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Diabetes is the most common cause of kidney failure worldwide. Patients with diabetes and chronic kidney

disease (CKD) are also at markedly higher risk of cardiovascular disease, particularly heart failure (HF), and

death. Through the processes of gluconeogenesis and glucose reabsorption, the kidney plays a central

role in glucose homeostasis. Insulin resistance is an early alteration observed in CKD, worsened by the

frequent presence of hypertension, obesity, and ongoing chronic inflammation, and oxidative stress.

Management of diabetes in moderate to severe CKD warrants special consideration because of changes in

glucose and insulin homeostasis and altered metabolism of glucose-lowering therapies. Kidney failure

and initiation of kidney replacement therapy by dialysis adds to management complexity by further

limiting therapeutic options, and predisposing individuals to hypoglycemia and hyperglycemia. Glycemic

goals should be individualized, considering CKD severity, presence of macrovascular and microvascular

complications, and life expectancy. A general hemoglobin A1c (HbA1c) goal of approximately 7% may be

appropriate in earlier stages of CKD, with more relaxed targets often appropriate in later stages. Use of

sodium glucose cotransporter2 (SGLT2) inhibitors and glucagon like peptide-1 receptor agonists (GLP-

1RAs) meaningfully improves kidney and heart outcomes for patients with diabetes and CKD, irrespective

of HbA1c targets, and are now part of guideline-directed medical therapy in this high-risk population.

Delivery of optimal care for patients with diabetes and CKD will require collaboration across health care

specialties and disciplines.
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A
pproximately 40% of patients with type 2 dia-
betes (T2D) and 30% of those with type 1 diabetes

develop CKD characterized by albuminuria, low
glomerular filtration rate (GFR), or both.1 CKD in dia-
betes, also known as diabetic kidney disease, is the
leading cause of kidney failure worldwide.2,3 In 2021 it
was estimated that 537 million, or 1 in 10 adults
worldwide, lived with diabetes, the majority living in
low-income and middle-income countries.4 Projections
from the International Diabetes Federation estimate that
by 2045 the number of people with diabetes will rise to
783 million.4 From 1990 to 2019, all countries and re-
gions have shown upward trends in CKD prevalence in
diabetes, with the highest burden exhibited in South-
east Asia, China, the United States, and India.3
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Consequently, the rates of kidney failure driven by
diabetes are expected to double by the year 2030.2 The
excess risk for all-cause and cardiovascular death in
diabetes is largely attributable to the presence of CKD.
For example, the 10-year mortality rate was reported at
11.5% among individuals with diabetes and no kidney
disease, and 31% among diabetic individuals with
CKD.5 Indeed, a diagnosis of CKD in diabetes greatly
increases risk for cardiovascular events, hospitaliza-
tion, and death.6-8 This risk is extraordinarily high in
patients with diabetes treated for kidney failure by
maintenance dialysis. In this population, the annual
risk of death among 25-year-old to 34-year-old persons
is increased 500-fold to 1000-fold and corresponds to
that of the general population older than 80 years of
age.9 Furthermore, access to kidney replacement ther-
apy in middle-income and low-income countries is re-
ported to be as low as 9% to 16%, resulting in more
than 2.2 million deaths worldwide in 2010.10,11

Initially approved as glucose-lowering therapies,
SGLT2 inhibitors and GLP-1RAs, offer new treatment
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modalities that are transforming the CKD therapeutic
landscape. Both classes of medications improve modi-
fiable risk factors for CKD, including hyperglycemia,
blood pressure, and body weight. Furthermore, a
growing body of evidence shows that agents from these
medication classes reduce risks of CKD onset and pro-
gression in diabetes, hospital admissions for HF,
atherosclerotic cardiovascular disease events, and
death.12,13

In this review, we describe the role of the kidney in
glucose and insulin homeostasis as a foundation for
understanding optimal management of diabetes in CKD,
with an emphasis on multidisciplinary models of care
delivery. Herein, we outline the considerations for use
of glucose-lowering agents in the setting of CKD, and
present pathogenic mechanism and clinical evidence
supporting use of SGLT2 inhibitors and GLP-1RAs for
kidney and heart protection.

Kidney and Glucose Homeostasis
Normal Conditions

The kidney regulates blood glucose by gluconeogenesis
and reabsorption of glucose from the glomerular
filtrate.14 In the postabsorptive state (>12 hours of
fasting), the kidneys provide about 20% to 25% of
circulating glucose via gluconeogenesis.15-17 In contrast
to the liver, gluconeogenesis in the kidney increases by
approximately 2-fold and accounts for around 60% of
endogenous glucose release in the postprandial state.18

In normal kidneys, the poorly perfused medulla is the
site of considerable glycolysis, whereas the cortex is
the preferred site for gluconeogenesis.19 The kidneys,
primarily the medulla, consume approximately 10% of
all glucose utilized by the body.18,20

Under normoglycemic and moderately hyperglyce-
mic conditions, nearly all filtered glucose undergoes
reabsorption via cells of the proximal tubule. Glucose
reabsorption is achieved via apically located SGLT2
and SGLT1 transporters, and through facilitative
glucose transporters located on the basolateral side of
the tubular cells.21 The mechanism of glucose reab-
sorption and the complementary role of SGLT1 and
SGTL2 was fully understood only in the late 1980s and
early 1990s when cotransporters were identified,
cloned, and structurally characterized.22-25 Reabsorp-
tion of >90% of filtered glucose is achieved via low-
affinity, high-capacity SGLT2 expressed almost exclu-
sively in the proximal convoluted tubule. Filtered
glucose that escapes reabsorption by SGLT2 (w10%) is
subsequently resorbed by high-affinity, low-capacity
SGLT1 located in epithelial cells of the straight
descending proximal tubule.26-30 Glucose reabsorption
is a principal contribution of the kidney to maintain
glucose homeostasis and a major energy-requiring
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process.31 In order to provide the energy required for
this process, glucose transport across the apical cell
membrane is coupled to the electrochemical gradient
generated by active sodium/potassium transport by
adenosine triphosphatase. (Figure 1).32-34

Diabetes

In patients with T2D, fasting gluconeogenesis in the
kidney is substantially greater than hepatic gluconeo-
genesis.35 Likewise, postprandial kidney glucose
release is greater in people with T2D when compared to
people with normal glucose tolerance, primarily
because of impaired suppression of endogenous glucose
production.36 Increased uptake of glucose in the
proximal tubule has been observed in people with
diabetes, reflecting enhanced reabsorptive transport
capacity in diabetes.37 Indeed, the tubular threshold
for glucosuria in diabetes is increased to a serum
glucose level of approximately 200 to 240 mg/dl
(11.1�13.3 mmol/l), in contrast to approximately 180
mg/dl (w10 mmol/l) in persons without diabetes.38-40

The change in resorptive capacity in diabetes is
related to increased activity and expression of SGLT
and glucose transporters.39,41,42 As a result of increased
glucose and sodium chloride uptake in the proximal
tubule, solute delivery to the macula densa in the distal
convoluted tubule is reduced. This change significantly
contributes to a vasoactive imbalance between the
afferent (dilated) and efferent (constricted) arterioles,
resulting in glomerular hyperfiltration (Figure 1).38,43,44

CKD

Even in the absence of diabetes, CKD is associated with
disordered glucoregulatory mechanisms and insulin
metabolism.45-47 Insulin resistance is an important
complication of CKD, closely correlated with severity of
disease.47-50 Insulin resistance is further exacerbated by
comorbidities common in CKD (e.g., hypertension and
obesity), accumulation of uremic toxins (e.g., pseu-
douridine), increased levels of proinflammatory cyto-
kines (e.g., interleukin-6 and tumor necrosis factor-a),
adipocytokines (e.g., leptin), poor physical fitness, loss
of muscle mass, and vitamin D deficiency.51-56

Compared to healthy individuals, patients with mod-
erate to severe CKD demonstrate lower insulin sensi-
tivity and insulin clearance.48-50,57 In a study of
patients with a mean estimated GFR of approximately
38 ml/min per 1.73 m2, the relationship between insulin
sensitivity and estimated GFR was attenuated after
adjustment for physical activity, dietary features, fat,
and fat-free mass.50 Incretin-mediated gastrointestinal
excretion and kidney-mediated glucose excretion are
less than in healthy controls.44,58 In addition, pro-
gressive loss of nephron mass in CKD results in reduced
gluconeogenesis.59,60
Kidney International Reports (2022) 7, 2589–2607



Figure 1. Glucose reabsorption by SGLT1 and SGLT2 in normal and diabetic kidney. (a) Glucose reabsorption by sodium/glucose cotransporter 2
(SGLT2) is a low-affinity, high-capacity glucose trans¼porter, is expressed apically in epithelial cells of the proximal convoluted tubule and
accomplishes reabsorption of approximately 90% of filtered glucose. Approximately 10% of glucose that escapes reabsorption by SGLT2 is
subsequently resorbed by high-affinity low-capacity SGLT1, which is expressed apically in epithelial cells of the straight descending proximal
tubule. To provide the energy required to drive glucose transport against its concentration gradient, both SGLT2 and SGLT1 couple glucose
transport across the apical cell membrane to the electrochemical gradient generated by active sodium-potassium transport via the Naþ/Kþ-
ATPase pump located on the basolateral membrane of the proximal tubule. Naþ/Kþ-ATPase pump drives Naþ exchange for Kþ removing Naþ

out of cell, generating adenosine in this process. Adenosine acts in paracrine manner to constrict afferent arteriola maintaining glomerular
hemodynamics. As the intracellular concentration of Naþ decreases, this ion moves passively with glucose from the tubular lumen to the
intracellular space via SGLT2 and SLGT1. Once in the cellular lumen, the passively concentration gradient translocates reabsorbed glucose into
the interstitial space via glucose cotransporters. (b) In the diabetic nephron increased proximal tubular reabsorption of glucose and sodium
chloride by SGLT1 and SGLT2 leads to decreased solute delivery to the macula densa in the distal convoluted tubule. As a result of reduced
concentration of sodium chloride, adenosine triphosphatase activity at the macula densa is reduced with a consequent reduction in adenosine
generation. Reduced production of adenosine leads to afferent arteriolar vasodilation that drives glomerular hyperperfusion and hyperfiltration.
ADP, adenosine diphosphate; ATP, adenosine triphosphate; ATPase, adenosine triphosphatse; GC, glomerular capillary; Kþ, pottassium; Naþ,
sodium; NaCl, sodium chloride. Reprinted with permission from Alicic RZ, Johnson EJ, Tuttle KR. SGLT2 inhibition for the prevention and
treatment of diabetic kidney disease: a review. Am J Kidney Dis. 2018;72:267–277.
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Glycemic Management in CKD
Glycemic Targets and Monitoring

Extensive evidence from landmark studies has
demonstrated that glycemic control, measured by
HbA1c, resulted in decreased risk of “nephropathy” in
patients with type 1 diabetes and T2D. In the Diabetes
Control and Complications Trial, intensive glycemic
control compared to conventional therapy (HbA1c
7.2% vs. 9.1%, P < 0.001), resulted in a 34% adjusted
risk reduction for microalbuminuria development.61 In
patients with T2D, a long-term follow up of the UK
Prospective Diabetes Study also showed that for every
Kidney International Reports (2022) 7, 2589–2607
1% reduction in HbA1c, there was a 21% reduction in
any diabetes-related complications, 21% reduction in
death related to diabetes, 14% reduction in all-cause
mortality, and a 37% reduction in microvascular
complications.62 There are no large randomized trials
evaluating outcomes associated with intensive glycemic
control in patients treated by maintenance dialysis, but
a meta-analysis of 10 observational studies, including
approximately 84,000 patients treated by hemodialysis
described an increase in mortality risk with
HbA1c $8.5% or #5.4% compared to an HbA1c be-
tween 6.5 and 7.4%.63
2591



Table 1. Considerations for glycemic targets in patients with diabetes and CKD64,65

ADA HbA1c targets Personalized patient selection KDIGO HbA1c targets Personalized patient selection Testing frequency

<8% � Advanced CKD
� Elderly, frail, high comorbidity

burden, high risk of hypoglycemia,
limited life expectancy

7%–8% � Patients with advanced CKD,
high comorbidity burden, high
risk of hypoglycemia, limited
life expectancy

� If HbA1c not reliable/accurate, consider GMI or
alternative glycemic control markers

<7% � Goal for most adults, nonpregnant w7% � Most patients with CKD to
prevent progression, while
avoiding hypoglycemia

� Two to four times per year, if not controlled
� GMI and CGM metrics may provide a more

comprehensive glycemic excursion evaluation,
particularly short-term (after an episode of
hypoglycemia or after therapy adjustment)

<6.5% � For most adults, if therapy not
associated with hypoglycemia or
other complications

ADA, American Diabetes Association; CGM, continuous glucose monitoring; CKD, chronic kidney disease; GMI, glucose management indicator; HbA1c, glycated hemoglobin A1c;
KDIGO, Kidney Disease Improving Global Outcomes.

REVIEW RZ Alicic et al.: Use of Glucose-Lowering Agents in Diabetes and CKD
Clinical practice guidelines recommended a
personalized HbA1c target.64,65 For patients with
early-stage CKD, in which prevention of disease
progression is the main goal, recommended HbA1c
target is <6.5% to 7%, particularly for those with
low comorbidity and hypoglycemic burden, and
longer life-expectancy. For patients with advanced
CKD, HbA1c levels <7.5% to 8% may be preferred,
particularly for those with multiple comorbidities and
higher hypoglycemia risk (Table 1).64,65 Notably, it is
well established that HbA1c accuracy decreases as
estimated GFR declines, with poor HbA1c precision
in patients with advanced CKD.64,66 Alternative gly-
cemic markers such as fructosamine and glycated al-
bumin have been proposed as short-term or
intermediate markers of glycemic control, estimating
average glucose from the prior 2 to 4 weeks.66

Nevertheless, these assays are biased in patients
with hypoalbuminemia, a common kidney failure
complication.66 Some studies have shown that gly-
cated albumin correlates with mortality in patients
with kidney failure treated by dialysis.67-69

Blood glucose monitoring using capillary point-of-
care devices is recommended in patients with CKD,
particularly for those in whom HbA1c is not reliable.66

Caution is recommended with interpretating results
from meters using glucose dehydrogenase pyrroloqui-
noline quinone in patients on peritoneal dialysis with
icodextrin dialysate, because it can cause falsely higher
glucose values.66 Recent developments in diabetes
technology, including continuous glucose monitors
(CGMs), provide an alternative to glycemic control
markers in patients with advanced CKD. CGM sensors
are minimally invasive, with a small cannula inserted
in the subcutaneous tissue that measures interstitial
tissue glucose every 5 to 15 minutes.66 Real-time CGM
values are now available, providing a comprehensive
report of glycemic excursions, beyond single glucose
values in time (i.e., fasting glucose), and providing
glucose patterns, rate of glucose change, and
better evaluation of asymptomatic and nocturnal
2592
hypoglycemic events.70 New CGM-derived glycemic
control metrics have been developed, such as time-in-
target range, time-below range, time-above range,
and the “Glucose Management Indicator.” Glucose
management indicator is a metric to estimate HbA1c, as
derived from CGM values, that can be reported to pa-
tients as an alternative to HbA1c.71 For most patients,
target time in range (time-in-target range 70�180 mg/dl
or 3.9�10 mmol/l) is >70%, but for older patients or
patients with high risk for hypoglycemia, a time-in-
target range >50% with <10% of TAR (>250 mg/dl
or 13.9 mmol/l) may be acceptable, aiming to minimize
hypoglycemia (i.e., time-below range <1%).72 Though
CGM is a promising technology, there are limited
studies in patients with CKD.66

Glucose-Lowering Therapies

Current guidelines recommend SGLT2 inhibitor as first-
line therapy for most patients with T2D and CKD, and
use of metformin is optional.64,73 Additional glucose-
lowering agents can then be added as needed to meet
individualized glycemic targets based on consideration
of patient-specific and medication-specific fac-
tors.13,64,73 A summary of dosing for select glucose-
lowering agents based on estimated GFR is shown in
Table 2.13,74-89

SGLT2 Inhibitors. SGLT2 inhibitors are recommended
for most patients with T2D and CKD with an esti-
mated GFR $20 ml/min per 1.73 m2 (Table 2).73 The
glucose-lowering effect of SGLT2 inhibitors is
blunted as kidney function declines, so this recom-
mendation is primarily driven by the desire for kid-
ney and heart protection with SGLT2 inhibitors in
the setting of T2D and CKD. SGLT2 inhibitors should
be dose adjusted based on estimated GFR, thus kid-
ney function must be monitored during use. Contrary
to the initial concerns of increased risk of acute
kidney injury, SGLT2 inhibitor use has been shown
to reduce risk of acute kidney injury.90

GLP-1RAs. GLP-1RAs are effective and safe anti-
hyperglycemic agents for patients with T2D and CKD
Kidney International Reports (2022) 7, 2589–2607



Table 2. Recommended dosing of additional noninsulin glucose-lowering agents by eGFR13,74-88

Medication Labeled dosing recommendations by eGFR (ml/min/1.73 m2)

SGLT2 inhibitors

Canagliflozin � eGFR $60: 100 mg once daily; may increase to 300 mg once daily for additional glycemic control

� eGFR 30 to <60: 100 mg once daily

� eGFR <30: initiation not recommended, however patients with albuminuria >300 mg/day may continue 100 mg once daily to reduce
the risk of ESKD, doubling of serum creatinine, CV death, and hospitalization for HF

� Dialysis: contraindicated

Dapagliflozin � eGFR $45: Recommended starting dose of 5 mg once daily to improve glycemic control; 10 mg once daily for all other indications

� eGFR 25 to <45: 10 mg once daily

� eGFR <25: Initiation not recommended; may continue 10 mg once daily to reduce the risk of eGFR decline, ESKD, CV death, and
hospitalization for HF

� Dialysis: contraindicated

Empagliflozin � eGFR $30: No dose adjustment required

� eGFR <30: Use not recommended solely for improvement of glycemic control

� Data are insufficient to provide dosing recommendations in patients:
o With T2D and established cardiovascular disease with eGFR <30 ml/min/1.73 m2

o With HF and eGFR <20 ml/min/1.73 m2

� Dialysis: contraindicated

Ertugliflozin � eGFR $45: No dose adjustment required

� eGFR <45: Use not recommended

� Dialysis: contraindicated

GLP-1 receptor agonists

Dulaglutide � No dose adjustment required

� Use with caution in ESKD; monitor kidney function in patients reporting severe GI adverse events

Exenatide Twice-daily Product:

� CrCl 50–80 ml/min: no dose adjustment required

� CrCl 30–50 ml/min: caution when initiating or increasing the dose

� CrCl <30 ml/min: use not recommended

Once-weekly product:

� eGFR $45: no dose adjustment required

� eGFR <45: use not recommended

Liraglutide � No dose adjustment required

� Use with caution in ESKD; exercise caution in patients experiencing dehydration

Lixisenatide � eGFR >60: no dose adjustment required

� eGFR 30 to <60: no dose adjustment recommended, but monitoring of kidney function and for GI reactions is recommended

� eGFR 15 to <30: monitoring of kidney function and for GI reactions is recommended

� eGFR <15: use not recommended

Semaglutide No dose adjustment required

DPP-4 inhibitors

Alogliptin � CrCl $60 ml/min: no dose adjustment required

� CrCl 30 to <60 ml/min: 12.5 mg once daily

� CrCl <30 ml/min: 6.25 mg once daily

Linagliptin No dose adjustment required

Saxagliptin � eGFR $45: no dose adjustment required

� eGFR <45: 2.5 mg once daily

Sitagliptin � eGFR $45: no dose adjustment required

� eGFR 30 to <45: 50 mg once daily

� eGFR <30: 25 mg once daily

Sulfonylureas (Second generation)

Glimepiride � No specific dosing based on eGFR

� Start conservatively at 1 mg and titrate slowly in CKD

Glipizide � No specific dosing based on eGFR

� Start conservatively (e.g., 2.5 mg once daily) and titrated slowly in CKD

Glyburide Use not recommended

(Continued on following page)
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Table 2. (Continued) Recommended dosing of additional noninsulin glucose-lowering agents by eGFR13,74-88

Medication Labeled dosing recommendations by eGFR (ml/min/1.73 m2)

Thiazolidinediones

Pioglitazone No dose adjustment required

Alpha-glucosidase inhibitors

Acarbose eGFR <30: use not recommended

Miglitol eGFR <25: use not recommended

CKD, chronic kidney disease; CrCl, creatinine clearance; CV, cardiovascular; eGFR, estimated glomerular filtration rate; ESKD, end-stage kidney disease; GI, gastrointestinal; HF, heart
failure; SGLT2, sodium glucose cotransporter-2; T2D, type 2 diabetes.

REVIEW RZ Alicic et al.: Use of Glucose-Lowering Agents in Diabetes and CKD
(Table 2). The need for dose adjustment based on
kidney function varies for agents within the GLP-1RA
class. For patients with T2D and CKD requiring
additional glucose lowering beyond recommended
first-line treatment with an SGLT2 inhibitor, Kidney
Disease: Improving Global Outcomes (KDIGO) prefer-
entially recommends the addition of a long-acting
GLP-1RA.64 This recommendation is based in part on
favorable secondary kidney outcomes showing bene-
fits on reduction in albuminuria and likely preserva-
tion of estimated GFR with GLP-1RA treatment.64 In
contrast to SGLT2 inhibitors, however, the glucose-
lowering benefits of GLP-1RAs are preserved in
advanced CKD and have demonstrated efficacy and
Figure 2. Suggested approach in dosing metformin based on the level
gastrointestinal. Reprinted with permission from de Boer IH, Caramori L, C
management in chronic kidney disease. Kidney Int. 2020;98:S1–S115.

2594
safety in large clinical trials down to an estimated GFR
of 15 ml/min per 1.73 m2.64

Metformin. Metformin may be used for glycemic
control in patients with T2D and CKD who have an
estimated GFR $30 ml/min per 1.73 m2 (Table 2).64

Metformin is not metabolized and is excreted un-
changed in urine.91 The label for metformin, therefore,
includes a boxed warning for increased risk of lactic
acidosis in patients with CKD due to impaired metfor-
min excretion.92 Despite this boxed warning, evidence
suggests that overall risk for metformin-associated
lactic acidosis is low.93 Estimated GFR should be
monitored at least annually in patients taking metfor-
min, with the frequency of monitoring increased to
of kidney function. eGFR, estimated glomerular filtration rate; GI,
han JCN, et al. KDIGO 2020 clinical practice guideline for diabetes

Kidney International Reports (2022) 7, 2589–2607



Table 3. Recommendations for empiric dosing and titration of
insulins in CKD97

eGFR % Reduction of TDD

Insulin dose (units/kg/d)

T1D T2D

>60 ml/min/1.73 m2 No reduction 1.0 0.5

60–15 ml/min/1.73 m2 25% 0.75 0.3–0.4

<15 ml/min/1.73 m2 50% 0.5 0.25

eGFR, estimated glomerular filtration rate; T1D, type 1 diabetes mellitus; T2D, type 2
diabetes mellitus; TDD, total daily dose.

RZ Alicic et al.: Use of Glucose-Lowering Agents in Diabetes and CKD REVIEW
every 3 to 6 months once the estimated GFR falls below
60 ml/min per 1.73m2.64 KDIGO further recommends
that the dose of metformin be reduced to 1000 mg daily
in patients with an estimated GFR between 30 to 45 ml/
min per 1.73 m2, and that a reduction be considered in
patients with an eGFR of 45 to 59 ml/min per 1.73 m2 if
they have a comorbidity that may place them at
increased risk for hypoperfusion or hypoxemia
(Figure 2).64

Insulin. Though evidence supporting use of non-
insulin agents in T2D and CKD is mounting, insulin
remains a main therapeutic option.89 In patients with
advanced CKD (estimated GFR <30 ml/min per
1.73 m2), use of many other glucose-lowering agents is
restricted. Intensive insulin therapy can help to ach-
ieve HbA1c targets in the setting of progressive insulin
resistance and unreliable gastric absorption (e.g.,
delayed gastric emptying due to gastroparesis).94

Exogenous insulin is primarily metabolized by the
kidney (30%–80%). Prandial insulin analogs (e.g., lis-
pro, aspart, glulisine) are associated with a lower risk of
hypoglycemia and better postprandial glucose control
compared to regular human insulin. There is no need
for dose adjustment for aspart insulin across different
stages of estimated GFR (e.g., ˂60 ml/min per 1.73 m2,
60–80 ml/min per 1.73 m2, ˃90 mlmin per 1.73 m2).95

Among basal insulins, insulin degludec does not
require dose adjustment, whereas insulin glargine and
insulin detemir should generally be reduced by
approximately 30% in patients with estimated GFR ˂60
ml/min per 1.73 m2.95,96 Total daily insulin dose re-
quirements typically decrease by approximately 25%
when estimated GFR falls below 60 ml/min per 1.73 m2

(Table 3).97 Ultimately, empiric insulin adjustments
should be considered to prevent hypoglycemia with
subsequent titration to meet individualized glycemic
goals as informed by glucose monitoring (e.g., blood
glucose monitoring or CGM).

Dipeptidyl Peptidase-4 (DPP-4) Inhibitors. All DPP-4
inhibitors are labeled for use in patients with T2D
and CKD.85-88 Alogliptin, saxagliptin, and sitagliptin
require dose modification based on estimated GFR.
Linagliptin, however, is eliminated primarily through
Kidney International Reports (2022) 7, 2589–2607
the enterohepatic system and does not require dose
adjustment based on kidney function.86 Though
several cardiovascular outcome trials with agents from
the DPP-4 inhibitor class showed attenuation of pro-
gression of albuminuria as a secondary outcome, DPP-4
inhibitors have not shown a benefit on estimated GFR
decline or cardiovascular outcomes, and so are pri-
marily used in T2D and CKD for glucose lowering.98

Though DPP-4 inhibitors can be used at various
stages of CKD, it should be noted that they are not
recommended for use in combination with a GLP-1RA
due to overlapping mechanism of action.99

Sulfonylureas. Sulfonylureas are effective glucose-
lowering agents but carry a significant risk for hypo-
glycemia in patients with T2D and CKD.89 Second
generation sulfonylureas are available generically and
provide an option for patients who lack access to
newer, costlier glucose-lowering agents. Among the
sulfonylureas, glyburide is not recommended for use in
the setting of CKD (estimated GFR <60 ml/min per 1.73
m2) because it is extensively metabolized in the liver to
several active metabolites and increase risk of hypo-
glycemia.89,100 If used, it is prudent to initiate glime-
piride or glipizide at the lowest dose and titrate
conservatively in patients with CKD to avoid
treatment-emergent hypoglycemia.13

Thiazolidinediones. Pioglitazone is extensively
metabolized by the liver and dosing adjustments are
not required in CKD.101 Additional potential benefits of
pioglitazone use in CKD include oral administration and
low hypoglycemia risk.64 Some data suggests that
thiazolidinediones may convey benefits in patients
with T2D and CKD through improvements in the lipid
profile and possibly reductions in albuminuria.102

These findings are not substantiated with large clin-
ical trials. Factors contributing to the limited use in
CKD include side effects such as fluid retention, HF,
and increased fracture risk.13

Alpha-Glucosidase Inhibitors. Acarbose and miglitol
are minimally absorbed from the gastrointestinal tract,
but plasma drug levels can increase in patients with
CKD.103 Therefore, use is cautioned in patients with
estimated GFR <30 ml/min per 1.73 m2.13 Alpha-
glucosidase inhibitors preferentially target post-
prandial glucose excursions and may be useful in select
patients who are able to tolerate the gastrointestinal
side effects (e.g., flatulence, diarrhea) commonly
experienced with use, yet are associated with relatively
modest effects on HbA1c and are not recommended for
use in end-stage kidney disease.

Special Considerations for Dialysis

Patients treated by hemodialysis are especially prone to
frequent episodes of hypoglycemia and hyperglycemia,
2595



Table 4. Summary of SGLT2 inhibitor kidney outcome trials117-120

Study CREDENCE (N [ 4401) DAPA-CKD (N [ 4304) EMPA-KIDNEY (N [ 6609) SCORED (N [ 10,584)

Agent Canagliflozin Dapagliflozin Empagliflozin Sotagliflozin

Median follow-up 2.6 yr 2.4 yr Trial stopped in March 2022 due to
efficacy

16 mo (stopped early due to lack of funding)

Diabetes-related
inclusion criteria

T2D T2D or non-T2D T2D or non-T2D T2D

Inclusion criteria eGFR$30 to<90ml/min/1.73 m2

UACR: $300 to <5000 mg/g
eGFR$25 to<75 ml/min/1.73 m2

UACR: $200–5000 mg/g
eGFR$20 to<45 ml/min/1.73 m2

OR eGFR$45 to<90 ml/min/1.73
m2 with UACR $ 200 mg/g

eGFR $25 to <60 ml/min/1.73 m2

UACR $30 mg/g
Additional CV risk factors

Baseline eGFR 56 ml/min/1.73 m2 43 ml/min/1.73 m2 37.5 ml/min/1.73 m2 44.4 ml/min/1.73 m2

Median Baseline UACR 927 mg/g 949 mg/g 412 mg/g 74 mg/g

Kidney outcome(s) Primary outcome
ESKD (dialysis, transplantation, or
sustained eGFR <15 ml/min/1.73
m2), doubling of SCr, or death from
renal causes: HR: 0.70 (CI: 0.59–

0.82)

Primary outcome
$50% decrease in eGFR, ESKD, or
death from renal or cardiovascular
causes: HR: 0.61 (CI:0.51–0.72)

Primary outcomea

$40% decrease in eGFR, ESKD,
sustained decline in eGFR to <10
ml/min/1.73 m2 or cardiovascular

death

Secondary outcome
No significant difference in >50% decline in

the eGFR, long-term dialysis, kidney
transplantation, or a sustained eGFR <15 ml/

min/1.73 m2 > 30 d

Cardiovascular
outcome(s)

Secondary outcomes
Reduction of composite of CV death
or hospitalization for HF: HR 0.69

(CI: 0.57–0.83)
Reduction in hospitalizations for
HF: HR 0.61(CI: 0.47–0.80)

Secondary outcome
Reduction of composite of CV death
or hospitalization for HF: 0.71 (CI:

0.55–0.92)

Secondary outcomea

Time to CV death or first
hospitalization for HF
Time to CV death

Time to CV death or ESKD

Primary outcome
Reduction of composite of CV deaths, and
hospitalization and urgent visits for HF: HR

0.74 (CI: 0.63–0.88))
Secondary outcome

Hospitalizations and urgent visits for heart
failure. HR 0.67 (CI: 0.55–0.82)

CREDENCE, Canagliflozin and Renal Events in Diabetes with Established Nephropathy Clinical Evaluation; CV, cardiovascular; CI, confidence interval; DAPA-CKD, dapagliflozin and
prevention of adverse outcomes; eGFR, estimated glomerular filtration rate; ESKD, end-stage kidney disease; EMPA-KIDNEY, The Study of Heart and Kidney Protection With Empa-
gliflozin; HF, heart failure; HR, hazard ratio; SCr, serum creatinine; SCORED, Effect of Sotagliflozin on Cardiovascular and Renal Events in Patients With Type 2 Diabetes and Moderate
Renal Impairment Who Are at Cardiovascular Risk; T2D, type 2 diabetes; UACR, urinary albumin-to-creatinine ratio.
aFull release of EMPA-KIDNEY trial findings pending. CV risk factors: hospitalization for HF, Left ventricular hypertrophy; elevated NT-proBNP, coronary artery calcium, troponin, high
sensitivity c-reactive protein, body mass index $ 35 kg/m2, LDL >130 mg/dl or HDL <40 mg/dl for men or <50 mg/dl for women on maximally-tolerated statin therapy, current smoking,
systolic blood pressure >140 mm Hg and diastolic blood pressure >90 mm Hg, family history of premature coronary heart disease.
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with both extremes closely related to morbidity and
mortality.63,104 Hypoglycemic episodes, frequently
asymptomatic, are driven by reduced gluconeogenesis,
weight loss, anorexia, improved insulin resistance with
initiation of dialysis, and removal of glucose during the
hemodialysis sessions especially with use of glucose
free-dialysate.60,105,106 Occurrence of hypoglycemia
during the dialysis session induces secretion of
counter-regulatory hormones (e.g., glucagon, cortisol)
which leads to rebound hyperglycemia.60 Absorption
of insulin onto dialysis membranes during hemodialy-
sis sessions may reduce circulating insulin and exac-
erbate hyperglycemia.106,107 However, total insulin
requirements decrease by approxmately 50% when
estimated GFR falls below 10 ml/min per 1.73 m2.60 To
prevent and detect episodes of asymptomatic hypo-
glycemia it is recommended to provide thorough edu-
cation on blood glucose monitoring or CGM, especially
on dialysis days.60

Few studies have demonstrated the safety and ef-
ficacy of other glucose-lowering agents in patients
receiving dialysis. Because the clearance of GLP-1RAs
is not primarily via kidney metabolism, but rather
proteolytic degradation, there is no dose adjustment
needed for liraglutide, semaglutide and dulaglutide.66

Available pilot studies demonstrated that gastroin-
testinal side effects may occur at lower doses, indi-
cating the importance of careful dose adjustment,
2596
preference for low to intermediate doses, and close
monitoring.108 Because the thiazolidinediones (pio-
glitazone and rosiglitazone) are completely metabo-
lized by the liver, no dose adjustments are needed for
patients on dialysis.

Glucose-Lowering Agents for Kidney and Heart

Protection

Use of glucose-lowering agents with evidence of kid-
ney and cardiovascular disease risk reduction is now
standard-of-care for guideline-directed medical ther-
apy.64,73,109 Based on compelling evidence from large
clinical trials, agents from the SGLT2 inhibitor and
GLP-1RA classes are recommended by major guideline
forming organizations for kidney and heart protection
irrespective of glycemic control.64,73,109-111

SGLT2 Inhibitors

Following the observation that SGLT2 inhibitors
improved primary cardiovascular and secondary HF
and kidney disease outcomes in large cardiovascular
outcome trials,112-116 dedicated kidney outcome trials
confirmed the benefits of SGLT2 inhibition in patients
with CKD (Table 4).117-120 The first dedicated SGLT2
inhibitor kidney outcome trial to demonstrate benefit
was the Canagliflozin and Renal Events in Diabetes
with Established Nephropathy Clinical Evaluation,
which enrolled participants with T2D and CKD.117 The
Dapagliflozin and Prevention of Adverse Outcomes in
Kidney International Reports (2022) 7, 2589–2607
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Kidney International Reports (2022) 7, 2589–2607
CKD trial confirmed benefit on kidney and cardiovas-
cular outcomes with SGLT2 inhibition.118 Treatment
with the SGLT2/SGLT1 inhibitor sotagliflozin was
associated with a reduction in the primary composite
outcome of deaths from cardiovascular causes and
hospitalizations and urgent visits for HF, but no sig-
nificant difference in kidney related outcomes were
observed in the Effect of Sotagliflozin on Cardiovas-
cular and Renal Events in Patients with Type 2 Dia-
betes and Moderate Renal Impairment Who Are at
Cardiovascular Risk trial.120 However, the trial ended
early because of lack of support from the sponsor.120

Though the results are not yet available, it was
recently announced that the Study of Heart and Kidney
Protection with Empagliflozin (EMPA-KIDNEY) trial
was stopped early due to evidence of clear, positive
efficacy.119 Secondary analyses of large cardiovascular
outcome trials with SGLT2 inhibitors show that these
kidney and heart protective benefits are consistent
across levels of baseline albuminuria, estimated GFR,
and glycemia.93,121 SGLT2 inhibitor trials have also
demonstrated consistent benefits on kidney and HF
outcomes in patients with CKD with and without
T2D.122-126 Comprehensive meta-analysis of close to
22,000 participants of 5 large HF trials (Empagliflozin in
Heart Failure With a Preserved Ejection Fraction
[EMPEROR -Preserved], Dapagliflozin in Heart Failure
With Mildly Reduced or Preserved Ejection Ffraction
[DELIVER], Cardiovascular and Renal Outcomes With
Empagliflozin in Heart Failure ([EMPEROR-Reduced],
Dapagliflozin in Patients With Heart Failure and
Reduced Ejection Fraction [DAPA-HF], and Effect of
Sotagliflozin on Cardiovascular Events in Patients
with Type 2 Diabetes Post Worsening Heart Failure
[SOLOIST-WHF]) showed that SGLT2 inhibitors
reduced risk of cardiovascular death and hospitaliza-
tions for HF across the spectrum of HF.127 Current
guidelines recommend use of SGLT2 inhibitors to
improve HF outcomes, irrespective of background
T2D.128 A summary of dedicated HF trials with SGLT2
inhibitors in provided in Table 5.122-126 Importantly,
the benefits of SGLT2 inhibition were realized on
background angiotensin-converting enzyme inhibitor
or angiotensin receptor blocker therapy and other HF
therapies indicating that SGLT2 inhibitors address re-
sidual kidney and cardiovascular risks.117-119 SGLT2
inhibition is recommended for initiation in patients
with an estimated GFR$20 ml/min per 1.73 m2 and can
be continued until the patient is initiated on kidney
replacement therapy.73 Notably, the joint consensus
statement from the American Diabetes Association and
KDIGO recommends the use of SGLT2 inhibitors in
most patients with T2D and CKD irrespective of albu-
minuria.73 This recommendation is based on combined
2597



Figure 3. Effect of diabetes and sodium-glucose cotransporter 2 (SGLT2) inhibition on nephron hemodynamics. (a) In the diabetic nephron,
overexpression and compensatory upregulation of the activity of SGLT2 glucose and sodium reabsorption in the proximal convoluted tubule
results in decreased delivery of solutes to the macula densa. The resulting reduction in solute and water transport into the tubular epithelial
cells reduces Naþ/Kþ-ATPase pump activity and ATP release from the basolateral membrane of tubular epithelial cells, which in turn reduces
adenosine production and activation of the A1 receptor expressed in the afferent arteriole with a net effect of vasodilation. (b) In the diabetic
nephron with SGLT inhibition, lessening SGLT2-driven sodium-coupled glucose transport in the proximal convoluted tubule normalizes solute
delivery to the macula densa, increasing solute and water reabsorption and increasing basolateral release of ATP from the tubular epithelium.
The resulting increase in adenosine activation of the A1 adenosine receptor reverses afferent arteriole vasodilation associated with diabetic
kidney disease. Resolution of arterial vasodilation helps normalize glomerular hemodynamics. ADP, adenosine diphosphate; ATP, adenosine
triphosphate; ATPase, adenosine triphosphatse; GC, glomerular capillary; Kþ, pottassium; Naþ, sodium; NaCl, sodium chloride. Reprinted with
permission from Alicic RZ, Johnson EJ, Tuttle KR. SGLT2 Inhibition for the prevention and treatment of diabetic kidney disease: a review. Am J
Kidney Dis. 2018; 72:267–277.
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evidence from major SGLT2 inhibitor outcome trials
suggesting that kidney and heart benefits are consis-
tent irrespective of baseline albuminuria, including
patients with normal levels of albumin excretion.90

A principal mechanism by which SGLT2 inhibitors
convey kidney protection is believed to be reduced
glomerular hyperfiltration via restoration of solute de-
livery to the macula densa and subsequent restoration
of tubuloglomerular feedback (Figure 3).34 Other effects
that may contribute to kidney and heart protection
include a diuretic effect because glycosuria leads to
osmotic diuresis, altered fuel metabolism through
transition from carbohydrate utilization to ketogenesis,
2598
and modest reductions in systolic blood pressure and
body weight (Figure 4).129

GLP-1RAs

Data on CKD onset and progression with GLP-1RAs are
limited to secondary kidney outcomes from select car-
diovascular outcomes trials and glycemic lowering
trials.130-133 In the Liraglutide Effect and Action in
Diabetes: Evaluation of Cardiovascular Outcome Re-
sults trial, liraglutide treatment was associated with a
lower rate for the secondary composite outcome of
new-onset severely increased albuminuria, persistent
doubling of serum creatinine, kidney failure, or death
Kidney International Reports (2022) 7, 2589–2607



Figure 4. SGLT2 inhibitor-mediated kidney and heart protection. LV,
left ventricular; NHE3, sodium-hydrogen exchanger 3. Reproduced
courtesy of Emily J. Cox, PhD; original graphic 2020 E.J. Cox.
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due to kidney disease compared to placebo.130 This
finding is supported by several other studies in pa-
tients with T2D reporting a reduction in albuminuria
with liraglutide.134 Similar benefits on secondary kid-
ney composite outcomes were seen in cardiovascular
outcomes trials completed with injectable semaglutide
and dulaglutide (Table 6).130-133 A signal for kidney
benefit with dulaglutide was also observed in the “A
Study Comparing Dulaglutide With Insulin Glargine on
Glycemic Control in Participants With Type 2 Diabetes
and Moderate or Severe Chronic Kidney Disease”
trial.132 A Randomized, Open-Label, Parallel-Arm
Study Comparing the Effect of Once-weekly Dulaglu-
tide With Insulin Glargine on Glycemic Control in
Patients With Type 2 Diabetes and Moderate or Severe
Chronic Kidney Disease (AWARD-7) trialenrolled in-
dividuals with moderate-to-severe CKD (mean esti-
mated GFR 38 ml/min per 1.73 m2). Participants
receiving treatment with dulaglutide experienced less
estiamted GFR decline when compared to treatment
with insulin glargine. Importantly, estimated GFR
decline was markedly reduced in the participants with
macroalbuminuria, a group at high risk for rapid pro-
gression to kidney failure (Table 6).132
Kidney International Reports (2022) 7, 2589–2607
A pooled analysis of 12,637 participants from the
Liraglutide Effect and Action in Diabetes: Evaluation
of Cardiovascular Outcome Results and A Long-term,
Randomised, Double-blind, Placebo-controlled,
Multinational, Multi-centre Trial to Evaluate Cardio-
vascular and Other Long-term Outcomes With Sem-
aglutide in Subjects With Type 2 Diabetes (SUSTAIN-
6) trials showed that compared with placebo, sem-
aglutide and liraglutide lowered albuminuria from
baseline to 2 years after randomization by 24%.135

Both agents demonstrated slowing of estimated GFR
decline and risks of 40% and 50% estimated GFR re-
ductions from baseline versus placebo. The likelihood
of slowing estimated GFR decline was greater in pa-
tients with estimated GFR levels of 30 to 60 ml/min per
1.73 m2 compared to estimated GFR >60 ml/min per
1.73 m2.135

The proposed mechanisms by which GLP-1RAs
reduce the risk of macroalbuminuria and slow esti-
mated GFR decline include antioxidant, antiin-
flammatory, and antifibrotic effects in the diabetic
kidney promoted by GLP-1 signaling.98 Furthermore,
GLP-1RAs produce modest reductions in blood pres-
sure.130,131,136-138 GLP-1RAs also promote substantial
weight loss (often >5 kg) compared with other glucose-
lowering therapies in T2D.139,140 Notably, the weight
loss effect is preserved in patients with CKD.132,141

KDIGO preferentially recommends addition of a
long-acting GLP-1RA (with proven cardiovascular
benefits) in patients with T2D and CKD who need
additional glucose lowering despite recommended first-
line therapy with metformin plus a SGLT2 inhibitor.64

The American Diabetes Association recommends use of
long-acting GLP-1RAs interchangeably with SGLT2
inhibitors in patients with estimated GFR <60 ml/min
per 1.73 m2 or in those with albuminuria who cannot
take SGLT2 inhibitors.109 Two ongoing trials, the Effect
of Semaglutide Versus Placebo on the Progression of
Renal Impairment in Subjects With Type 2 Diabetes
and CKD (FLOW, NCT03819153) and Renal Mode of
Action of Semaglutide in Patients With Type 2 Diabetes
and CKD study (REMODEL, NCT04865770) are testing
the effects of injectable semaglutide on a primary
kidney disease outcome and investigating mechanistic
outcomes of kidney inflammation, perfusion, and
oxygenation by magnetic resonance imaging and kid-
ney biopsies, respectively.142,143

Safety and Risk Mitigation for

Glucose-Lowering Agents

An important aspect of managing patients with T2D
and CKD is educating patients and caregivers about
potential side effects and risks of therapy and how to
best mitigate risks (Table 7).64,73 In general, monitoring
2599



Table 6. Summary of select GLP-1RA cardiovascular outcome trials130-133

Study LEADER (n [ 9340) SUSTAIN-6 (n [ 3297) AWARD-7 (n [ 577) REWIND (n [ 9901)

Agent Liraglutide Semaglutide Dulaglutide Dulaglutide

Median follow-up (yr) 3.8 2.1 52 wk 5.4

Prior CVD (%) 81 60 NA 31

Mean baseline A1C (%) 8.7 8.7 7.5–10.5 7.3

Kidney function
at baseline
(ml/min/1.73 m2)

21% eGFR 30–59
2% eGFR < 30

25% eGFR 30–59
3% eGFR < 30

26% eGFR 45–60
35% eGFR 30–44
31% eGFR < 30

46% UACR > 300 mg/g

21.8% eGFR < 60
34.5% UACR > 30 mg/g

Primary outcomeb 3-point MACE
0.87 (0.78–0.97)

3-point MACE
0.74 (0.58–0.95)

HbA1C change from baseline to 26-weeks:
� Insulin glargine: �1.1%
� Dulaglutide 0.75 mg: �1.1%
� Dulaglutide 1.5 mg: �1.2%
� Noninferior (P # 0.0001 for both

dulaglutide doses vs. insulin glargine)

3-point MACE
0.88 (0.79–0.99)

Secondary
outcomes

Lower incidence of composite
outcome (new onset
albuminuria, doubling

of sCr and CrCl
<45 ml/min, need for KRT,
death due to renal causes)

1.5 events/100 patient/year in
liraglutide

vs. 1.9 events
events/100 patient/year in
placebo group (P ¼ 0.003)

Lower incidence of new or
worsening

nephropathy:
3.8% in semaglutide vs. 6.1% in

placebo
group (P ¼ 0.005)

Lower rate of new onset
macroalbuminuria:

2.5% in semaglutide vs. 4.9% in
placebo

eGFR decline (ml/min/1.73 m2):
� 3.3 insulin glargine

� 0.7 duaglutide 0.75 mga and 1.5 mga

� aP < 0.05 compared with glargine
eGFR decline (ml/min/1.73 m2) in UACR

> 300 mg/g group:
� 5.5 insulin glargine

� 0.7 dulaglutide 0.75 mga

� 0.5 dulaglutide 1.5 mga

� aP < 0.05 compared with glargine
UACR reduction:

� 13% insulin glargine
� 29% dulaglutide 1.5 mga

� aP < 0.05 compared with glargine

Lower incidence of the composite
endpoint (new onset
macroalbuminuria,

$30% decline in eGFR, or need
for chronic

KRT); 17% in dulaglutide vs.
20% in placebo group

(P < 0.001)

Worsening
nephropathyb

0.78 (0.67–0.92) 0.64 (0.46–0.88) - 0.85 (0.77–0.93)

A1C, glycated hemoglobin; AWARD, X; CI, confidence interval; eGFR, glomerular filtration rate; GLP-1RA, glucagon-like peptide-1 receptor agonist; HR, hazard ratio; KRT, kidney
replacement therapy; LEADER, A Long-term, Multi-centre, International, Randomised Double-blind, Placebo-controlled Trial to Determine Liraglutide Effects on Cardiovascular Events;
MACE, major adverse cardiovascular events; REWIND, The Effect of Dulaglutide on Major Cardiovascular Events in Patients With Type 2 Diabetes: Researching Cardiovascular Events
With a Weekly INcretin in Diabetes; SUSTAIN, A Long-term, Randomised, Double-blind, Placebo-controlled, Multinational, Multi-centre Trial to Evaluate Cardiovascular and Other Long-
term Outcomes With Semaglutide in Subjects With Type 2 Diabetes; UACR, urine to albumin creatinine ratio.
aStatistically significant.
bOutcome data represented as HR and 95% CI.
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for changes in estimated GFR to guide dosing of many
glucose-lowering therapies is important to ensure
medication use safety.89 For example, this is especially
important with metformin to protect against
metformin-associated lactic acidosis.64 Because of the
association with dose and treatment duration-related
Table 7. Key monitoring and risk mitigation strategies for preferred gluco
Medication class Consideration

Metformin � Metformin-associated lactic acidosis � Monitor eGFR
� Adjust metform
� Consider dose

hypoxemia if
� Institute a sick

� B12 malabsorption � Monitor patien

SGLT2 inhibitors � Volume depletion � Proactive dos
� Hold SGLT2 in

� Diabetic ketoacidosis � Educate abou
� Monitor blood
� Institute a sick
� Maintain at le

� Genital mycotic infections � Counsel on ge
� Hypoglycemia � Adjust backgr

GLP1 receptor agonists � Nausea/vomiting/diarrhea � Start at lowes
� Educate on po

� Hypoglycemia � Adjust backgr

eGFR, estimated glomerular filtration rate; GI, gastrointestinal; GLP1, glucagon-like peptide-1; S
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B12 deficiency with metformin use,144 B12 monitoring
is also recommended in patients treated with metformin
for over 4 years.64 Risk mitigation strategies for SGLT2
inhibitors may include, but are not limited to, hygiene
counseling to avoid genital mycotic infections in
women and men, provision of sick day rules and
se-lowering agents64,73

Monitoring and/or risk mitigation strategies

with increasing frequency as eGFR falls <60 ml/min/1.73 m2

in dose as appropriate per eGFR
reduction in the presence of conditions that predispose patients to hypoperfusion and

eGFR 45–59 ml/min/1.73 m2

day protocol
ts for vitamin B12 deficiency when treated with metformin for >4 years

e reduction of diuretics in patients at high risk for hypovolemia
hibitors during illness
t signs/symptoms to facilitate early recognition
or urine ketones for very high risk
day protocol

ast low-dose insulin in insulin-requiring individuals
nital hygiene (e.g., regular bathing and wearing clean undergarments)
ound glucose-lowering agents (e.g., insulin and/or sulfonylureas) as appropriate

t recommended dose and titrate slowly
tential GI intolerance and importance of communicating severe symptoms to care team
ound glucose-lowering agents (e.g., insulin and/or sulfonylureas) as appropriate

GLT2, sodium-glucose cotransporter-2.
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Table 8. Opportunities for addressing barriers to optimized T2D and CKD care through use of multidisciplinary teams150,151

Barrier/Gap Utilize members of the multidisciplinary team (e.g., clinical pharmacists, nurses) to:

Underuse of recommended therapies (e.g., ACE inhibitors/ARBs, SGLT2 inhibitors, GLP1
receptor agonists, finerenone) and overuse of potentially nephrotoxic agents (e.g.,
PPIs, NSAIDs)

� Identify potential candidates for organ-protective therapies
� Screen for use of potentially nephrotoxic prescription and over-the-counter agents

Access barriers and high costs of medications (e.g., SGLT2 inhibitors) � Assisting patients with access and cost barriers

Need for longitudinal assessment of kidney function and other risk factors to direct care � Provide initial and ongoing education to patients and caregivers about risk miti-
gation strategies

Lack of coordinated care and effective communication among members of the healthcare
team

� Facilitate coordination of care among members of the healthcare team (e.g.,
primary care, endocrinology, nephrology, cardiology)

ACE, angiotensin-converting enzyme; ARB, angiotensin receptor blocker; CKD, chronic kidney disease; NSAIDs, nonsteroidal antiinflammatory drugs; PPI, proton pump inhibitor; SGLT2,
sodium-glucose cotransporter 2; T2D, type 2 diabetes.
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insulin administration guidelines to reduce risk of
SGLT2 inhibitor-associated diabetic ketoacidosis, and
proactive reduction of diuretics as needed for patients
at risk for hypovolemia and orthostasis.64 SGLT2 in-
hibitor initiation is associated with a reversible decline
in estimated GFR of 3 to 5 ml/min per 1.73 m2.
Following an initial “eGFR dip,” kidney function will
generally return toward baseline in several weeks and
then stabilize during SGLT2 inhibitor therapy.145,146

Among participants in the Canagliflozin and Renal
Events in Diabetes with Established Nephropathy
Clinical Evaluation trial, the initial decline in estimated
GFR (up to 30%) did not influence subsequent esti-
mated GFR, except in those with baseline estimated
GFR of 45 to 59 ml/min per 1.73 m2 in whom the initial
Figure 5. Overcoming barriers to management of diabetic kidney
disease. Overcoming key barriers in the management of DKD is
important to improve DKD management and patient outcomes.
Patient-level, provider-level, and system-level barriers lead to low
disease awareness, suboptimal screening and identification,
delayed implementation of kidney protective therapies, and poor
patient outcomes. Initiatives and efforts to address these barriers
may include multidisciplinary educational activities about DKD,
harmonization of clinical practice guidelines, provision of diabetes
self-management education programs that emphasize DKD-related
education, development and utilization of multidisciplinary DKD
care models, and educating patients about risk mitigation strategies
to maximize medication use safety. DKD, diabetic kidney disease.
Reprinted with permission from Neumiller JJ, Alicic RZ, Tuttle KR.
Overcoming barriers to implementing new therapies for diabetic
kidney disease: lessons learned. Adv Chronic Kidney Dis.
2021;28(4):318–327.
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dip was actually associated with a slower rate of esti-
mated GFR decline.147 In an analysis of approximately
6700 participants enrolled in the Empagliflozin Car-
diovascular Outcome Event Trial in Type 2 Diabetes
Mellitus Patients trial, a decrease of >10% from base-
line estimated GFR was found to be associated with
more advanced CKD and diuretic use, and did not
impact cardiovascular or kidney outcomes.146 There-
fore, the initial “eGFR dip” generally does not neces-
sitate drug discontinuation.64 Because SGLT2
inhibition results in an initial natriuresis, it may be
reasonable to reduce the dose of background diuretics
in patients at risk for hypovolemia.64 To minimize
gastrointestinal adverse events, GLP-1RAs should be
initiated at the lowest dose and titrated slowly per
patient response.64

Because SGLT2 inhibitors and GLP-1RAs are rec-
ommended for use in T2D and CKD for kidney and
heart protection irrespective of glycemic control, they
may be initiated in patients not requiring additional
glucose lowering. In this situation, considering
adjustment of background hypoglycemic agents is
appropriate to mitigate hypoglycemia risk.64 In pa-
tients on an insulin regimen who have an
HbA1c #8.0%, consideration should be given to
lowering basal insulin by approximately 20% when
starting a glucose-lowering agent for kidney and heart
protection.148,149 For those on background sulfonylurea
therapy, the sulfonylurea dose may be reduced by
approximately 50% or discontinued upon initiation of
the SGLT2 inhibitor or GLP-1RA. For those with an
HbA1c >8.0%, the SGLT2 inhibitor or GLP-1RA can
usually be initiated without adjustment of background
glucose-lowering therapies. In those with a history of
severe hypoglycemia or hypoglycemia unawareness,
additional caution is appropriate.

Optimizing Outcomes in Patients with T2D and

CKD: Multidisciplinary Models of Care

With the establishment of SGLT2 inhibitors and GLP-
RAs as agents that improve kidney and cardiovascu-
lar outcomes, it is now critical to optimize use of these
2601
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life-saving therapies.150 KDIGO recommends a team-
based integrated care approach delivered by multidis-
ciplinary healthcare professionals to meet patient-
centered goals, including attainment of guideline-
directed glycemic, blood pressure, and lipid goals;
use of kidney and heart protective agents, and ongoing
self-management support.150,151 Multidisciplinary ef-
forts to optimize treatment and outcomes in the setting
of T2D and CKD is important when considering the
historical underuse of recommended therapies, such as
ACE inhibitors and ARBs, in this high-risk population
(Table 8).150-152 Effective use of multidisciplinary teams
has the potential to address many barriers to optimize
care for patients with T2D and CKD (Figure 5).150,151

Conclusions

Recent therapeutic advances offer a unique opportu-
nity to transform care of patients with diabetes and
CKD. With therapies readily available and proven to
save lives, kidneys, and hearts, it is imperative to
address barriers to implementation150 In many coun-
tries, limited access to kidney replacement therapy
equates progression to kidney failure and to high
likelihood of death.11 Systematic transformative ap-
proaches are needed to increase use of therapies that
will deliver optimal care for CKD and cardiovascular
risk reduction in diabetes.
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