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ARTICLE

A flexible summary statistics-based colocalization
method with application to the mucin cystic
fibrosis lung disease modifier locus

Fan Wang,1,2 Naim Panjwani,2 Cheng Wang,2 Lei Sun,1,3,* and Lisa J. Strug1,2,3,4,5,*
Abstract
Mucus obstruction is a central feature in the cystic fibrosis (CF) airways. A genome-wide association study (GWAS) of lung disease by the

CFGeneModifier Consortium (CFGMC) identified a significant locus containing twomucin genes,MUC20 andMUC4. Expression quan-

titative trait locus (eQTL) analysis using human nasal epithelia (HNE) from 94 CF-affected Canadians in the CFGMC demonstrated

MUC4 eQTLs that mirrored the lung association pattern in the region, suggesting that MUC4 expression may mediate CF lung disease.

Complications arose, however, with colocalization testing using existing methods: the locus is complex and the associated SNPs span a

0.2Mb regionwith high linkage disequilibrium (LD) and evidence of allelic heterogeneity.We previously developed the Simple Sum (SS),

a powerful colocalization test in regions with allelic heterogeneity, but SS assumed eQTLs to be present to achieve type I error control.

Here we propose a two-stage SS (SS2) colocalization test that avoids a priori eQTL assumptions, accounts for multiple hypothesis testing

and the composite null hypothesis, and enables meta-analysis. We compare SS2 to published approaches through simulation and

demonstrate type I error control for all settings with the greatest power in the presence of high LD and allelic heterogeneity. Applying

SS2 to theMUC20/MUC4CF lung disease locus with eQTLs fromCFHNE revealed significant colocalization withMUC4 (p¼ 1.313 10�5)

rather than withMUC20. The SS2 is a powerful method to inform the responsible gene(s) at a locus and guide future functional studies.

SS2 has been implemented in the application LocusFocus.
Introduction

Cystic fibrosis (CF [MIM: 219700]) is a life-limiting genetic

disease caused by mutations in the CF transmembrane

conductance regulator (CFTR [MIM: 602421]). Multiple or-

gans are affected in CF with variation in disease severity

influenced by CFTR genotype, environmental factors,

and modifier genes.1 The majority of morbidity and mor-

tality in CF results from lung disease which is heritable

beyond the contributions of CFTR.2 Mucus pathology is

a hallmark of CF airway disease, and thus themucin family

of genes have been hypothesized to contribute to lung dis-

ease severity in CF.3 A genome-wide association study

(GWAS; n ¼ 6,365) of CF lung disease from the Interna-

tional CF Gene Modifier Consortium (ICFGMC) identified

an associated locus on chromosome 3 in an intergenic re-

gion between two mucin genes—mucin 4, tracheobron-

chial (MUC4 [MIM: 158372]) and mucin 20, cell surface-

associated (MUC20 [MIM: 610360])—providing support

for the mucin hypothesis but leading to uncertainty

around the responsible gene(s) at the locus. Given the asso-

ciated variants are not tagging protein coding variation,

the assumption is that the associated locus is marking

gene regulation.

Colocalization analysis using GWAS and gene expres-

sion quantitative trait locus (eQTL) summary statistics in

a CF airwaymodel can test this hypothesis and provide sta-
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tistical support for the most probable gene(s) at the locus.

However, complications arise when we try to formally test

colocalization at this locus using published tools.4–15 First,

the null hypothesis of no colocalization is a composite null

hypothesis that consists of several different null scenarios,

e.g., the null scenario where there are significant GWAS

and eQTL SNPs at a locus, but the two do not colocalize,

or that there is a GWAS significant SNP but no eQTL at

the locus (see Material and methods for the four different

null scenarios). Type I error rate control under all possible

null scenarios can be challenging for any method, espe-

cially in the presence of multiple hypothesis testing across

multiple genes or tissues. Second, the associated SNPs at

the MUC4/MUC20 locus span a 0.2 Mb region with evi-

dence of allelic heterogeneity and high linkage disequilib-

rium (LD); these are factors that can substantially reduce

the power of existing methods.4,5 Third, in our study, the

participants in the eQTL analysis overlap with a subset of

the participants in the GWAS; this induces correlation be-

tween the eQTL and GWAS summary statistics that could

lead to an increased false positive rate of colocalization de-

pending on the degree of overlap.16 Lastly, our GWAS sum-

mary statistics are obtained from a meta-analysis with

related individuals within sub-studies, further compli-

cating LD adjustment in colocalization inference.

Several statistical methods have been developed to test

for colocalization between GWAS and eQTL summary
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statistics, but none of the existing methods accommodate

all the aforementioned complications, and we were sur-

prised to see that the other published colocalization

methods4,11,12,14 did not conclude strong colocalization

for MUC4 eQTLs and the GWAS summary statistics.

Bayesian colocalization approaches that are amenable to

the use of summary statistics include eCAVIAR,5 CO-

LOC,4 ENLOC,9 GWAS-PW,6 and COLOC2.14 These

methods aim to identify whether there is a shared causal

genetic variant that contributes to both the disease

outcome and gene expression variation. Both eCAVIAR

and ENLOC compute SNP-level posterior probabilities

for being causal and a regional colocalization probability

(RCP) by summing up the SNP-level probabilities. The

RCP is computed for a locus that has been identified by

GWASs, where the evidence under the composite null hy-

pothesis is not explicitly calculated so it is unknown

whether this method will have reliable operating charac-

teristics more generally. COLOC, in contrast, computes

the posterior probability incorporating subjective priors

under five scenarios: the four null scenarios and a specific

alternative when one single causal variant is shared. Co-

localization is concluded using a recommended value

for the posterior colocalization probability (e.g., 0.8).14

Although the threshold for the posterior probability can

be modified to account for multiple hypothesis testing

by adjusting the prior probability and other factors in

the calculation of false positive report probability

(FPRP),17,18 explicit recommendations to control the false

positive rate when testing multiple genes and/or tissues at

a locus for these Bayesian colocalization methods have

not been detailed. GWAS-PW extends COLOC by empiri-

cally estimating priors from the genome-wide data for the

five scenarios to investigate genetic variants that influ-

ence a pair of traits and provides software functions to ac-

count for overlapping participants in the two studies.6

Similarly, COLOC2 incorporates features implemented

in GWAS-PW and provides an updated version of CO-

LOC.14 However, COLOC, GWAS-pw, and COLOC2 all as-

sume one single causal variant, and it has been shown

that COLOC can have substantial loss in power when

there are multiple, independent GWAS or eQTL signals

at a locus (allelic heterogeneity).8 To gain additional po-

wer for a locus with multiple independent eQTL signals,

Dobbyn et al.14 proposed a forward stepwise conditional

analysis before conducting the COLOC2 analysis. For

each identified eQTL signal, COLOC2 integrates the

GWAS result with eQTL evidence conditional on all the

other eQTL signals. However, the conditional analysis re-

quires individual-level data and can be computationally

intensive. An alternative approach adopts the SuSiE19

framework to distinguishmultiple signals for a given trait,

and then conducts COLOC analysis on all possible pairs

of signals between the traits.20 This method has been

shown to provide more accurate inference than COLOC

based on conditional analysis; however, the identification

of different signals relies on the power of SuSiE.20
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There are several frequentist-based methods that also

calculate colocalization evidence, for example the gene

expression imputation approaches such as TWAS13 and

PrediXcan.21 These methods first use reference expression

databases to define a set of genetic variants predictive of

gene expression levels, then they impute gene expression

levels in a study sample and test for association with a dis-

ease phenotype. The reliability of these methods depends

on their prediction accuracy which can be limited.22–24 Ex-

tensions that enable the use of external summary statistics

such as S-PrediXcan,7 S-TWAS,13 and S-MultiXcan10 and

pre-computed parameters are available. However, in our

case we already have gene expression data from individuals

with CF in a relevant airway model. Integration methods

based on Mendelian randomization also indirectly address

the question of colocalization. Two such approaches,

SMR11 and Multi-SNP-based SMR (SMR-multi),12 derive

their test statistics by assuming independence between

GWASs and eQTL studies and use SNPs with eQTL p values

< 5 3 10�8 as instrumental variables to test whether gene

expression differences cause the disease phenotype. SMR

and SMR-multi restrict their analyses to regions with sig-

nificant eQTLs, and they can accommodate meta-analysis

but their robustness to related or overlapping samples is

unknown. Lastly, JLIM15 evaluates whether there is a

shared causal variant between eQTL and GWASs by devel-

oping a test statistic that contrasts the joint likelihood

assuming one shared causal variant with that assuming

distinct causal variants between eQTL andGWAS. To calcu-

late accurate colocalization p values, JLIM requires individ-

ual-level gene expression data for permutation.

We previously developed an alternative frequentist and

summary statistics-based colocalization method called

Simple Sum (SS).8 It too does not address all of the four fac-

tors necessary for reliable colocalization analysis at our

chr3q29 locus. SS performs well in the presence of linkage

disequilibrium and allelic heterogeneity, but at a given

GWAS region with significant association but no eQTLs,

the SS could have type I error inflation under this null sce-

nario of no colocalization. Thus, we recommended an ad

hoc approach that restricted SS analyses to regions with sig-

nificant eQTL evidence, similar to those imposed by other

methods (e.g., SMR and SMR-multi). Here we extend the SS

and propose a principled two-stage SS colocalization

method (SS2) that controls the type I error rate for the com-

posite null hypothesis, even in the presence of multiple

hypothesis testing across multiple genes and/or tissues,

and remains powerful in the presence of LD and heteroge-

neity. The SS2 can also accommodate summary statistics

calculated from meta-analysis with related samples within

sub-studies, and it is robust to the presence of a subset of

overlapping samples between the two sets of summary sta-

tistics. The SS2 has been implemented in the application

LocusFocus.25

For method comparison, we choose COLOC and CO-

LOC2 from the class of Bayesian methods, and SMR and

SMR-multi from the class of frequentist methods. Among
y 3, 2022



the three Bayesian approaches that consider the issue of

the composite null hypothesis (COLOC, GWAS-PW, and

COLOC2), COLOC has been shown to have better perfor-

mance than GWAS-PW when a single causal variant is

shared between the two studies,15 while GWAS-PW can

have better performance when eQTL and GWAS causal var-

iants are distinct. We thus implement COLOC2 that incor-

porates features of both GWAS-PW and COLOC. Among

the frequentist colocalization approaches that are appli-

cable to summary statistics, S-PrediXcan, S-TWAS, and S-

MultiXcan use prediction weights inferred from a publicly

available source (see PredictDB Data Repository in web re-

sources) to estimate the association between the predicted

transcriptome and phenotypes, which can lead to biased or

anti-conservative results.22–24 In our application, we

already have expression from CF tissue (human nasal

epithelia). Therefore, we implement SMR and SMR-multi

which can be directly applied to summary statistics from

any eQTL study without the need for training on a new

sample to predict weights.

We first conduct extensive simulation studies to

compare the proposed SS2 method with COLOC, CO-

LOC2, SMR, and SMR-multi. We then apply these colocal-

ization methods to the GWAS summary statistics from the

MUC4/MUC20 (chr3q29) CF lung function locus26 and the

eQTL summary statistics, respectively, for MUC20 and

MUC4 in CF primary human nasal epithelia (HNE). Finally,

for completeness we extend the colocalization analyses to

the genes within 1 Mb of the locus using CF primary HNE,

as well as other CF-related tissues from the genotype tissue

expression project (GTEx).27 We demonstrate statistical

support for MUC4 as the responsible gene at the locus.

The MUC4 impact appears to be relevant in the lungs,

both from GTEx and CF HNE, even after adjustment for

multiple hypothesis testing of all 564 gene-by-tissue pairs

evaluated at this locus.
Material and methods

Notation and model
For a locus of interest (e.g., chr3q29), here we assume that avail-

able information includes summary statistics from a phenotype-

SNP association analysis and an expression-SNP eQTL analysis

for a gene and tissue of interest (e.g., MUC20 in human nasal

epithelia), although this is generalizable to any SNP-level sum-

mary data. Assume there are j ¼ 1,., m SNPs at the locus, let

Z ¼ ðZ1;.Zj;.;ZmÞ0 be the vector containing the GWAS sum-

mary statistics, and T ¼ ðT1;.Tj;.; TmÞ0 containing the eQTL

summary statistics for a specific gene-by-tissue pair. T can be ob-

tained from, for example, GTEx27 or one’s own expression study,

although the latter requires additional care if the GWAS and

eQTL study samples are related or overlap, which we discuss later.

Our alternative of interest is that the GWAS signal and the eQTL

signal coincide. As the complement to this alternative, the null hy-

pothesis, H0, that there is no colocalization is composite,

including four different scenarios:4

H01: no SNP-phenotype association and no eQTL,
The America
H02: no SNP-phenotype association but eQTL present,

H03: SNP-phenotype association present but no eQTL,

H04: both SNP-phenotype association and eQTL present but

occurring at two independent variants.

That is, H0 ¼ H01WH02WH03WH04:

To test the composite H0, the Simple Sum test statistic is defined

as

SS¼
X
j

Z2
j

 
tj � tP

jt
2
j �mt

2

!
¼Z0AZ; (Equation 1)

where A ¼ diagðajÞ, aj ¼ tj�tP
j
t2
j
�mt

2, and tj is a continuous eQTL ev-

idence measure that can be defined as T2
j or –log10(eQTL p).8 In

practice, T2
j and –log10(eQTL p) produce SS p values that provide

the same colocalization conclusion.

Under the null hypothesis scenarios, H01WH02, that there is no

SNP-phenotype association, Z � Nð0;SÞ, where S captures the LD

structure of the region of interest (e.g., chr3q29).28–32 Thus, SS is

distributed as
P
j

djc
2
1 under H01WH02, where the dj’s are the eigen-

values of
�
S

1
2

�0
AS

1
2. Implementing a one-sided test based on SS will

then control the type I error not only under H01 or H02, but also

under H04 as SS tends to be negative when the SNP-phenotype as-

sociation and eQTL signals occur at two independent SNPs. How-

ever, this test could have type I error inflation under H03, and

therefore we previously used caution to interpret colocalization

findings when calculated from a small observed eQTL signal.

SS2 colocalization test and type I error control
Here we develop SS2 to test the composite null hypothesis that

there is no colocalization; controlling the type I error rate under

all four null scenarios. SS2 is a two-stage testing procedure that

formally evaluates the eQTL evidence at the region of interest prior

to conducting the colocalization analysis. We further extend the

method for use with summary statistics obtained from meta-anal-

ysis and related individuals within sub-studies, and we investigate

the robustness of SS2 to GWAS and eQTL summary statistics calcu-

lated using overlapping samples.

If we let thematrixA in Equation 1 be the identitymatrix, the SS

test statistic is simplified to
Pm
j¼1

Z2
j ; which has been used as a gene-

based association test statistic.33–35 Here we replace Z2
j ’s with the

eQTL summary statistics T2
j ’s to evaluate eQTL evidence at the lo-

cus, as stage 1 of the SS2 test

Xm
j¼1

T2
j ; (Equation 2)

for a given gene in a tissue of interest. Alternative gene-based eQTL

tests (e.g., maximum of T2
j )

36,37can be implemented, depending

on factors such as the genetic architecture at the locus of interest.

Recall that under the null scenario of H03 where there is GWAS

association but no eQTL, the original SS test has inflated type I

error rate because the assumption of Z � Nð0;SÞ is violated.

However, T � Nð0;SÞ in this case, so
Pm
j¼1

T2
j is distributed asP

j

fjc
2
1; where fj’s are the eigenvalues of S.35 Thus, the SS2 stage 1

test can control the type I error rate of SS2 under H03: if stage 1
n Journal of Human Genetics 109, 253–269, February 3, 2022 255



Table 1. Empirical type I error rates of SS2, SMR, and SMR-multi and false positive rates of COLOC2 and COLOC for a single hypothesis test

Locus Null scenarios
Type I error
of SS2

Type I error
of SMR

Type I error
of SMR-multi

False positive
rate of COLOC

False positive
rate of COLOC2

MUC20/MUC4 H01 0.0021 <10�4 <10�4 <10�4 0.0011

H02 0.0450 0.0377 0.0332 1.00 3 10�4 0.0245

H03 0.0229 <10�4 <10�4 4.00 3 10�4 0.0858

H04 0.0262 0.0389 0.0367 <10�4 1.00 3 10�4

SLC6A14 H01 0.0025 <10�4 <10�4 <10�4 0.0022

H02 0.0507 0.0372 0.0342 5 3 10�4 0.0468

H03 0.0099 <10�4 <10�4 9 3 10�4 0.088

H04 0.0133 0.0368 0.0336 <10�4 0.0012

The LD pattern at the simulated region follows that at the MUC20/MUC4 and SLC6A14 loci, respectively. Each row corresponds to a specific null scenario when
there is no co-localization. H01 represents the scenario when there are no SNP-phenotype associations and no eQTL; H02 represents the scenario when there are no
SNP-phenotype associations but eQTLs are present; H03 represents the scenario where SNP-phenotype associations are present but no eQTL; H04 represents the
scenario where both SNP-phenotype association and eQTLs are present, but occurring at two independent SNPs. For SS2, SMR,11 and SMR-multi,12 the nominal
type I error was set at a ¼ 0:05. SMR andMulti-SNP-based SMR test (SMR-multi) are conducted under the default setting such that a SNP is picked only if the eQTL
p value is less than 5 3 10�8. For COLOC214 and COLOC,4 the false positive rates are calculated by applying the 0.8 threshold (as recommended by Dobbyn
et al.14) for the colocalization posterior probability. In total, 104 replications are simulated for each null scenario.
of the SS2 test is not significant, we conclude that there is no evi-

dence of an eQTL and thus there is no evidence of colocalization;

if stage 1 of the SS2 test is significant, we then implement the SS

test statistic of Equation 1 in stage 2.

In terms of the overall type I error control of the proposed two-

stage SS2 test under the composite null,H01WH02WH03WH04, intu-

itively, under the null scenarios of H01 or H03 when there are no

eQTLs, stage 1 already controls the false positives. Under the

null scenarios of H02 or H04, even if the power of detecting the

eQTL evidence is 100% in stage 1, stage 2 then provides the con-

trol of false positives. In the supplemental material and methods,

we show the independence between the stage 1 and stage 2 tests

when there is no overlapping or related samples between the

GWAS and eQTL study and demonstrate analytically the type I

error rate control of SS2.

To ensure type I error rate control under the composite null hy-

pothesis across all four different null scenarios, SS2 is conservative

for certain null scenarios. For example, underH01where there is no

SNP-phenotype association or eQTL evidence, both stage 1 and

stage 2 tests control the false positive rate at the nominal a level;

by the independence of the two tests, the overall type I error

rate is a2 (Table 1). This conservativeness is necessary so that the

type I error rate under other null scenarios (e.g., H03) is not in-

flated. Furthermore, this conservativeness is necessary for con-

ducting multiple colocalization hypothesis tests where the family

of tests could consist of different null scenarios, which we discuss

in the section onColocalization testing in the presence ofmultiple

hypothesis testing.

Meta-analyses with related individuals within sub-

studies
Many GWASs, such as our CF lung function GWAS, use a fixed or

random effects meta-analysis to combine association evidence

across multiple studies,26,38 and these multiple studies may

contain related individuals within the sub-studies. To implement

a colocalization analysis using meta GWAS Z-scores, COLOC4 as-

sumes unrelated individuals, while COLOC214 incorporates fea-

tures from GWAS-PW6 that consider sample overlap between

studies but not sample relatedness within a study. SMR11 is derived
256 The American Journal of Human Genetics 109, 253–269, Februar
based on the assumption that samples are independent between

two studies, and its operating characteristics are unknown when

there are related samples in a component study. Other methods

such as eCAVIAR,5 ENLOC,9 SMR-multi,12 and JLIM15 compute

their statistics under the assumption that GWAS Z-scores follow

a multivariate normal distribution with covariance matrix S,

where S is estimated assuming an independent sample using

either one’s own data or external data such as that from the

1000 Genomes Project.39 However, accounting for the sample

relatedness in the LD matrix, S, is important for valid colocaliza-

tion analysis which we address below.

Assume the GWAS meta-analysis consists of C studies with sam-

ple sizes nc; c ¼ 1; :::; C. Let ðZ1;j ; .;ZC;j Þ0and
ðbb1;j; .; bbC;jÞ0 denote, respectively, the vector of Z scores and the

vector of estimated effect sizes for SNP j from the C studies. Let

Zmeta;j denote the Z score from the meta-analysis for SNP j, then

Zmeta;j ¼
PC

c¼1wc;j
bbc;jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPC

c¼1wc;j

q ; (Equation 3)

where wc;j represents the weight for study c, which can take

different forms.38 For the traditional fixed-effect approach, wc;j is

the inverse variance of bbc;j or estimated by ncbpc;jð1 � bpc;jÞ, wherebpc;j represents the estimated minor allele frequency for SNP j in

study c. For the random-effect approach, the estimated between-

study variance is incorporated into wc;j to account for heterogene-

ity between studies.38 Note that Equation 3 is often applied for the

scenario with no related or overlapping samples between sub-

studies. The meta-analysis with presence of related or overlapping

samples between sub-studies can be conducted by alternative ap-

proaches such as the method proposed in Zhu et al.,40 which is

not the scenario in the CF lungGWAS and thus is not applied here.

Based on Equation 3, we can show that

cov
�
Zmeta;j;Zmeta;l

�¼PC
c¼1

ffiffiffiffiffiffiffi
wc;j

p ffiffiffiffiffiffiffi
wc;l

p
cov
�
Zc;j;Zc;l

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPC

c¼1wc;j

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPC
c¼1wc;l

q (Equation 4)

for SNPs j and l. When individuals in study c are independent of

each other and a simple linear model is used for GWAS,
y 3, 2022



covðZc;j;Zc;lÞ ¼ rc;jl; where rc;jl is the standard Pearson correlation

coefficient that represents the LD between SNPs j and l in study

c.5 In this case, the covariance of meta-Z scores between the two

SNPs is a weighted sum of study-specific LD measures.

In the presence of related individuals within sub-studies, assume

that the GWAS is conducted using a linear mixed effect model, Z

scores and their asymptotic covariance matrix can be written in

a closed form that is equivalent to using generalized least-squares

(supplemental material and methods). For a GWAS that only con-

tains the genotypes as predictors, covðZc;j;Zc;lÞ ¼ r�c;jl, where r�c;jl can
be viewed as the pairwise Pearson correlation coefficient derived

from the Cholesky-transformed genotype matrix. The supple-

mental material and methods provides a general form for

covðZc;j;Zc;lÞ in the presence of additional covariates (e.g., age

and sex) and alternative ways to approximate covðZc;j;Zc;lÞ using
(for example) the R package nlme or GMMAT.41

The eQTL summary statistics are typically obtained from a single

study. If the eQTL summary statistics are also obtained from a

meta-analysis, the covariance adjustment is also needed when

conducting the stage 1 eQTL testing, following the principle in

Equation 4. This adjustment, however, does not influence the

covariance adjustment in the stage 2 colocalization testing, where

the inference is conditional on the observed eQTL evidence.
Overlapping or related samples between GWASs and

eQTL studies
The presence of overlapping or related samples can induce correla-

tion between summary statistics even when there are no shared

genetic effects, which may bias the model in favor of the alterna-

tive hypothesis.6,42 Let Z1 and T1 denote the summary statistics

for a variant from a GWAS of sample size nGWAS and an eQTL study

for a given gene-by-tissue pair of sample size neQTL, respectively. In

particular when there is no relatedness between those non-over-

lapping samples,

covðZ1;T1Þ¼ n0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nGWASneQTL

p � r; (Equation 5)

where n0 represents the number of overlapping samples; r repre-

sents the correlation between phenotypes for the overlapping

samples due to (for example) shared environmental factors, and

r equals 0 if there is no sample overlap.6 In the presence of related

individuals between the GWAS and eQTL study, the correlation

between summary statistics could be more complicated than

Equation 5,40 but could be calculated by using methods proposed

in Zhu et al.40 or Province and Borecki.43 Several published ap-

proaches have addressed the influence of overlapping or related

samples in the context of two GWASs, and they have imple-

mented decorrelation approaches that we repurpose for our SS2

colocalization test in Colocalization analysis at the MUC4/

MUC20 CF lung disease modifier locus.16,40,43,44
Colocalization testing in the presence of multiple

hypothesis testing
So far we have investigated the properties of SS2when testing coloc-

alization for a single gene in a specified tissue. In the present study,

we are interested in determining whether the SNP-phenotype asso-

ciation evidence is colocalizing with gene expression of MUC4 or

MUC20 in HNE, an established CF airway model.3 In fact, there

are 50 genes annotated to a 1 Mb region surrounding the top

GWAS signal. Moreover, even though the MUC4/MUC20 locus

was identified as associated with CF lung disease, it would be of in-
The America
terest to investigate colocalization evidence in other tissues that

may be affected in CF and for which the GTEx consortium provides

eQTL summary statistics (GTEx V8).

To evaluate type I error rate control of the proposed SS2 colocal-

ization test in the presence of multiple hypothesis testing, we

consider the family-wise error rate (FWER). To maintain FWER

control of SS2 under the composite null hypothesis for testing

multiple genes and tissues, we implement stage 1 of the SS2 test

of Equation 2 for all the genes in each tissue and adjust the a for

the total number of tests by Bonferroni correction, a
K. We then

implement stage 2 of the SS2 test of Equation 1 only for those

K2 significant stage 1 eQTL tests and adjust for the corresponding

multiple hypothesis testing by a
K2
.

The two-stage Bonferroni correction, aK followed by a
K2
, intuitively

should control FWER at or below the nominal level. Indeed, we

can show (supplemental material and methods) that when there

is no GWAS association, the upper bound of the FWER is a

when the K tests are a mixture of H01 and H02, or all under one

of the null scenarios (H01 or H02Þ. However, complications arise

when there is GWAS association at the locus but the K tests are a

mixture of H03 and H04; some genes/tissues do not have eQTLs

(H03) while the remaining ones have eQTLs (H04) but do not over-

lap with the GWAS signal. To see this, first, when all K tests are un-

der H03, even though the colocalization test in stage 2 may have

inflated type I error, say as large as 1, the FWER is controlled at a

via stage 1, as each eQTL test in stage 1 is controlled at a
K. Second,

when all K tests are under H04, even though all K tests pass stage 1

due to strong eQTLs, the corresponding colocalization tests in

stage 2 have properly controlled type I error. However, when there

is a mixture of H03 and H04, the eQTL test in stage 1 is no longer

controlled at a
K due to the presence of H04. This, combined with in-

flated false positives in stage 2 forH03, can lead to increased FWER,

which has not been investigated before by us or by others.

In the supplemental material and methods, we provide a specific

example and show that a crude upper bound for FWER is 2a� a2.

However, this boundassumes theempirical type I error rateof theco-

localization test forH03 instage2 is1,which isunrealistic.Ourempir-

ical studiesbelowshowthatwedidnotobservea single iterationwith

empirical FWER greater than the specified significance level under

H03 andH04 (Tables 2 andS8), and theproposed two-stageSS2 testing

procedure tends to be conservative under H01 and H02.
Simulations
To evaluate the performance of the proposed SS2 colocalization test,

we conduct extensive simulation studies using the LD pattern

observed at the MUC4/MUC20 locus and for completeness also LD

at SLC6A14, a locus previously investigated.8 For method compari-

son, we choose four alternative colocalization procedures, SMR,

SMR-multi, COLOC, and COLOC2. For SS2, SMR,11 and SMR-

multi,12 the nominal significance level is set at a ¼ 0:05. For CO-

LOC214 and COLOC,4 colocalization is concluded for each gene

and/or tissue if the colocalization posterior probability> 0.8 (as rec-

ommended by Dobbyn et al.14), although there is no theoretical

reason to expect that this threshold will correspond to a 0.05 false

positive rate. We outline the simulation study design here and pro-

vide additional simulation details in the supplemental material

and methods.

Simulation for a single gene-by-tissue pair

We first consider a simulation study assessing colocalization at a

locus between SNP-phenotype association (GWAS) p values and

SNP-expression (eQTL) p values for a single gene in a given tissue
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Table 2. Empirical family-wise error rates (FWERs) of SS2, SMR, and SMR-multi and false positive rates of COLOC and COLOC2 for multiple
genes

Locus

Proportion of
genes with eQTL
association but
do not colocalize

FWER
of SS2

FWER
of SMR

FWER of
SMR-multi

False positive
rate of COLOC

False positive
rate of COLOC2

MUC20/MUC4 0% 0.0377 0.0010 0.0010 0.1307 0.0088

20% 0.0294 0.0003 0.0002 0.1089 0.0023

40% 0.0297 0.0002 0.0001 0.0854 0.0027

60% 0.0300 9.00 3 10�5 5.00 3 10�5 0.0606 0.0034

80% 0.0317 8.00 3 10�5 4.00 3 10�5 0.0351 0.0040

100% 0.0346 6.00 3 10�5 5.00 3 10�5 0.0043 0.0044

SLC6A14 0% 0.0054 0.0008 0.0008 0.1626 0.0003

20% 0.0016 0.0008 0.0004 0.1360 0.0049

40% 0.0011 0.0004 0.0002 0.1103 0.0056

60% 0.0010 0.0003 0.0002 0.0831 0.0070

80% 0.0008 0.0002 0.0001 0.0542 0.0080

100% 0.0007 0.0001 9.00 3 10�5 0.0234 0.0089

The height of the GWAS peak is set at 5.06 on the �log10p scale such that 10% power is achieved to detect the GWAS association at significance level of 10�8. In
total, 600 genes are simulated based on the LD pattern at the MUC20/MUC4 locus or the SLC6A14 locus, respectively. Each row corresponds to a different pro-
portion of genes that have eQTL association (0%, 20%, 40%, 60%, 80%, and 100%). The eQTL peaks are randomly generated from 6 different intervals (50%–
60%, 60%–70%, 70%–80%, 80%–90%, 90%–95%, 95%–100% power is achieved to detect the eQTL association at the significance level of 10�8) with prob-
abilities according to the proportion of the -log10(maximum eQTL p value) within each interval observed at the corresponding locus. None of the eQTL peak
colocalizes with the GWAS peak for FWER evaluation. SMR and Multi-SNP-based SMR test (SMR-multi) are conducted under the default setting such that a
SNP is picked only if the eQTL p value is less than 5 3 10�8. COLOC2 is conducted by using the algorithm implemented in GWAS-PW, where the posterior prob-
ability is calculated based on the likelihood of all gene-by-tissue pairs. In total, 105 replications are simulated to evaluate FWER of 0.05 and the false positive rates by
applying the 0.8 threshold (as recommended by Dobbyn et al.14) for the colocalization posterior probability. The empirical FWER (or false positive rates for COLOC
and COLOC2) is calculated by counting the proportion of 105 replications where at least one gene has a false colocalization claim.
type. Following the simulation procedure in Hormozdiari et al.5

and Gong et al.,8 we focus on SNPs 0.1 Mb on either side of the

top-associated SNP from the CF lung GWAS26 at the MUC4/

MUC20 locus and at the SLC6A14 locus, respectively, to generate

data for the two loci with different LD distributions. For type I er-

ror evaluation, we generate GWAS and eQTL summary statistics

from a multivariate normal distribution based on the LD pattern

of SNPs at each of the two loci and simulate null scenarios from

H01to H04under the composite null hypothesis. Simulation details

are provided in the supplemental material and methods and their

corresponding parameter values are provided in Table S6.

We then assess the power of different methods by considering

six alternative colocalization scenarios (Figures 1, 2, and S1),

which go beyond the simple alternative when only one causal

variant is shared by the GWAS and eQTL studies. Simulation de-

tails are provided in the supplemental material and methods,

and their corresponding parameter values are provided in Table S7.

Simulation for multiple gene-by-tissue pairs

We next evaluate the performance of the methods when studying

colocalization evidence across many gene-by-tissue pairs. To be

consistent with the presence of a GWAS signal and 564 gene-by-

tissue pairs in the CF application, we simulate a locus, based on

the LD pattern at the MUC20/MUC4 locus, with one GWAS signal

and 600 sets of independent eQTL summary statistics. We also

considered 100, 200, 300, 400, or 500 colocalization tests simulta-

neously, varying the composition of the different alternative and

null scenarios. Finally, we repeat the analysis for SLC6A14, a locus

we studied previously8 with a LD pattern different from MUC20/

MUC4. COLOC2 is conducted by using the algorithm imple-
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mented in GWAS-PW, where the posterior probability is calculated

based on the likelihood of all gene-by-tissue pairs.

To evaluate the empirical FWER control, the simulated locus of in-

terest hasGWAS association evidence as in theCF application,while

the eQTL summary statistics are simulated either under the null sce-

nario of no eQTL (H03Þ or with an eQTL but does not colocalizewith

theGWAS signal (H04Þ.Whennone (0%)of the 600geneshaveeQTL

evidence, all 600 tests are under H03. We also consider five different

proportions of genes (20%, 40%, 60%, 80%, and 100%) with eQTL

summary statistics but under H04. When these proportions are var-

ied, the 600 tests are a mixture of H03 andH04, which is challenging

in terms of type I error control as discussed earlier.

To evaluate power across different amounts of eQTL evidence

while the locus has the same SNP-phenotype association evidence

as in practice; we vary the colocalized eQTL evidence among the

genes analyzed. In 5% of the 600 genes, we simulate the eQTL

summary statistics that colocalize with the SNP-phenotype associ-

ation evidence (i.e., simulated under the alternative). For the re-

maining 95% of genes, we simulate a proportion of the eQTL sum-

mary statistics to have no eQTL signal (under H03Þ while the

remaining to have eQTL signals distinct from the SNP-phenotype

association signal (underH04Þ. We calculate power (or true positive

rates for COLOC and COLOC2) by determining the proportion of

105 simulated replications where at least one gene from the alter-

native is correctly identified.

Simulation for overlapping samples

In the presence of overlapping samples, the summary statistics for a

variant from the GWAS and eQTL studies are correlated, which can

lead to increased false positives in theory.6 To evaluate the practical
y 3, 2022



Scenario 1: one shared SNP for GWAS and eQTL study
(Figure 2A and Figure S1A)

Scenario 2: two independent GWAS SNPs, and one eQTL
SNP is shared with the first GWAS SNP (Figure 2B and
Figure S1B)

Scenario 3: two independent GWAS SNPs, and one eQTL
SNP is shared with the second GWAS SNP (Figure 2C and
Figure S1C)

Scenario 4: two independent eQTL SNPs, one GWAS SNP
colocalizes with the eQTL SNP, given the non-overlapped
eQTL association is low (Figure 2D and Figure S1D)

Scenario 5: two independent eQTL SNPs, one GWAS SNP
colocalizes with the eQTL SNP, given the non-overlapped
eQTL association is strong (Figure 2E and Figure S1E)

Scenario 6: two independent GWAS SNPs, two independent
eQTL SNPs and both SNPs are shared (Figure 2F and
Figure S1F)
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Figure 1. Overview and illustration of
the six alternative scenarios we simulated
to assess the power/true positive rate of
different methods
The general visualization of GWAS
and eQTL colocalization patterns (on
the �log10 p scale) in a region of interest
are illustrated by lines in orange and pur-
ple, respectively.
impactof sampleoverlaponSS2,weconsider thescenariowherehalf

or all of theparticipantswhose genotypes used to compute the eQTL

summary statistics are also included in the GWAS. Mimicking the

scenario in the CF application, we simulate 100 participants in the

eQTL study and to be conservative we include an additional 1,900

participants in the GWAS (i.e., the GWAS sample size is 2,000 of

which 100 overlap with the eQTL study). We evaluate the empirical

type I error rate of SS2 under the composite null hypothesis fromH01

toH04, with four different phenotypic correlations, 0.3, 0.5, 0.7, and

0.9. For comparison, we also demonstrate the type I error rate when

there are no samples overlapping using the same simulation proced-

ure. In addition, considering a fixed level of phenotypic correlation

(0.5 or 0.9), we also demonstrate the empirical type I error rate con-

trol of SS2 as we vary sample size for the eQTL study, from 100, 200,

300, 400, to 500. Lastly, we simulate the scenario where all GWAS

samples are overlapping with eQTL samples (both with 2,000 indi-

viduals) and demonstrate the type I error rate of SS2 under the com-

posite null hypothesis.

EQTL analysis
Informed consent

The Canadian Gene Modifier Study (CGMS) was approved by the

Research Ethics Board of the Hospital for Sick Children (#

0020020214 from 2012 to 2019 and #1000065760 from 2019 to

the present) and all participating sub-sites. Written informed con-

sent was obtained from all participants or parents/guardians/sub-

stitute decision makers prior to inclusion in the study. The CGMS
The American Journal of Human Gen
is approved by the Research Ethics Board

of the Hospital for Sick Children for the us-

age of public and external data.

Sample source and collection

WeconductedRNAsequencingofHNEcells

(n ¼ 94) collected as part of the CGMS and

theCFCanada SickKidsProgram in Individ-

ual CF Therapy (CFIT).45 The HNE samples

are collected using a 3-mm diameter sterile

cytology brush (MP Corporation) or

Rhino-probe curette on either inferior turbi-

nate. Sequencing was performed in two

roundswith IlluminaHiSeq2000andHiSeq

2500 platforms (Illumina Inc.), respectively.

The HiSeq 2000 round was sequenced with

25 million paired-end reads (49 base pairs

in length) per sample, and the samples pro-

cessed using the HiSeq 2500 platform had

average library size of 35 mill paired-end

reads (124 base pairs in length).

RNA-seq data processing and analysis

Quality of sequencing reads was assessed

using FastQC (v.0.11.5; web resources)

before and after trimming by Trim Galore
(v.0.4.4; web resources). Processed reads were aligned to human

reference genome hg38 with GENCODE comprehensive gene

annotation (release 29) using STAR (v.2.5.4b).46 The reference

genome included alternative haplotype contigs to account for

the sequence diversity in the mucin gene locus. Expression quan-

tification was performed by RNA-SeQC (v.2.0.0), which generated

both read counts and normalized transcripts per million (TPM)

measures.47 Normalized trimmed mean of M values (TMM) mea-

sures were obtained for a sub-sample of genes with R0.1 TPM

and R6 read counts in more than 20% of the sample.48

Expression quantitative trait loci were analyzed by conducting

differential gene expression analysis of the effect of SNP genotypes

on TMM-normalized expression level. eQTL analysis was carried

out using FastQTL (v.2.0)49 with RNA-sequencing (RNA integrity

number R 7) of HNE from 94 Canadians with CF enrolled in the

ICFGMC; these 94 individuals were also included in the CF lung

GWAS. Additional covariates adjusted for in the model include

the top 3 principal components, 15 probabilistic estimates of

expression residuals (PEER) factors, study sites, sex, genotyping

platform, RNA integrity number (RIN), and PTPRC/CD45 gene

expression (immune cell content adjustment). R packages GENE-

SIS (v.2.14.3) and peer (v.1.0) were used to generate genotype prin-

cipal components and PEER factors, respectively.50–52

Analysis of colocalization at the MUC4/MUC20 locus
TheCGMSparticipantswere included inagenome-wide association

study of CF lung disease by the International Cystic Fibrosis Gene
etics 109, 253–269, February 3, 2022 259
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Figure 2. Empirical powerof SS2, SMR, and
SMR-multi and true positive rates of COLOC
andCOLOC2 for testing a single gene for co-
localization under six alternative scenarios:
(A) one shared SNP for GWAS and eQTL
study, (B) two independent GWAS SNPs,
and one eQTL SNP is shared with the first
GWAS SNP, (C) two independent GWAS
SNPs, and one eQTL SNP is shared with the
second GWAS SNP, (D) two independent
eQTL SNPs, one GWAS SNP colocalizes with
the eQTL SNP, given the non-overlapped
eQTLassociation is low, (E) two independent
eQTL SNPs, one GWAS SNP colocalizes with
the eQTL SNP, given the non-overlapped
eQTL association is strong, and (F) two inde-
pendent GWAS SNPs, two independent
eQTL SNPs and both SNPs are shared.
The LD pattern at the simulated region
follows that at the MUC20/MUC4 locus at
chromosome 3. For SS2, SMR,11 and SMR-
multi,12 the nominal type 1 error rate is set
at a ¼ 0:05. For COLOC214 and COLOC,4

the false positive rates are controlled by
applying the default 0.8 threshold (as rec-
ommended in Dobbyn et al.14) for the coloc-
alization posterior probability. In total, 104

replications are simulated to obtain the
empirical power and true positive rates.
The x-axis demonstrates the parameter
values for lTc1

or lTc2
which is set to be 3.4,

4.09, 4.45, 5.21, 5.73, or 7.01 such that
0.01, 0.05, 0.1, 0.3, 0.5, or 0.9 power is
achieved to detect the eQTL association at
the significance level of 10�8. The inserted
figure in the right bottom of each plot pro-
vides the general visualization of GWAS
(orange line) and eQTL (purple line) colocal-
ization patterns in a region of interest.
Modifier Consortium, comprised of 6,365 individuals (including

1,443 sib-pairs) with CF.26 The lung disease severity was measured

as a percentile from a CF reference population of forced expiratory

volume in1 s that is survival adjusted.53 IndividualsonCFTR-modu-

lator treatmentwerenot included.TheGWASsummary statistics are

publicly available (see data and code availability) and we use them

here in the implementation of the SS2. The summary statistics

were constructed from a meta-analysis of 13 studies, including sib-

lings and individuals who ranged in age from 6 to 63.3 years. A

detailed description of the studies and participants included can

be found inCorvol et al.26Amongother loci,24genome-wide signif-

icantSNPswere identifiedandannotatedbetweentwomucingenes:

MUC4 andMUC20 on chromosome 3.

To determine whether gene expression variation at the chr3q29

locus could influence lung disease severity and which genes the

associated SNPs impact, we first focused on colocalization analysis

for MUC4 and MUC20 given their biologic plausibility. For

completeness, we subsequently expanded our analysis to investi-

gate eQTLs of 50 genes in a 1 Mb region on either side of the

peak and in 14 CF-relevant tissues from GTEx V8. We focus on

SNPs in a 0.1 Mb region on either side of the lead GWAS SNP for

colocalization analysis of all 564 gene-by-tissue pairs for which

there is gene expression data.

To conduct the SS2 stage 1 eQTL test using Equation 2, we

computed theLDmatrix for theeQTLanalysis inHNEbycalculating

the Pearson correlation coefficient using the 94 CF independent

samples, while for the eQTL studies in other CF-related tissues we
260 The American Journal of Human Genetics 109, 253–269, Februar
use the GTEx resource. To apply the SS2 stage 2 colocalization test

to the GWASmeta-summary statistics while accounting for sample

relatedness,weestimated theLDmatrixusingEquation4,where the

covariance of summary statistics for the sub-studies were calculated

from Cholesky-transformed genotype data. The sample size of the

CF lung GWAS is 6,365 while the sample size of the eQTL study is

94. Among the 94 CF samples with eQTL data, there are 85 partici-

pants included in both the GWASs and eQTL studies, but otherwise

the participants across the two studies were unrelated. To account

for the overlapping samples in the analysis, we note that
n0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nGWAS neQTL
p ¼ 0.11 and so even under the extreme case that r ¼ 1,

covðZ1;T1Þ < 0.11, which would have a negligible impact on our

inference. We demonstrate this empirically through a comprehen-

sive simulation study (Tables S1–S5) and apply the decorrelation

approach16 in our CF SS2 implementation assuming that the lung

function distribution in the 85 overlapping samples is representa-

tive of the full CF sample included in the GWAS.
Results

Simulation results

Simulation results for a single gene-by-tissue pair

Table 1 demonstrates the empirical type I error rates of SS2,

SMR,11 and SMR-multi12 and the false positive rates of CO-

LOC4 and COLOC214 for each of the four null scenarios of
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the composite null hypothesis, based on the LD pattern

observed at theMUC20/MUC4 locus or the SLC6A14 locus.

The SS2, SMR, and SMR-multi all control the type I error

rate at or below the nominal a ¼ 0.05 significance level un-

der all four null scenarios. When there are no eQTLs, under

H01 orH03, SMR and SMR-multi are extremely conservative

(the empirical a < 10�4). This is due to the recommended

pre-screening step whereby colocalization analysis can

only be conducted when there is an eQTL p value less

than 5 3 10�8 at the locus under investigation. Other

eQTL p value thresholds such as 0.01 or 0.05 could be

adopted when conducting the SMR or SMR-multi; howev-

er, there is type I error inflation under H03 when one choo-

ses to do so (Table S18).

Among all the methods, COLOC shows themost conser-

vative results under the different null scenarios. The false

positive rate for COLOC2 is controlled except for the H03

scenario. When there is SNP-phenotype association but

no eQTLs, the empirical false positive rate is 0.09 for the

nominal level of 0.05. The empirical false positive rate of

COLOC2 decreases as one increases the sample size of

the eQTL study (Table S17). For example, with 2,000 partic-

ipants in the GWAS, the empirical false positive rate of CO-

LOC2 is below 0.05 when the sample size for the eQTL

study is larger than 1,000. However, in practice, the sample

size of an eQTL study (e.g., GTEx)27 is usually much

smaller than 1,000, and in our CF study we only have 94

participants included in the eQTL analysis in HNE. We

observed qualitatively similar results with the different

LD patterns between the MUC20 and SLC6A14 loci.

The effect of either half or all of the participants in the

eQTL study (100 individuals) overlapping with the GWAS

study (2,000 individuals) on the type I error rate of the

SS2 is demonstrated in Tables S2–S5. The type I error rate

of the SS2 remains controlled with increasing phenotypic

correlation and increasing eQTL sample sizes, which dem-

onstrates that the overlapping samples have minimal

impact on the inference in practice.

We evaluate the power of SS2, SMR, and SMR-multi at

the a ¼ 0.05 significance level and the true positive rate

of COLOC2 and COLOC using a posterior probability of

colocalization cut-off of 0.8 (Figure 2). Figure 2A illustrates

the power under the simplest alternative scenario 1, where

one single SNP-phenotype association signal colocalizes

with one single eQTL signal. In that case, COLOC2 has

the highest true positive rate across different levels of

eQTL evidence, but its false positive rate is inflated under

H03 as demonstrated in Table 1. Among the methods that

control the false positive rates across all null scenarios,

namely SS2, SMR, SMR-multi, and COLOC, the proposed

SS2 method is the most powerful.

When there are two GWAS peaks under the alternative

scenarios 2 and 3 (Figures 2B and 2C, respectively) and

the eQTL evidence is weak (lTc1
< 5.21 in Figure 2B and

lTc2
< 5.21 in Figure 2C; i.e., less than 30% power to detect

the eQTL evidence at a ¼ 0.05), SS2 has less power than

COLOC2; this represents a trade-off to achieve type I error
The America
control underH03. However, SS2 is more powerful than the

other three methods that do not have inflated false posi-

tive rates. SMR and SMR-multi are very conservative in

this case because there are few SNPs with eQTL p values

less than 5 3 10�8. As the eQTL evidence gets stronger

(lTc1
> 5.21 in Figure 2B and lTc2

> 5.21 in Figure 2C;

eQTL power greater than 30%), the power of SS2 could

reach a similar level or even exceed the true positive rate

of COLOC2. The power of SMR and SMR-multi are similar

when there is only one eQTL SNP in the region (Figures

2A–2C) and increase rapidly as the size of the eQTL signal

increases. Under the alternative scenario 3, when the eQTL

evidence is strong (lTc2
> 6.25; eQTL power greater than

70% power) and colocalizes with the second SNP-pheno-

type association peak (Figure 2C), SMR and SMR-multi

are more powerful than SS2.

Figures 2D and 2E demonstrate the alternative scenarios

4 and 5, respectively, when there are two independent

eQTL SNPs but only one eQTL SNP colocalizes with the

SNP-phenotype association. In this case, the SS2 is more

powerful than all of the other methods across all levels of

eQTL evidence considered. The power advantage of SS2

over other methods is especially notable when, between

the two eQTL SNPs, the one with weaker signal colocalizes

with the SNP-phenotype associated variant. Finally, under

the alternative scenario 6 when two independent GWAS

SNPs colocalize with two independent eQTL SNPs,

methods SS2, SMR, and SMR-multi show equally high po-

wer, while COLOC and COLOC2 have reduced power due

to the allelic heterogeneity. Qualitatively similar results

based on the LD pattern at the SLC6A14 locus are evident

in Figure S1.

Simulation result for multiple gene-tissue pairs

Table 2 demonstrates the impact of multiple hypothesis

testing on the family-wise error rate, where a locus with

600 genes and LD modeled after the MUC20/MUC4 and

SLC6A14 loci were evaluated. Similar to the single hypoth-

esis testing result in Table 1, SS2, SMR, and SMR-multi con-

trol the FWER with the SMR-based tests being the most

conservative. However, COLOC now has inflated false pos-

itive rates (>0.08) for multiple scenarios, for example

when 60% of genes at the locus have no eQTLs (H03) while

the remaining 40% of genes have eQTLs but these are

distinct from the SNP-phenotype association signal (H04).

As the proportion of H04 genes decrease from 40% to 0%

(or the proportion of H03 genes increase from 60% to

100%), the empirical false positive rate of COLOC in-

creases from 0.08 to 0.13. Although COLOC2 shows an in-

flated false positive rate underH03 for our single hypothesis

test investigation (Table 1), the false positive rate of CO-

LOC2 is controlled after applying the algorithm imple-

mented in GWAS-PW where the posterior probability is

calculated based on the likelihood of all gene-by-tissue

pairs (Table 2).

We also investigated type I error rate control of the five

methods when the number of genes tested at the locus

was varied from 100 to 500 (Tables S8–S12). Overall, SS2,
n Journal of Human Genetics 109, 253–269, February 3, 2022 261



Table 3. Power of SS2, SMR, and SMR-multi and true positive rate of COLOC2 for multiple genes

Locus

EQTL height
for the 5% genes
have colocalization Power of SS2 Power of SMR

Power of
SMR-multi

True positive
rate of COLOC2

MUC20/MUC4 5.48–5.73 0.8181 0.6826 0.6059 0.6218

5.73–5.98 0.8178 0.6935 0.6119 0.6355

5.98–6.25 0.8171 0.7033 0.6169 0.6447

6.25–6.57 0.8161 0.7144 0.6216 0.6507

6.57–7.01 0.8143 0.7270 0.6254 0.6536

SLC6A14 5.48–5.73 0.6855 0.6323 0.5531 0.6605

5.73–5.98 0.6992 0.6462 0.5614 0.6684

5.98–6.25 0.7076 0.6588 0.5679 0.6741

6.25–6.57 0.7138 0.6706 0.5745 0.6786

6.57–7.01 0.7184 0.6831 0.5817 0.6821

The LD pattern at the simulated region follows that at the MUC20/MUC4 and SLC6A14 loci, respectively. The height of the GWAS peak is set at 5.06 on the
�log10p scale such that 10% power is achieved to detect the GWAS association at significance level of 10�8. Each row corresponds to a different range of the
eQTL height for the 5% genes that have colocalization ([5.48, 5.73], [5.73, 5.98], [5.98, 6.25], [6.25, 6.57], and [6.57, 7.01]). The eQTL peaks are set with 5
different intervals such that 40%–50%, 50%–60%, 60%–70%, 70%–80%, 80%–90% power is achieved to detect the eQTL association at the significance level
of 10�8. For the remaining 95% of genes, there is eQTL evidence with a mixture of null cases under H03 and H04 and details are demonstrated in the supplemental
material and methods. SMR andMulti-SNP-based SMR test (SMR-multi) are conducted under the default setting such that a SNP is picked only if the eQTL p value
is less than 53 10�8. In total, 105 replications are simulated to evaluate power at 0.05 significance level and the true positive rates by applying the 0.8 threshold (as
recommended by Dobbyn et al.14) for the colocalization posterior probability. The power (or true positive rate for COLOC and COLOC2) is calculated by counting
the proportions of 105 replications where at least one gene is correctly identified with colocalization.
SMR, and SMR-multi show conservative FWER (<0.05; Ta-

ble S8, S9, and S10, respectively). As the number of genes

increases, the FWER of SS2 decreases when the LD is

modeled after the SLC6A14 locus andmoderately increases

when the LD is modeled after the MUC20 locus. The in-

crease in FWER tapers off as the number of genes tested

at the locus increase. This is because, withmore genes pass-

ing the first stage test, the stage 2 colocalization test re-

quires a more stringent significance level, resulting in the

overall two-stage test being conservative enough to control

the FWER. The false positive rate of COLOC increases as

the number of genes evaluated increases, with inflation

observed when the number of genes tested exceeds 200

(Table S11). This is due to the subjective choice of priors

and cut-off (i.e., 0.8) for the colocalization posterior prob-

ability without explicit adjustment for multiple genes. In

contrast, COLOC2 is conservative and stays conservative

as one increases the total number of genes evaluated at a

locus from 100 to 500 (Table S12).

Given the inflation in false positives for COLOC (Table

S11), we compare power only between COLOC2, SMR,

SMR-multi, and SS2. Keeping the eQTL evidence constant

and with 600 genes, SS2 demonstrates the greatest power

among the four methods; SMR has more power than

SMR-multi (Table 3). The power of the four methods for

testing 100 to 500 genes is provided in Tables S13–S16.

SS2 shows consistently higher power compared to SMR

when the number of genes is greater than 200, and SS2

shows higher power than SMR-multi, COLOC, and CO-

LOC2 across all gene numbers investigated. Interestingly,

however, we observe different power trends with
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increasing numbers of genes analyzed at the locus. The po-

wer of SS2, SMR, and SMR-multi decrease as the number of

genes increases due to the Bonferroni correction, while the

true positive rate of COLOC2 increases as the number of

genes increases.

Colocalization analysis at the MUC4/MUC20 CF lung

disease modifier locus

Figure 3 shows that there are multiple SNPs with similar

GWAS p values as the lead SNP, suggesting the presence

of strong LD in the locus. Given the same LD structure,

the eQTL peak is much wider than the GWAS peak, sug-

gesting allelic heterogeneity for the eQTL summary statis-

tics. There is a clear GWAS signal around the lead GWAS

SNP visually coinciding with one of the eQTL signals, sug-

gesting that MUC4 expression may mediate CF lung dis-

ease. These characteristics suggest this locus is similar to

scenario 4 in Figure 1.

We first assess the colocalization evidence for MUC20

and MUC4 using the CF lung GWAS meta-analysis sum-

mary statistics26 with eQTLs calculated from the HNE

gene expression and genotype data of 94 individuals

with CF (Table 4). For MUC20 in the HNE, the stage 1

test does not provide evidence of an eQTL at the 5% level

(uncorrected p value ¼ 0.083), suggesting that the eQTL

evidence is not strong enough to move on to stage 2 coloc-

alization analysis. For the MUC4 eQTLs, both stage 1 and

stage 2 tests are significant with p value ¼ 3.16 3 10�7

and 1.31 3 10�5, respectively, providing statistical evi-

dence of colocalization consistent with the visualization

(Figure 3). We applied the decorrelation approach
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Figure 3. LocusFocus visualization of the
CF lung disease GWAS summary statistics
and eQTL summary statistics from primary
human nasal epithelia (HNE) at the
MUC20/MUC4 locus
Overlay of p values (on the –log10 scale)
from the lung function GWAS (green/blue
palette of colored dots) and eQTL associa-
tion for MUC20 and MUC4 expression
(colored lines) for HNE.
demonstrated in LeBlanc et al.16 to account for the 85 in-

dividuals included in both the GWASs and eQTL studies.

The resulting stage 1 and stage 2 p values were 2.62 3

10�7 and 1.19 3 10�5, respectively, assuming the worst

case scenario that r is 1. As expected, these p values are

very similar to the p values without sample overlap

correction.

To be comprehensive, we apply the SS2 to all genes an-

notated by GENCODE v.26 for hg38 GTEx V8 to the 1

Mb region encompassing the peak CF lung-associated

variant at the MUC4/MUC20 GWAS locus. The colocaliza-

tion evidence for each gene is calculated for the set of

SNPs within 0.1 Mb of the peak GWAS variant. Using the

cross-tissue eQTLs from GTEx,27 we select the tissues that

are relevant to CF and remove genes with low or no expres-

sion in a given tissue; this results in 564 gene-by-tissue

pairs available for colocalization analysis. We apply the

stage 1 set-based test on all the gene-by-tissue pairs, using

a Bonferroni corrected significance level of 0:05
564 ¼ 8.87 3

10�5. This results in 114 gene-by-tissue pairs providing ev-

idence of significant eQTLs to move to the stage 2 test for

colocalization. Stage 2 requires a significance level of 0:05
114 ¼

0.00044 for each gene-by-tissue pair to conclude colocali-

zation; 39 colocalization tests exceed this threshold. We

present the SS2 cross-tissue and gene colocalization results

in heatmaps (Figures 4A and S2). ForMUC20 andMUC4we

provide the stage 1 p value adjusted by 564 gene-by-tissue

pairs and the stage 2 p value adjusted by 114 significant

gene-by-tissue pairs in Table 4. MUC4 remains significant

after correction for the multiple tests at this locus, with

stage 1 adjusted p value of 1.783 10�4 and stage 2 adjusted

p value of 1.493 10�3, respectively. Interestingly, no other

gene shows significant evidence of colocalization in HNE

with the SS2. MUC4 does show evidence of colocalization

across several tissues, although these tissues are likely not

relevant to lung disease. Several genes in the region also

appear regulated by the GWAS-associated SNPs such as

the pseudogene SDHAP1, but not in lung-relevant tissues

(Figure S2).
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For comparison, we also implement

SMR, SMR-multi, COLOC, and CO-

LOC2. Among the 564 gene-by-tissue

pairs, SMR and SMR-multi are calcu-

lated on 143 gene-by-tissue pairs with

top eQTL p value less than 5 3 10�8,

then applying a Bonferroni corrected
significance level of 0:05
143 ¼ 0.00035. We provide both raw p

values and multiple testing adjusted p values for SMR and

SMR-multi analyses in Table 4. For MUC20, there are no

SNPswith eQTL p value smaller than 53 10�8 and therefore

the SMR and SMR-multi test would not be applied. For

MUC4, SMR provides a raw colocalization p value of

2.65 3 10�3, but the multiple testing adjusted p value ¼
0.379. SMR-multi demonstrates an association between

gene-expression and the lung GWAS statistics withmultiple

testing adjusted colocalization p value of 0.0296. Overall,

the SMR and SMR-multi tests identified, respectively, 16

and 34 significant genes and tissues with colocalization ev-

idence (Figures 4B, 4C, and S2).

The colocalization posterior probability of COLOC2 for

MUC20 and MUC4 are both small with 0.000472 and

0.000712, respectively. In this case, the empirical estimation

of the prior for colocalization is low, which drags down the

colocalization evidence for this locus. At this locus, there are

no gene-by-tissue pairs with COLOC2 posterior probability

higher than 0.8. In contrast, if we apply COLOC2 with the

GWAS-PW algorithm ignoring the multiple hypothesis

testing and focusing only on the likelihood from the single

gene MUC4, the colocalization posterior probability is high

(0.9482). However, the colocalization posterior probability

for MUC20 is low (0.0666; Table 4). A COLOC2 analysis

based on the likelihood from each single gene-by-tissue

pair at this locus provides 39 gene-by-tissue pairs with pos-

terior probabilities higher than 0.8 (Figure S3).

The COLOC2 results at this locus are consistent with our

simulation study, where COLOC2 has inflation of false

positives when the GWAS-PW algorithm is implemented

based on the likelihood from a single gene (Table 1). Yet,

the test becomes over-conservative when priors are empir-

ically estimated from the likelihood of multiple gene-by-

tissue pairs (Table 2).

COLOC does not implement an approach to adjust for

multiple hypothesis testing, but the empirical posterior

probabilities of colocalization are <0.8 (Table 4) for both

MUC20 (0.1057) and MUC4 (0.7573). The results of
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Table 4. Results of SS2, SMR, SMR-multi, COLOC, and COLOC2 applied to theMUC20/MUC4 locus in primary human nasal epithelia (HNE) at
chromosome 3

Gene and tissue

SS2 stage 1 test SS2 stage 2 test SMR SMR-multi COLOC COLOC2

p value
Adjusted
p value p value

Adjusted
p value p value

Adjusted
p value p value

Adjusted
p value CLPP CLPP1a CLPP2

MUC20 and HNE 0.083 1 N/A N/Ab N/A N/A N/A N/A 0.1057 0.0666 0.0005

MUC4 and HNE 3.16 3 10�7 1.78 3 10�4 1.31 3 10�5 1.49 3 10�3 2.65 3 10�3 0.379 2.07 3 10�4 0.0296 0.7573 0.9482c 0.0007

Colocalization analyses are conducted for all genes within a 1Mb region on either side of the peak lung GWAS-associated variant and 14 CF-related tissues. In total,
there are 564 gene-by-tissue pairs. Raw p values and adjusted p values by 564 gene-by-tissue pairs are both demonstrated for the SS2, SMR, and SMR-multi. The
eQTL evidence for conducting the SS2 is the eQTL p value based on the�log10(eQTL p) scale for a specified gene and tissue. SMR and Multi-SNP-based SMR test
(SMR-multi) are conducted under the default setting such that a SNP is picked only if the eQTL p value is less than 5 3 10�8. N/As are listed for MUC20 since no
SNP has eQTL p value less than 5 3 10�8. For COLOC and COLOC2, the colocalization posterior probability (CLPP) is calculated, and a high posterior probability
(>0.8) suggests strong colocalization evidence. For COLOC2, we show both the CLPP calculated based on the likelihood from the single gene and tissue (CLPP1)
and the CLPP calculated based on the likelihood from 564 gene-by-tissue pairs (CLPP2).
aThis method has been shown with inflation in Table 1. CLPP1 > 0.8 suggests colocalization.
bThe stage 1 SS2 test p value (0.083) forMUC20 and HNE does not pass the significant threshold (0.05) and therefore, the stage 2 SS2 test p value is not applicable
(N/A).
cThis method has been shown with inflation in Table 1.
COLOC applied to all 564 gene-by-tissue pairs are shown

in Figures 4D and S2.

Discussion

The majority of associated genetic variants identified

through GWASs fall in non-coding regions of the genome,

and thus the underlying mechanism by which the associ-

ated variants contribute to disease remains unclear but

may point to gene regulation. The associations identified

in the largest GWAS of CF lung disease to date26 are of

no exception, with none of the five genome-wide signifi-

cant loci tagging protein-coding variation. One locus at

chr3q29 is especially noteworthy as it encompasses

MUC4 and MUC20, members of a gene family that encode

membrane-spanning ‘‘tethered’’ mucins.54–56 These mu-

cins prevent mucus penetration into the periciliary space

and are present in the airway mucus, possibly contributing

to mucociliary host defense. Mucus pathology is a defining

characteristic of CF, with mucus hyperproduction and

plugging, most notably in the CF airways.3 It has been pre-

sumed that mucus pathology is a downstream conse-

quence of CFTR dysfunction,8 but GWAS identification at

this locus suggests the possibility that polymorphisms im-

pacting gene regulation of mucins may, themselves,

impact the severity of CF lung disease.

The scenario of the chr3q29 locus in CF highlights the

challenges we commonly face while conducting colocali-

zation analysis, where both high LD and allelic heteroge-

neity are present at a locus with significant SNP-phenotype

association as in scenario 4 in Figure 1. The purpose of co-

localization analysis is to inform the causal mechanism

and guide future functional investigations. Since GWAS

identifies loci and many genes could be annotated to a

GWAS locus and the tissue of action may not always be

obvious, colocalization analysis informs the gene and cell

type for future study.

Application of the SS2 to the CF lung disease associated

locus at ch3q29 with eQTLs from CF HNE support that the
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associated lung disease variants colocalize with eQTLs for

MUC4, prioritizing MUC4 at the locus for further func-

tional investigation. However, it should be noted that

MUC4 and MUC20 are localized to a highly polymorphic

region26 with several tandem repeats including a 48 bp

repeat region ranging from 7 to 19 kb. The GWAS array

data suggests a high frequency of large copy number vari-

ants around the clustered mucin region, but highly vari-

able across individuals. This complex genomic context re-

quires further consideration when differentiating between

the two mucin genes at the locus.

There are several published colocalization methods, but

the chr3q29 locus in a region of high LD with evidence of

allelic heterogeneity poses challenges for existing proced-

ures.4–15 Furthermore, the CF lung disease GWAS summary

statistics are derived from a meta-analysis that includes

sub-studies with related individuals; current methods

cannot accommodate this scenario. We therefore devel-

oped the frequentist two-stage colocalization test, SS2.

The SS2 integrates GWAS summary statistics with eQTL

summary statistics across any number of gene-by-tissue

pairs, is applicable when there are overlapping participants

in the two studies and can be applied to GWAS summary

statistics computed through meta-analysis, even with

related individuals. Through simulation we demonstrate

that the SS2 controls the type I error rate under the com-

posite null hypotheses and is powerful in regions with

high LD and allelic heterogeneity.

Bayesian colocalization approaches aim to identify a

shared causal variant between two studies and to differen-

tiate between distinct causal variants in LD. Similarly, Zhu

et al. implemented the HEIDI test11 after the SMR test to

further differentiate distinct causal variants in LD if the

SMR test suggests significant association between two

sets of summary statistics. Previous studies show that

the statistical power of COLOC and HEIDI for differenti-

ating distinct causal variants decreases as the LD between

causal variants increase.11 For a fair comparison, we calcu-

lated the FWER of SMR and SMR-multi tests without
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Figure 4. Heatmaps of colocalization evidence across genes and tissues at chromosome 3
In each panel, each cell shows the colocalization evidence for the specified tissue and gene calculated from SNPs within 0.1 Mb of the
GWAS peak variant. Genes on the x axis are annotated by GENCODE v.26 for hg38 GTEX V8 and are ordered by their chromosomal
positions. For illustration purposes, only the closest annotated genes centered around the GWAS peak variant are shown, and all genes
analyzed within 1 Mb around the GWAS peak variant is shown in Figure S2. Grey indicates insufficient expression levels attained for the
gene in the tissue under study.
(A) The color intensity corresponds to the SS2 colocalization evidence asmeasured by –log10(SS2 p value), with red representing –log10(p)
¼ 8.5 and white representing eQTL evidence for the corresponding gene and tissue does not pass the stage 1 test.
(B and C) The color intensity corresponds to the SMR and SMR-multi colocalization evidence as measured by –log10(SMR p value) and
–log10(SMR-multi p value), respectively; with red representing –log10(p)¼ 8.5 and white representing eQTL evidence for the correspond-
ing gene and tissue does not pass the eQTL p value threshold (5 3 10�8).
(D) The color intensity corresponds to the COLOC colocalization evidence as measured by colocalization posterior probability (CLPP)
ranging from 0 to 1. The eQTL analyses used for all gene/tissue pairs are those conducted by GTEx27 v.8 release, except for the HNE
eQTLs. eQTL analyses in HNE is conducted using FastQTL49 with RNA-sequencing of HNE from 94 CF-affected Canadians enrolled in
the Canadian CF Gene Modifier study. Esophagus G.J represents Esophagus Gastresophageal Junction; Esophagus M. represents Esoph-
agus Muscularis; Ileum represents Small Intestine Terminal Ileum; Lymphocytes represents cells EBV-transformed lymphocytes.
taking into account the results from the HEIDI test since

the SS2 test does not try to differentiate between distinct

causal variants if they are in LD. In contrast, the SS2 aims

to identify the association between two studies by

leveraging the LD in the region and making inference
The America
based on the pattern similarity between summary statis-

tics. Therefore, the SS2 can provide reliable inference

even when the causal variant is not contained in the anal-

ysis set, as long as the LD pattern with the missing variant

is retained.
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The SS2 is a two-stage framework, designed to accom-

plish type 1 error control over the complex, composite

null hypothesis. Although we implemented the
Pm
j¼1

T2
jk

gene/set-based test as the first stage test of the SS2, in prac-

tice, the method does not require use of one gene-based

test over another. The alternative gene/set-based tests

include versions with weighted sums of summary statis-

tics, known as gene set analysis (GSA) tests or burden tests

for rare variants.57–59 Summary statistics can also be decor-

related before being summed together, which is powerful

under heterogeneity of effect sizes and variation between

pairwise LD patterns.57 The stage 1 test implemented

here has the same functional form as that used in

VEGAS34 and fastBAT.35 This set-based test can be more

powerful than the max-of-chi-square approach (an

approach implemented in GATES36 and Pascal-Max)37

when there are multiple independent association signals,

but can be less powerful when there is a single causal

variant present at the locus.35 In contrast, SMR and SMR-

multi use a p value threshold (i.e., 5 3 10�8) to screen re-

gions for analysis, presumably to ensure they are not using

a weak instrument (this is similar to the approach imple-

mented when the SS colocalization statistic was first

defined).8 This stringent screening step results in power

loss compared to SS2 when the eQTL association is only

moderate which can be a function of several factors

including sample size (Figure 2).

We modeled our simulation studies after the CF applica-

tion and demonstrated that the SS2 has type I error rate

control when 85 samples are included in both the GWAS

and HNE eQTL studies. For other applications where there

is a higher proportion of overlapping samples, the SS2

could have type I error inflation (Table S19) due to the cor-

relation induced by the sample overlap. To address the ef-

fect of overlapping samples on statistical inference, several

methods propose ways to estimate the correlation using

summary statistics.6,16,40,43 We implemented one such

approach16 to decorrelate the summary statistics before

applying the SS2 framework, although it was not necessary

for our CF application as we demonstrated through simu-

lation and application.

When the eQTL summary statistics are replaced by

GWAS evidence from a second phenotype, the SS2 frame-

work enables the study of genetic overlap of the two traits.

Similarly, the SS2 could assess colocalization using any

SNP-level data including DNAmethylation (meQTLs), pro-

tein QTLs (pQTLs), or metabolites (metQTLs). The SS2

framework as delineated here does not integrate summary

statistics from greater than two studies, although there

would be value in colocalizing GWAS summary data with

multiple molecular phenotypes and multiple GWAS traits

simultaneously as proposed in Giambartolomei et al.60

This will be addressed in future work. SS2 is implemented

in a web-based colocalization tool, LocusFocus,25 which

enables integration of GWAS summary statistics with any
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secondary SNP-level dataset by using p values and LD for

the region of interest. The eQTL summary statistics from

GTEx are made available for selection within the web

server to test colocalization with tissues and genes from

GTEx. All code and sample datasets are publicly available

via GitHub under the MIT license.

Data and Code Availability

Summary statistics from the GWAS are available at https://

strug.research.sickkids.ca/GWAS_Summary_Public/gwas.

public.txt.gz. The calculated covariancematrix for summary

statistics from the GWAS is available at https://strug.

research.sickkids.ca/GWAS_Summary_Public/ld_matrix_chr3_

195560_195935Kbp.tar.gz. R scripts to enable the

extensions here can be found at https://github.com/

FanWang0216/SimpleSum2Colocalization and https://

github.com/naim-panjwani/LocusFocus. Access to the

RNA-sequencing data from the nasal epithelial are available

through the CF Canada-SickKids Program for Individual-

ized Therapy Biobank https://lab.research.sickkids.ca/cfit/.
Supplemental information

Supplemental information can be found online at https://doi.org/

10.1016/j.ajhg.2021.12.012.
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