH significantly higher than Me49 (Figure 5D). Together,
these results demonstrate the usefulness of our metabolic
reconstruction, through validating the predicted essentiality of
all three enzymes targeted here. In addition, we validated the
predicted strain-specific sensitivity of Me49 to inhibition of
diphosphate-fructose-6-phosphate 1-phosphotransferase (EC
2.7.1.90) by both alendronate and clondronate. However, we
were unable to validate a similar prediction for fructose-
bisphosphate aldolase (EC 4.1.2.13). As we note in Discussion,
this finding may be related to the translocation of this enzyme
during host cell egress (Starnes et al, 2006).

Discussion

There is an increasing recognition that metabolic potential has
the capacity to impact pathogen virulence and its ability to
expand or restrict its host range (McKinney et al, 2000;
Olszewski et al, 2009; Willger et al, 2009). For example, the
accumulation of novel mutations in the lysine biosynthetic
pathway of the opportunistic pathogen, Legionella pneumo-
phila, was recently shown to confer a selective advantage in
the mammalian host, at the expense of displayed reduced
fitness in its natural host, amoeba (Ensminger et al, 2012). In
this current study, we have demonstrated that changes in the
expression of enzymes in different strains of T. gondii can
likewise impact parasite virulence, which may impact its
ability to expand its host range.

T. gondii can be classified into three distinct clonal lineages,
designated as Types I, II, and III (McLeod et al, 2012). Each type
exhibits distinct characteristics in terms of virulence during
murine infection. For example, for strain RH; a single parasite is
capable of lethal infection in mice, while for strain Me49, the
LD50 for mice is 2000 parasites (Howe and Sibley, 1995).
Furthermore, different strains exhibit partitioning in terms of
their animal host, organs in which they persist and even the host
cell type that they target (Wendte et al, 2011; Pan et al, 2012).
Although it is known that different strains differentially target
the host immune system (Melo et al, 2011), it is still not clear how
the biochemical potential of different strains impacts their rate of
growth and potential for clonal expansion and success.

To examine variation in metabolic behaviour across the
different strains of T. gondii, we constructed a manually
curated, high quality metabolic reconstruction (iCS382) that
captures current biochemical knowledge of the parasite’s
metabolism. Applying a constraint-based framework, we
systematically explored strain-specific models based on the
differential expression of mRNA data. Although this method
does not take into account any post-translational modifica-
tions or the specific activity of enzymes, mRNA expression has
previously been shown to be useful in determining relative
metabolic flux capacity (Colijn et al, 2009; Plata et al, 2010).
Integrating these data we were able to demonstrate a faster
growth phenotype for the highly virulent strain RH relative to
Me49 consistent with experimental observations (Radke et al,
2001; Saeij et al, 2005). Our bottleneck and knockout analyses

predicted the increased growth observed for strain RH, which
appears due to greater production of ATP through upregulation
of enzymes in the glycolytic, pentose phosphate, and TCA
cycle pathways. Using the drugs alendronate and clodronate,
known inhibitors of pyrophosphate-fructose-6-phosphate
1-phosphotransferase (EC 2.7.1.90), we show a greater
inhibition of growth in strain Me49 relative to RH. Interestingly,
drug inhibition studies focused on fructose-bisphosphate
aldolase (EC 4.1.2.13) did not confirm predictions from our
model. This was all the more surprising given that: (1) EC
4.1.2.13 was predicted to be essential for Me49; (2) drug
treatment inhibited parasite growth; and (3) qPCR confirmed
differential expression of the enzyme between the two strains.
To explain this contradiction, we cannot exclude the possibility
that Toxoplasma possess alternative metabolic routes, not
captured in iCS382, that render the function of EC 4.1.2.13
redundant. It is also possible that both 8-hydroxyquinoline and
5-chloro-8-quinolinol operate on an alternative target (the two
chemical moieties share similar structures). However, a further
explanation may concern the translocation of fructose-bisphos-
phate aldolase (Starnes et al, 2006). Specifically, during host cell
egress, fructose-bisphosphate aldolase translocates to the
parasite’s pellicle as a route for optimizing ATP delivery to
processes critical for extracellular survival (Pomel et al, 2008).
Interference with the aldolase enzyme activity has been shown
to impact parasite invasion, a necessary stage of the parasite’s
lifecycle. We therefore speculate that our inability to validate the
strain-specific differences predicted by the glycolytic role of the
enzyme is masked by the drug’s interference post-translocation,
impacting the parasite’s ability to invade. Nonetheless, the
strain-specific behaviour observed in the inhibition of EC
2.7.1.90 demonstrates that while both strains of T. gondii
possess the same complement of enzymes, changes in their
regulation impact not only growth rate, but also the parasite’s
reliance on critical pathways involved in the production of
energy.

These findings may have significant implications for the
remarkably broad host range associated with the parasite.
T. gondii is thought to be capable of infecting any nucleated cell
from any warm blooded animal. During this stage of its life
cycle, the parasite switches between a proliferative tachyzoite
stage and a slow growing tissue cyst bradyzoite stage capable
of transmissible infection to other hosts. In order to facilitate
its development into the infective bradyzoite form, the parasite
must strike a balance between: (a) growing too rapidly such
that it kills its host before it has an opportunity to differentiate
into the bradyzoite form; and (b) growing too slowly such that
the host’s immune system sterilizes the infection, again before
it has an opportunity to differentiate into the bradyzoite form.
Consequently, to be able to successfully colonize a wide range
of hosts, the parasite must be able to rapidly modify its growth
potential to account for the variety of immune responses and
nutrient availability it encounters.

Previous studies suggest that regulatory changes in core
components are a major evolutionary force driving the
generation of viable selectable phenotypic variation that may
operate at a faster rate than the innovation of new genes,
which typically occurs through gene duplication and subse-
quent sub- or neo-functionalization (Carroll, 2000; Wray et al,
2003; He and Zhang, 2005; Gerhart and Kirschner, 2007;
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Han et al, 2009). On the basis of our current findings, we
propose that changes in the regulation of enzymes required for
the production of energy, as opposed to changes in the enzyme
coding sequence itself as observed for L. pneumophila
(Ensminger et al, 2012), offer a rapid evolutionary vehicle
that allows T. gondii to modify its rate of growth in response to
changes in host environment. Hence, observed differences in
enzyme expression present the parasite with a fundamental
route to adapt to changes in host environment through
optimizing exploitation of nutrient availability. Recent studies
have shown that sexual crosses of T. gondii in the definitive
feline host result in the generation of a vast genetic repertoire
of progeny (Grigg et al, 2001a). As subtle differences in the
regulation of metabolic enzyme expression arise, the parasite
is able to explore a vast landscape of metabolic potential, each
with the possibility of increasing the efficient use of host
nutrient availability. At the same time, in areas of restricted
host heterogeneity, it might be expected that the parasite’s
metabolism becomes increasingly optimized for a limited host
range, resulting in a subsequent partitioning into discrete
strains that display markedly altered virulence profiles across
different hosts, different organs, and even cell types (Wendte
et al, 2011; Pan et al, 2012). As additional strains of T. gondii are
sequenced, we will be able to explore these questions in more
detail to examine both the diversity and the extent of metabolic
potential that may underlie this drive toward optimizing host
exploitation.

Beyond providing insights into the potential for changes in
metabolic capacity to drive strain partitioning, iCS382 serves
as a valuable platform to drive the design of anti-parasitic
therapeutics. Studies of T. gondii metabolism, capitalizing on
genomic data sets, are beginning to identify pathways that may
represent additional routes for therapeutic investigations,
including the biosynthesis of isoprenoids (Mol and Oudega,
1996), vitamins (Muller and Kappes, 2007), and polyamines
(Cook et al, 2007). On the other hand, several biosynthetic
processes previously thought to be critical for parasite survival
have subsequently been found to be complemented by salvage
pathways (i.e., scavenged from the host) (Massimine et al,
2005; Crawford et al, 2006). In a systematic set of single
reaction deletion simulations, iCS382 predicts 242 of the 507
reactions to be essential for parasite growth including
components of the beta-alanine, pantothenate, and glycolytic
pathways. Integration of human homology data allows the
prioritization of candidates suitable for therapeutic interven-
tion. With predicted differences in essentiality and growth, it is
clear that strain-specific differences in chemotherapeutic
sensitivity must be considered during the development of
any novel therapeutic. This is consistent with a previous study
of Trypanosoma brucei rhodesiense infections in a murine
model, which revealed significant strain-specific responses to
drug treatment, with only six of eight clinical isolates
susceptible to MDL73811, a potent inhibitor of S-adenosyl-
methionine decarboxylase (Bacchi et al, 1992).

In addition to strain-specific considerations, a valuable goal
in these types of investigations is to identify candidates that
represent new broad spectrum therapeutic targets. Compar-
ison of our model predictions with those from a previous
constraint-based modelling study of P. falciparum metabolism
(Huthmacher et al, 2010) revealed a reasonably high level of

overlap in essential reactions (57 of 116 common EC
identifiers). Remarkably, despite their relatively close evolu-
tionary relationship, comparisons of enzyme complements
between the two reconstructions find only 193 enzymes (of the
609 enzymes included in both reconstructions) in common.
Despite this lack of overlap, both models demonstrate the
ability to support growth, lending support to the idea that each
parasite lineage has evolved distinct metabolic strategies to
exploit differences in nutrient availability provided by their
unique host profiles (Hung and Parkinson, 2011). For example,
while T. gondii has the biosynthetic capacity to produce
phospholipids as well as several amino acids including serine,
alanine, and glycine, P. falciparum relies on the breakdown of
host heme and scavenging of host lipids. Moving beyond
single drug therapies to reduce the rate of development in drug
resistance, often a combination of enzyme inhibitors is
administered to disrupt pathogen metabolism synergistically.
This approach has widely been used for antimalarial and HIV
treatments, and has also been shown to overcome drug
resistance in Leishmania (Perez-Victoria et al, 2006). Our
model identified 322 combinations that might serve as a useful
basis for developing combination therapies in T. gondii.

In this study, we present a metabolic reconstruction of
T. gondii and demonstrate how it might be usefully exploited
not only to gain insights into parasite metabolism, but also to
inform the choice of new targets for therapeutic intervention.
In addition to validating predictions of strain-specific depen-
dencies, this work unveils a host of new testable hypotheses
concerning the reliance on specific pathways by different
strains as well as a large number of new predicted drug targets.
We acknowledge that the more streamlined nature of our T.
gondii model may reflect the minimalist approach used in the
reconstruction process and that there is much potential for
future model refinement. These refinements include the
incorporation of additional host-scavenging functions, which
through the provision of key metabolites has the potential to
render otherwise auxotrophic reactions non-essential. In
addition, due to the incompleteness of the initial network
reconstructed from current knowledge, a number of gap-filling
reactions were added to the model to complete essential
metabolic pathways. Furthermore, we have identified 33 so-
called dead-end reactions that produce metabolites which are
neither transported nor used as part of the biomass equation.
As additional biochemical investigations are performed, we
may expect these reactions to be confirmed and extended or
alternative routes to be discovered. Future iterations of the
model are also expected to incorporate additional compart-
ments and pathways. For example, we do not currently include
either the nucleus or the extracellular milieu as separate
compartments. In terms of pathways, while we include a
framework for glycan metabolism, the lack of detailed data
concerning the role of glycans in the production of biomass
for Toxoplasma (e.g., abundance and composition of
GPI-anchors) has resulted in these pathways being largely
incomplete. Similarly, despite evidence of 15-lipoxygenase
activity in Toxoplasma, lack of additional evidence for
supporting reactions precluded the incorporation of a com-
plete arachidonic acid pathway, instead the production of
arachidonic acid is captured by a single ‘black box’ reaction.
Finally, it should be appreciated that expression data provide
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only a crude approximation for reaction constraints used in the
model. Detailed kinetic data, preferably obtained from in vivo
experiments, would significantly contribute to the accuracy
of the model. These caveats aside, by crystallizing current
knowledge of T. gondii metabolism, we have shown how this
resource may be leveraged as a valuable platform for
integrating and organizing additional meta-datasets such as
mRNA and protein expression data, SNPs and other compara-
tive data sets. To facilitate access to iCS382, we make the
model reconstruction freely available in the accepted reporting
standard, systems biology markup language (SBML) level 2
format, available for download from our project website
(http://www.compsysbio.org/projects/iCS382). Our vision is
that subsequent investigations will serve to both refine the
model itself and shed light on the organization of T. gondii
metabolism and enzyme dependencies throughout the entire
life cycle of the parasite.

Materials and methods

Metabolic network reconstruction

An initial list of enzymes was compiled from the following resources:
(1) ToxoDB gene annotations (Gajria et al, 2008); (2) BRENDA
(Barthelmes et al, 2007) entries with T. gondii annotations; and
(3) DETECT predictions (Hung et al, 2010) from T. gondii gene models
(version 2008-07-23). Segregated reactions that do not link to other
parts of the network and are responsible for the production of non-
essential metabolites or whose substrates are not considered
metabolites (e.g., polypeptides or other polymers) were removed.
Subsequent manual analysis identified pathways with missing
reactions by comparing the network to known pathway schemes in
KEGG. A search in the literature was conducted to provide evidence for
the presence of the pathway in T. gondii. Missing reactions were then
added to the pathway if: (1) the pathway was reported or predicted
with high confidence in the literature; (2) intermediate metabolites
associated with the missing reactions were reported in the literature; or
(3) a sizeable fraction of other reactions associated with the pathway
were present. Lack of evidence resulted in the pathway being removed.
For each enzyme, additional details such as substrate and product
metabolites, direction of reaction, subcellular localization, and path-
way annotation were retrieved from KEGG (Kanehisa et al, 2006),
BRENDA (Barthelmes et al, 2007), and other literature sources.
Intracellular transport reactions were added to move currency
metabolites (H2O, ATP, etc.) between compartments. These include
both previously known transporter proteins catalyzing intracellular
transport reactions for specific metabolites and reactions involving
passive diffusion. Negatively charged metabolites translocating to a
relatively basic environment (i.e., from cytosol to mitochondrion)
were accompanied by hydrolysis of ATP. The reconstruction is
maintained as a spreadsheet (Supplementary Table S1) in a standard
format (Thiele and Palsson, 2010). Gene to enzyme mappings,
metabolite mappings and full citations are listed in Supplementary
Tables S2, S5, and S6 respectively. Note here we represent enzymes
performing the same reaction in different compartments as different
reactions. The metabolic network was visualized as a bipartite graph
using Cytoscape (Shannon et al, 2003), with nodes representing
reactions and metabolites.

Biomass estimations

The mass of a single T. gondii cell together with its protein and lipid
composition was obtained from a previous study of membrane fluidity
(Gallois et al, 1988). The DNA fraction was calculated from the
genome size, and the RNA fraction was estimated using a ratio of 1:7
DNA:RNA observed in other organisms (Beste et al, 2005). The amino-
acid composition of the protein fraction and the NTP composition of
RNA were estimated from the codon usage table available on ToxoDB

(http://www.toxodb.org), while the dNTP composition of DNA was
tabulated from the genomic sequence. For the remaining 3.76% of
unaccounted total cell mass was unaccounted for by amino acids,
lipids, DNA or RNA and was simply evenly distributed to cofactors and
macromolecule subunits essential for parasite growth. Amounts of
each biomass component were converted to mmol/gDW (Thiele and
Palsson, 2010). We also included two additional biomass terms:
growth-associated maintenance (GAM) and non-GAM (NGAM),
which define the energy cost in terms of ATP hydrolysis for the
organism to grow and sustain, respectively. GAM is estimated from the
number of peptide and nucleotide bonds needed to polymerize the
DNA, RNA, and protein fractions from their respective subunits. For
NGAM, we define an invariable flux of 5 mmol/gDW �h (Thiele and
Palsson, 2010).

Flux balance analysis

FBA was performed using the COBRA Toolbox (version 1.3.4) in
MATLAB (Becker et al, 2007). Each reaction in the model is supplied
upper and lower constraints for its flux. By default, irreversible
reactions have their fluxes constrained to 0–1000 mmol/gDW �h, and
reversible reactions � 1000 to 1000 mmol/gDW �h. For reactions with
single-gene associations, mRNA expression values derived from the
Gene Expression Omnibus (GEO accession: GSE22315) were used to
derive flux constraints. Each reaction receiving a flux constraint based
on its associated gene expression relative to the highest gene
expression value in the data set (which received an initial constraint
of 1000 mmol/gDW �h). For irreversible reactions, the lower bound was
set to 0 whereas for reversible reactions, the lower bound was set at the
negative of the upper bound. For example, a reversible reaction
encoded by a gene expressed at 20% of the level of the most highly
expressed gene received constraints of � 200 to 200 mmol/gDW �h. On
the other hand, an irreversible reaction encoded by a gene expressed at
20% of the level of the most highly expressed gene received constraints
of 0 to 200 mmol/gDW �h. The entire set of constraints was then scaled
linearly (with the exception of NGAM which was set at a constant flux
of 5 mmol/gDW �h consistent with previous studies; Thiele and
Palsson, 2010) so that the predicted doubling time for Me49 matched
the in vivo observation of 11.8 h (Blader et al, 2001). The calculation of
scaling factors was performed only once, for the Me49 expression data.
The same scaling of constraints based on the Me49 doubling time was
then applied to expression data from the other three strains (RH, GT1,
and Prugniaud).

Bottleneck analysis

For a given FBA solution, the optimization of the objective function is
constrained by one or more bottleneck reactions in the network. Such
bottlenecks were identified as those reactions with fluxes which equal
to their maximum constraint (or minimum, in the case of reversible
reactions) for all possible solutions leading to the optimized objective
function. The solution space was computed using FVA, part of the
COBRA Toolbox package. Reactions in the model were flagged as
bottlenecks if the minimum flux of the reaction was equal to its
maximum constraint.

Gene deletion predictions

Single knockouts were simulated for each reaction in the model by
setting the constraints of the reaction to 0. Knockout effects were
assessed by computing a growth ratio, which is the biomass
production rate of the knockout divided by that of the wild type.
Non-lethal single knockouts (having non-zero growth ratios) were
permutated in pairs for double knockout simulations. Each double
knockout simulation is in essence two single knockouts performed in
tandem. Double knockouts were assessed by computing a genetic
interaction score that is defined as follows:

f¼ grxy=grxgry

where gr is the growth ratio of the respective knockouts.
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Cell and parasites

Two strain-specific transgenic lines of Toxoplasma gondii were
engineered. eGFP driven by the GRA1 promoter was stably integrated
into the Type I RHDhxgprt strain whereas DSRed 2.0 (RFP), also driven
by the GRA1 promoter, was stably integrated into the Type II Me49
strain by Restriction Enzyme Mediated Insertion (REMI). Parasites
with stable integration of the GFP or RFP cassette were selected by
fluorescence. The point of insertion is unknown, but the parasites are
identical in phenotype to wild type in terms of attachment, invasion,
and replication. Parasites were routinely passaged in human foreskin
fibroblast (HFF) cells.

Drug preparations

All drugs were purchased from Sigma (St Louis, MO). Both alendronate
and clodronate were dissolved in RPMI media free of phenol red to form
5.4 mM stocks, and 8-quinoline and 5-chloro-8-quinolinol were
dissolved in dimethyl sulfoxide (DMSO) to form 0.54 M stocks. Media
prepared with mycophenolic acid (50 mg/ml) and xanthine (50 mg/ml)
that inhibits the growth ofDhxgprt Toxoplasma strains was used as a no
growth control for assays performed using the RHDhxgprt GFP strain.
All drug stocks were stored at 41C.

Fluorescence assays

Black 96-well tissue culture-treated plates with opaque bottoms were
purchased from BD Falcon (Bridgeport, NJ). Each well was seeded
with cells in a volume of 200ml. Before infection, plates were washed
with RPMI to remove all traces of phenol red, to reduce interference
and to increase the sensitivity of fluorescence detection. Freshly lysed
parasites were plated in parasite culture medium without phenol red at
a concentration of 104 parasites per well. Parasites were allowed to
invade for 4 h before drug treatment was applied. Drug stocks were
diluted three-fold through six wells, from 2.7 to 11mM for alendronate,
clodronate, and 5,5-dithiobis, and from 100 to 3.125 mM for
8-hydroxyquinoline and 5-chloro-8-quinolinol. Plates were kept in a
humidified incubator at 371C with 5% CO2 and read in a Perkin-Elmer
Wallac fluorescent plate reader. The following excitation (485 nm for
both GFP and RFP) and emission (535 nm for GFP; 595 nm for RFP)
values were used. Fluorescence readings were measured daily, the
assay proceeded until day 7 post infection.

Microscopy assays

Clear 96-well, Costar tissue culture-treated plates were purchased
from Corning (Sigma-Aldrich, St Louis, MO). Cells were grown and
infected as described above for the fluorescence assays. After 24 h of
drug treatment, the average number of parasites present in B100
vacuoles across 5–7 fields of view (1, 2, 4, 8, 16, and, in rare cases 32
parasites per vacuole) was calculated using a fluorescence microscope
at � 32 magnification. Photos were also taken to show growth or
inhibition visually.

Quantitative PCR

Total RNA (2 mg) isolated from tachyzoites by the RNeasy mini kit
(Qiagen) was reverse transcribed using random primers and Super-
Script II (Invitrogen). Gene expression was measured by Taqman qPCR
using an Applied Biosystems 7900HT Real-Time PCR System. The
cycling program included 2 min at 501C, 10 min incubation at 951C
followed by 40 cycles of 951C for 15 s and 601C for 1 min. Toxoplasma
18S rRNA and LDH1 were used as reference genes to normalize the
quantity of transcripts (Livak and Schmittgen, 2001). Transcript levels
were represented as 2�DCT to show absolute levels of transcript
relative to every gene examined.

Host cell viability assays

Host cell viability assays under drug treatment were performed using
the CellTiter-Glo Luminescent Cell Viability Assay (Promega).
The kit’s reagent was prepared according to the protocol, then added
to 96-well plates in which HFF cells had been left under drug treatment
for either 24 h or 7 days. Plates were read using a Perkin-Elmer Wallac
fluorescent plate reader. Data analysis was performed using Prism.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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