
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Deng Liufu,
Shanghai Jiao Tong University, China

REVIEWED BY

Arutha Kulasinghe,
The University of Queensland,
Australia
Jiang Li,
Sun Yat-sen University Cancer Center,
China

*CORRESPONDENCE

Jingbo Wang
wangjingbo303@yahoo.com
Junlin Yi
yijunlin1969@163.com

†These authors have contributed
equally to this work

SPECIALTY SECTION

This article was submitted to
Cancer Immunity
and Immunotherapy,
a section of the journal
Frontiers in Immunology

RECEIVED 09 August 2022

ACCEPTED 10 October 2022
PUBLISHED 10 November 2022

CITATION

Zhou F, Shayan G, Sun S, Huang X,
Chen X, Wang K, Qu Y, Wu R, Zhang Y,
Liu Q, Zhang J, Luo J, Shi X, Liu Y,
Liang B, Li Y-X, Wang J and Yi J (2022)
Spatial architecture of regulatory
T-cells correlates with disease
progression in patients with
nasopharyngeal cancer.
Front. Immunol. 13:1015283.
doi: 10.3389/fimmu.2022.1015283

COPYRIGHT

© 2022 Zhou, Shayan, Sun, Huang,
Chen, Wang, Qu, Wu, Zhang, Liu,
Zhang, Luo, Shi, Liu, Liang, Li, Wang and
Yi. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

TYPE Original Research
PUBLISHED 10 November 2022

DOI 10.3389/fimmu.2022.1015283
Spatial architecture
of regulatory T-cells
correlates with disease
progression in patients
with nasopharyngeal cancer

Fengge Zhou1,2†, Gulidanna Shayan1†, Shiran Sun1,
Xiaodong Huang1, Xuesong Chen1, Kai Wang1, Yuan Qu1,
Runye Wu1, Ye Zhang1, Qingfeng Liu1, Jianghu Zhang1,
Jingwei Luo1, Xinqi Shi1, Yang Liu1, Bin Liang1, Ye-Xiong Li1,
Jingbo Wang1* and Junlin Yi1,3*

1Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for
Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College,
Beijing, China, 2Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to
Shandong First Medical University, Jinan, Shandong, China, 3Department of Radiation Oncology,
National Cancer Center/National Clinical Research Center for Cancer/ Hebei Cancer Hospital,
Chinese Academy of Medical Sciences, Langfang, China
Purpose: This study aims to investigate the prognostic value of composition

and spatial architecture of tumor-infiltrating lymphocytes (TILs) as well as PDL1

expression on TILs subpopulations in nasopharyngeal carcinoma (NPC).

Methods: A total of 121 patients with NPC were included and divided into two

groups: favorable (n = 68) and unfavorable (n = 53). The archived tumor tissues

of the included patients were retrieved, and a tissue microarray was

constructed. The density and spatial distribution of TILs infiltration were

analyzed using the multiplex fluorescent immunohistochemistry staining for

CD3, CD4, CD8, Foxp3, cytokeratin (CK), PDL1, and 4′,6-diamidino-2-

phenylindole (DAPI). The infiltration density of TILs subpopulations and PDL1

expression were compared between the two groups. The Gcross function was

calculated to quantify the relative proximity of any two types of cells. The Cox

proportional hazards regression model was used to identify factors associated

with overall survival (OS) and disease-free survival (DFS).

Results: The densities of regulatory T-cells (Tregs), effector T-cells (Teffs), PDL1

+ Tregs, and PDL1+ Teffs were significantly higher in patients with unfavorable

outcomes. PDL1 expression on tumor cells (TCs) or overall TILs was not

associated with survival. Multivariate analysis revealed that higher PDL1+

Tregs infiltration density was independently associated with inferior OS and

DFS, whereas Tregs infiltration density was only a prognostic marker for DFS.

Spatial analysis revealed that unfavorable group had significantly stronger Tregs

and PDL1+ Tregs engagement in the proximity of TCs and cytotoxic T

lymphocyte (CTLs). Gcross analysis further revealed that Tregs and PDL1+
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death-ligand 1; PD1, programmed cell death pro

infiltrating lymphocytes; OS, overall survival; DFS,

CTLs, cytotoxic T lymphocytes; Teffs, effector T cell

cells; IC, immune cell; TC, tumor cell; IQR, interquar
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Tregs were more likely to colocalize with CTLs. Moreover, increased GTC : Treg
(Tregs engagement surrounding TCs) and GCTL : PDL1+ Treg were identified as

independent factors correlated with poor outcomes.

Conclusion: TILs have a diverse infiltrating pattern and spatial distribution in

NPC. Increased infiltration of Tregs, particularly PDL1+ Tregs, as well as their

proximity to TCs and CTLs, correlates with unfavorable outcomes, implying the

significance of intercellular immune regulation in mediating disease progression.
KEYWORDS

tumor infiltrating lymphocytes (TILs), programmed cell death ligand 1 (PDL1),
nasopharyngeal carcinoma (NPC), cell spatial distribution, regulatory T cells (Tregs),
cytotoxic T lymphocytes (CTLs), immune supression, proximity
Background

Nasopharyngeal carcinoma (NPC) is characterized by

its close association with Epstein–Barr virus (EBV) infection,

poor differentiation, and sensitivity to radiotherapy and

chemotherapy (1, 2). Intensity-modulated radiotherapy

(IMRT) and advanced chemotherapeutic regimens have

provided excellent overall loco-regional management for NPC

(3–5). However, distant metastasis and local recurrence continue

to occur in approximately 30%–40% of patients, and the

response rate to immune checkpoint inhibitors is only 20%–

30% (6–11). Therefore, it is crucial to identify additional robust

prognostic markers of NPC and guide treatment beyond the

well-known staging system and EBV DNA load (12).

The tumor microenvironment (TME) is an intricately

organized landscape occupied by infiltrating immune cells,

epithelial cells, vascular and lymphatic vessels, cytokines, and

chemokines (13). The tumor immune microenvironment

(TIME) is critical in the development and progression of

many solid tumors (14–19). TIME analysis reveals the diverse

composition and functional states of immune cells (20). Tumor-

infiltrating lymphocytes (TILs), being the most important

component of TIME, play a vital role in mediating antitumor

immunity in the TME. Previous studies have demonstrated that

TILs have a prognostic impact on a variety of solid cancers (15–

19). Nevertheless, tumor cells (TCs) can evade immune

surveillance in a variety of ways, including upregulating

immune checkpoint receptor ligands such as programmed
L1, programmed cell

tein 1; TILs, tumor

disease free survival;

s; Tregs, regulatory T

tile range; HR, hazard

ance status.
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death-ligand 1 (PDL1) (21). Furthermore, regulatory T-cells

(Tregs) and other suppressive signals can enhance tumor

progression by attenuating antitumor immunity (13–15, 20).

A few studies have been conducted over the last several decades

to investigate the immunological landscape of NPC using

hematoxylin and eosin (H&E) staining, immunohistochemical

(IHC) staining, and flow cytometry. Recent studies have

demonstrated that the immunological components such as CD8

+ T-cell infiltration and PD1/PDL1 expression may have

prognostic value, but the results are still controversial (22–24).

Asides from TILs composition, a few recent studies have shown

that the spatial architecture of the TIME may also play an essential

role in mediating cancer progression (25, 26). Thus, investigating

the TIME composition and spatial architecture of NPC samples

may provide additional critical insights into the complex and

heterogeneous immunological landscape associated with

disease progression.

The present study provides a comprehensive analysis of the

composition and abundance of TILs, as well as PDL1 expression in

the TME using the multiplex fluorescent immunohistochemistry

(mfIHC) approach, aiming to evaluate the prognostic role of TILs in

NPC. Furthermore, the spatial architecture of TCs and TILs is

studied using multispectral imaging analysis. This allows

researchers to assess the role of TILs’ intercellular proximity and

distribution pattern in mediating disease progression, revealing a

potential treatment-responsive biomarker for immune-

modulatory therapy.
Materials

Study population

In this study, patients with NPC who were staged as I–IVA

according to the 8th American Joint Committee on Cancer
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(AJCC) TNM staging system, had no concomitant immune

system disease, received IMRT at our institution between

March 2010 and July 2014, and had sufficient tumor sample

collection prior to any anticancer treatment were included.

Eligible patients were then divided into two groups with

comparable clinicopathological characteristics but distinct

posttreatment outcomes. For attaining a balance between the

two groups, clinicopathological data such as age, sex, smoking

history, histological classification, AJCC 8th TNM stage,

Karnofsky performance status, lactate dehydrogenase level,

hemoglobin level, platelet count, and treatment modality were

considered. The 5-year disease progression rate was the main

prognostic index in this study. Finally, 121 patients were

included, with 68 in the favorable group surviving at least 5

years without disease progression (Group 1) and 53 in the

unfavorable group having disease progression within 5 years

(Group 2).
Samples for mfIHC stains

All fresh tumor samples were preserved at our institution at

−80°C liquid nitrogen with signed written informed consent.

Formalin-fixed, paraffin-embedded (FFPE) blocks were

prepared using a standard method. All H&E-stained slides

were reassessed independently by two pathologists, and they

were blinded to clinical data. After reviewing H&E-stained

slides, one 1.5 mm diameter tumor tissue core from

representative sections of FFPE blocks was used to construct

the tissue microarray (TMA) (Shanghai Outdo Biotech Co., Ltd).
Seven-color immunohistochemical
multiplex

The Opal 7-color manual IHC kit 50 slides (Akoya,

NEL811001KT) was used according to the manufacturer’s

protocol. Briefly, TMA block sections were deparaffinized in

an automatic dyeing machine (Leica ST5020, Leica) and

subjected to antigen retrieval by microwave treatment in

Citrate buffer (pH=6.0). Sections were then incubated in 3%

hydrogen peroxide in methanol for 30 min at room temperature

and subsequently with a blocking solution containing 0.3%

bovine serum albumin in 0.05% Tween solution for 30 min.

Then, the sections were incubated with primary antibody for 60

min at room temperature and its corresponding HRP-

conjugated secondary antibody for 10 min, followed by opal

fluorophores for 10 min. The staining sequence of primary

antibodies and corresponding fluorescence channels was anti-

CD4, CD3, PDL1, CD8, Foxp3 and CK, with the corresponding

opal fluorophores 520, 690, 570, 620, 540 and 650, respectively.

After staining the above markers in turn, sections were

counterstained with 4′,6-diamidino-2-phenylindole (DAPI)
Frontiers in Immunology 03
(Life Tech) and mounted with VECTASHIELD fluorescence

mounting medium (Vector Labs, Burlingame, CA).
TILs phenotyping

To study the infi l trat ion composit ion of T-cel l

subpopulations in NPC and their potential correlation with

posttreatment progression, the following markers were used:

cytokeratin (CK), CD3, CD4, CD8, Foxp3, and 4′,6-diamidino-

2-phenylindole (DAPI,nuclear stain). CK was used to identify

epithelial cancer cells in NPC tumor samples. The detailed

information on biomarkers and antibodies used is presented in

Supplementary Table 1. T-cells were identified using the CD3

marker. Furthermore, T-cell subpopulations were identified

according to the standard staining protocol as cytotoxic T

lymphocytes (CTLs, CD3+CD8+), CD4+ effector T-cells (Teffs,

CD3+CD4+Foxp3-), Tregs (CD3+CD4+Foxp3+), and other T-

cells (CD3+CD4-CD8-Foxp3-) (27). Finally, all other cells that

were not recruited in our phenotyping categories, such as

normal nasopharyngeal epithelial cells, blood vessels, nerves,

macrophages, and other nuclear cells, were grouped into one

category and labeled as “others.”
Multispectral imaging

Multiplex fluorescent-stained TMA slides were scanned

using the image analysis software StrataQuest (TissueGnostics-

StrataQuest 7.7.1.165 version) for multicellular contextual tissue

analysis in both bright field and fluorescence images. The total

counts of various cell phenotypes derived from all available cores

were analyzed. Additionally, the core density was calculated by

dividing the total number of cells by the area of each core (cells/

mm2). The spectral signature for each fluorophore was

determined using single-antigen staining and captured using a

multispectral fluorescent microscope, which records an image

every 10 nm over the full-emission spectrum. This enabled the

simultaneous capture of seven different fluorophores into a

single composite image, which could then be unmixed and

separated into six unique images representing each

fluorophore and the nuclear stain DAPI, as well as the precise

x and y spatial coordinates of each identified cell.
PDL1 evaluation

PDL1 immunostaining was observed in the membrane and/

or cytoplasm of the TCs and lymphocytes. At the cellular level,

PDL1 expression was measured as the percentage of tumor or

immune cells with positive staining (range: 0%–100%). At the

patient level, specific phenotypes of cells with a PDL1 staining
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1015283
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhou et al. 10.3389/fimmu.2022.1015283
score of at least 5% were considered positive PDL1 expression

(22). Since the evaluation and cutoff values for TILs are not

standardized, the immune cell count in our study was based on a

predetermined threshold of fluorescence intensity, which was

identified by the mean value of fluorescence intensity of stained

cells manually counted at a magnification (200×) in 10 random

views. The median density of immune cells was chosen to divide

the patient cohort into high and low expression groups (28). All

staining was assessed by two independent pathologists who were

blinded to the clinicopathologic data.
Spatial distribution

The spatial distribution of TILs surrounding TCs was first

analyzed in various tissue compartments (inner tumor vs.

stroma). Next, the stroma area within 200 µm of the tumor

edges was divided into 10 intervals, and the infiltration density of

each type of TILs within each interval was quantitatively

estimated. Furthermore, the Gcross function (Gij(r)) was

calculated to estimate the distribution probability of finding at

least one specified point “j” within a given radius “r” (µm) of any

specified point “i,” allowing quantification of the relative

proximity of any two cell types (29). Therefore, the Gcross

function value becomes a quantitative index of TILs infiltration

when the “i” is applied as a TC and “j” as TILs, with greater GTC :

TIL values indicating a higher TILs infiltration density near TCs.

Additionally, the area under the curve (AUC) of the Gcross

curve was calculated to represent the accumulated infiltration

level of cell type “j” within a given distance from cell type “i.”

Accordingly, larger AUCs indicate higher immune cell

interaction around TCs. Typical Gcross function curves

indicating high (left), intermediate (middle), and low (right)

levels of infiltration are illustrated in Supplementary Figure 1.
Statistical analysis

The continuous variables, such as percentage, density, and

Gcross value, were presented as median and interquartile range

(IQR) and compared between two groups using the Mann–

Whitney U-test. The categorical data were compared using the

Chi-squared test. Disease-free survival (DFS) was defined as the

time between the first date of diagnosis and disease progression

or death, whereas overall survival (OS) was defined as the time

between the first day of treatment and death from any cause or

the last follow-up. The survival index was estimated using the

Kaplan–Meier method, and the significance of the difference was

assessed using the log-rank test. The Cox proportional hazards

regression model was used to identify factors related to survival

variables and to calculate the hazard ratio and corresponding

confidence interval. To further evaluate the prognostic

significance of TME, the densities and spatial architectures of
Frontiers in Immunology 04
TIL phenotypes were respectively assessed in multivariable Cox

regression models that initially included age, sex, smoking

history, histological type, N stage, T stage, and TNM stage. All

statistical tests were two-sided, and a p-value of 0.05 or less was

considered statistically significant. All statistical analyses were

conducted by using the GraphPad Prism 8.0 software (GraphPad

Software Inc.), the Statistical Package for the Social Sciences

(SPSS) 22.0 software (IBM Inc.), and the R 3.6.3 software (R

Foundation for Statistical Computing).
Results

Patients ‘ clinicopathological
characteristics

In the final analysis, 121 patients with NPC were included and

classified into two groups: favorable (Group 1, n = 68) and

unfavorable (Group 2, n = 53). The overall population had a

median follow-up time of 78.0 months (IQR: 57.5–93.2 months).

The 5-year OS and DFS rates in the favorable and unfavorable

groups were 100% vs. 45.3% (p < 0.001) and 100% vs. 0% (p <

0.001), respectively. Table 1 demonstrates the clinicopathological

characteristics of all studied patients. The median age in the

favorable and unfavorable groups was 48 and 47 years,

respectively, with males accounting for the majority of patients

in both groups. Nearly 90% of patients had stage III to IVA

diseases and received concurrent chemoradiotherapy. The

pathological classification of all patients was nonkeratinizing

undifferentiated subtype. Furthermore, the clinicopathological

characteristics were comparable between the two groups.
TILs subpopulation heterogeneity and
disease progression

TILs subpopulations and PDL1 expression on TCs and TILs

were assessed for each core using mfIHC staining. Figure 1

shows a representative immunofluorescence image. When the

TILs compositions of the two groups were compared, patients in

Group 2 had a significantly higher proportion of Tregs than

those in Group 1 (0.8% vs. 0.3%, respectively, p = 0.023), whereas

there was no significant difference in the proportions of TCs,

total TILs, Teffs, and CTLs (Figures 2A–D).

Aside from cell proportion, cell density (calculated by

dividing cell counts by area) can reflect cell distribution to

some extent. The median densities of the total TILs, CTLs,

Teffs, and Tregs were 2260.1 (IQR: 1721.1–3213.1), 582.1 (IQR:

242.7–1225.1), 140.1 (IQR: 69.8–318.6), and 58.2 (IQR: 19.0–

142.0) cells/mm2, respectively. There were no significant

differences in total TILs or CTLs density between the two

groups (Figures 2E, F), but the median Tregs density (103.6 vs.

34.0 cells/mm2, p = 0.002) and median Teffs density (184.4 vs.
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113.3 cells/mm2, p = 0.023) were significantly higher in patients

with an unfavorable outcome than in those with a favorable

outcome, respectively (Figures 2G, H). The detailed densities of

each subtype are presented in Supplementary Table 2. When the

median value was used as a cutoff, no significant associations

were found between the infiltration densities of any of the TILs

subpopulations and clinicopathological characteristics

(Supplementary Table 3), implying that TILs have a prognostic

impact that is independent of clinicopathological features.

Furthermore, PDL1 expression was assessed in various cell

subtypes. The median percentages of PDL1 positive TCs (PDL1+

TCs) and PDL1 positive TILs (PDL1+ TILs) in the favorable and

unfavorable groups were 20.3% vs. 18.6% (p = 0.775) and 71.1%

vs. 60.0% (p = 0.166), respectively. In the overall population, the

median densities of PDL1+ TCs and PDL1+ TILs were 3113.8

(IQR: 1043.4–5461.6) and 1037.4 (IQR: 711.5–1709.1) cells/

mm2, respectively. In terms of PDL1 expression on TILs

subpopulations, densities of PDL1+ Tregs (56.1 vs. 17.7 cells/

mm2, p = 0.001) and PDL1+ Teffs (112.7 vs. 58.0 cells/mm2, p =

0.011) were significantly higher in patients with unfavorable

outcomes than in those with favorable ones, respectively, with no

significant differences in densities of PDL1+ TCs, PDL1+ TILs,

or PDL1+ CTLs between the two groups (Figures 2I–L).

When the median value was used as a cutoff, no significant

association was found between the infiltration densities of PDL1

+ TCs, PDL1+ TILs, or any PDL1+ TILs subpopulations and the

clinicopathological characteristics (Supplementary Table 4),

implying that the higher infiltration density of PDL1+ Tregs

and PDL1+ Teffs in the unfavorable group was independent of

other prognostic factors for NPC.
Tregs spatial distribution and disease
progression

The spatial distribution pattern of TILs subpopulations was

analyzed to further investigate the impact of Tregs and PDL1+

Tregs on disease progression. Despite the similarity in the total

TILs infiltration between the inner and stroma areas in the

overall population, the stroma area had significantly higher

infiltrations of CTLs (p = 0.001), Teffs (p < 0.001), Tregs (p =

0.04), and PDL1+ Tregs (p < 0.001) (Figure 3A). There was no

significant difference between the two groups in terms of total

TILs, CTLs, Teffs, Tregs, or PDL1+ Tregs engagement within the

inner tumor area (Figure 3B). Patients in the unfavorable group

had greater infiltration of Tregs (p = 0.008) and PDL1+ Tregs

(p = 0.015) within the stroma area (Figure 3C). Detailed

infiltration densities of TIL subpopulations in the inner and

stromal areas are presented in Supplementary Table 5. The

Gcross function was used as a more precise descriptive
TABLE 1 General characteristics of patients in two groups.

Characteristics Group 1 (n=68) Group 2 (n=53) P value

n (%) n (%)

Age (years) 0.964

Median(range) 48 (18-76) 47 (23-74)

Sex 0.667

Male 53 (77.9) 43 (81.1)

Female 15 (22.1) 10 (18.9)

Smoking history 0.845

No 29 (43.3) 22 (41.5)

Yes 38 (56.7) 31 (58.5)

Histological type 0.900

WHO II 29 (42.6) 22 (41.5)

WHO III 39 (57.4) 31 (58.5)

T stage 0.900

T1 11 (16.2) 10 (18.9)

T2 14 (20.6) 9 (17.0)

T3 22 (32.4) 20 (37.7)

T4 21 (30.9) 14 (26.4)

N stage 0.082

N0 7 (10.3) 2 (3.8)

N1 18 (26.5) 9 (17.0)

N2 21 (30.9) 28 (52.8)

N3 22 (32.4) 14 (26.4)

Overall stage 0.653

I 2 (2.9) 1 (1.9)

II 6 (8.8) 2 (3.8)

III 23 (33.8) 22 (41.5)

IVA 37 (54.4) 28 (52.8)

KPS 1.000

<80 3 (4.4) 2 (3.8)

≥80 65 (95.6) 51 (96.2)

LDH(U/L) 0.085

<245 67 (98.5) 48 (90.6)

≥245 1 (1.5) 5 (9.4)

HB (g/L) 0.327

<130 9 (13.2) 11 (20.8)

≥130 59 (86.8) 42 (79.2)

PLT (×109/L) 0.432

<300 59 (88.1) 44 (83.0)

≥300 8 (11.9) 9 (17.0)

Treatment pattern 0.825

CCRT 44 (64.7) 33 (62.2)

IC+CCRT 10 (14.7) 10 (18.9)

RT/IC+RT/CCRT
+AC

14 (20.6) 10 (18.9)
WHO II, non-keratinizing differentiated carcinoma; WHO III, non-keratinizing
undifferentiated carcinoma; KPS, karnofsky performance status; LDH, lactate dehydrogenase;
HB, haemoglobin; PLT, platelet; CCRT, concurrent chemoradiotherapy; IC, induction
chemotherapy; RT, radiation therapy; AC, adjuvant chemotherapy.
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method to better investigate spatial intercellular interactions.

Figure 3D depicts a schematic model for various scenarios of

infiltration with the same number of immune cells located

within a 20 µm radius of the TC. Despite the same infiltration

density, the Gcross function can better reflect the distinct

engagement level of immune cells. Within a 100 µm radius,

the AUCs of the Gcross functions reflecting various cellular

interactions were compared between the two groups, with

patients with poor outcomes having significantly higher

Gcross AUCs of the TC : Tregs (Figure 3E). Figures 3F–H

show Gcross function values at specific radii of 20, 30, and 50

µm. Similarly, patients with poor outcomes had significantly

higher GTC : Treg at radii of 30 and 50 µm, as well as higher GTC:

PDL1+ Treg at the radius of 50 µm. Detailed Gcross function values

for each radius for the two groups are presented in

Supplementary Table 6. The spatial distributions of Tregs and

PDL1+ Tregs surrounding CTLs were also investigated, in

addition to intercellular distances between TILs and TCs. The

Gcross AUCs of CTL : Treg and CTL : PDL1+ Treg were

significantly higher in the unfavorable group, implying that

Tregs and PDL1+ Tregs are strongly engaged in the proximity

of CTLs. Consistent with the AUC analysis, both GCTL : Treg and

GCTL: PDL1+ Treg at the specific radius of 20, 30, and 50 µm were

significantly higher in patients with disease progression,

indicating the potential role of intercellular interaction

between Tregs, PDL1+ Tregs, and CTLs in mediating tumor
Frontiers in Immunology 06
progression. It should be noted that both Tregs and PDL1+

Tregs had much higher infiltration probabilities near CTLs than

TCs (Supplementary Table 7).
Univariate and multivariate analyses for
OS and DFS

In the overall study population, Table 2 presents univariate

and multivariate analyses of density and Gcross function score of

TILs subpopulations for OS and DFS. Patients with higher

densities of Tregs, PDL1+ Teffs, and PDL1+ Tregs had

significantly lower DFS in univariate analysis. Patients with

more abundant PDL1+ Tregs infiltration had a lower OS, with

a p-value approaching statistical significance. Further

multivariate analysis revealed that higher infiltrations of Tregs,

Teffs, PDL1+ Teffs, and PDL1+ Tregs were significantly

associated with lower DFS, whereas only abundant PDL1+

Tregs infiltration may be associated with lower OS trending

toward significance.

Furthermore, the impact of Tregs spatial architecture on

disease progression was investigated. Univariate analysis of the

Gcross function revealed that the TC : Treg, TC : PDL1+ Treg,

CTL : Treg, and CTL : PDL1+ Treg colocalizations were all

associated with worse DFS to varying degrees. Further
FIGURE 1

Opal seven-color multiplex analysis of NPC tumor tissue identifies specific TILs subtypes. Representative image of multiplex fluorescence
staining and the enlarged subsection are displayed on the top panel. In the lower panel, images for unmixed single marker of CD3, CD4, CD8
and Foxp3 are presented in the left four columns. The right column demonstrates merged fluorescence image of various combination of four
markers, resulting in the identification of typical TILs phenotypes such as CTLs, Teffs and Tregs.
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multivariate analysis confirmed that higher GTC : Treg, GTC : PDL1

+ Treg, GCTL : Treg, and GCTL : PDL1+ Treg all had independently

negative effects on DFS. Table 2 and Figures 4A, B present

detailed data on the univariable and multivariable analyses

for DFS.

Although TC : Treg, TC : PDL1+ Treg, CT : Treg, and CTL :

PDL1+ Treg colocalization within a certain radius had a significant

correlation with OS, multivariable analysis revealed that only GTC :

Treg and GCTL : PDL1+ Treg were independently correlated with lower
Frontiers in Immunology 07
OS. Table 2 and Figures 4C, D present detailed data on univariate

and multivariate Cox regression analyses for OS.

To better investigate the prognostic role of the aforementioned

elements, Figure 5 depicts the Kaplan–Meier survival curves for

OS andDFS between subgroups with high vs. low density of Tregs,

PDL1+ Tregs, and the high vs. low Gcross functions of TC : Treg

and CTL : PDL1+ Treg. The survival curves for OS and DFS

between subgroups with high and low infiltration, as well as other

TIL colocalization, are shown in Supplementary Figure 2.
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FIGURE 2

Composition of heterogeneous infiltrating immune cell subpopulations in Group 1 and Group 2. (A) Relative distribution of all analyzed cell
phenotypes in NPC sample tissues. (B-D) Relative distribution analysis of different T cell subtypes between two groups, firstly by separating the
total cell number into other, CK+ cells or CD3+ T cells (including all T cell subtypes) (B); then focusing on CD3+ T cells and dividing them into
CD4+ T (CD3+CD4+), CD8+ (CD3+CD8+) and other (CD3+CD4-CD8-) cells (C); and finally focusing on CD3+CD4+ T cells and dividing them
into Foxp3+ and Foxp3- T cells (D). (E-H) Pairwise comparisons of the density of TIL subpopulations between the two groups for TILs (E), CTLs
(F), Teffs (G) and Tregs (H). (I-L) Pairwise comparisons of PDL1 positive TIL subpopulations between the two groups. *p < 0.05, **p < 0.01, ns,
not significant.
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Discussion

In this study, we comprehensively analyzed the composition

and spatial distribution of TILs and PDL1 expression in NPC

using mfIHC and multispectral imaging analysis. Tregs and
Frontiers in Immunology 08
PDL1+ Tregs compositionally higher density and spatial

closeness to TCs were significantly associated with worse

outcomes. Furthermore, increased Tregs engagement,

particularly PDL1+ Tregs surrounding CTLs, was highly

associated with poor outcomes. Overall, our findings
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FIGURE 3

Spatial distribution of heterogeneous infiltrating immune cell subpopulations. (A) Pairwise comparison of the infiltration differences for TILs,
CTLs, Teffs, Tregs and PDL1+ Tregs in the whole population between inner and stroma area. (B) Pairwise comparison of the infiltration
differences for TILs, CTLs, Teffs, Tregs and PDL1+ Tregs within inner area between two groups. (C) Pairwise comparison of the infiltration
differences for TILs, CTLs, Teffs, Tregs and PDL1+ Tregs in stroma area between two groups. (D) Schematic model for different scenarios of
infiltration with the same number of immune cells locating within a 20 um radius of the tumor cell, reflecting distinct engagement level of
immune cells. (E) Pairwise comparisons of the Gcross-AUC values for GTC : CTL, GTC : Treg, GTC : Teff, GTC : PDL1+Treg, GCTL : Treg and GCTL : PDL1
+Treg between two groups. (F-H) Pairwise comparisons of the G-cross values at 20 um (F), 30 um (G) and 50 um (H) radii for GTC : CTL, GTC :

Treg, GTC : Teff, GTC : PDL1+Treg, GCTL : Treg and GCTL : PDL1+Treg between two groups. *p < 0.05, **p < 0.01, ***p < 0.001, ns, not significant.
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TABLE 2 Univariate and multivariate analysis for OS and DFS according to densities and Gcross functions of TILs subpopulations.

Variables Median IQR
(cells/mm2)

Disease-free survival Overall survival

Univariate HR
(95% CI)

Multivariate HR
(95% CI)a

Univariate HR
(95% CI)

Multivariate HR
(95% CI)a

Density

TILs 2260.1 (1721.2-3213.1)

High vs Low 1.13 (0.66-1.94) 1.27 (0.73-2.22) 1.12 (0.56-2.22) 1.19 (0.58-2.42)

p value 0.647 0.402 0.747 0.636

CTLs 582.1 (242.7-1225.1)

High vs Low 0.84 (0.49-1.44) 0.75 (0.42-1.32) 0.77 (0.38-1.53) 0.69 (0.34-1.42)

p value 0.539 0.317 0.45 0.316

Teffs 140.1 (69.8-318.6)

High vs Low 1.64 (0.94-2.84) 1.83 (1.03-3.23) 1.47 (0.73-2.95) 1.38 (0.67-2.82)

p value 0.078 0.039 0.279 0.382

Tregs 58.2 (19.0-142.0)

High vs Low 1.79 (1.03-3.12) 1.94 (1.09-3.42) 1.71 (0.85-3.46) 1.71 (-.83-3.51)

p value 0.040 0.023 0.136 0.146

PDL1+TILs 1037.4 (711.5-1709.1)

High vs Low 0.90 (0.53-1.55) 0.934 (0.54-1.62) 1.01 (0.54-2.13) 1.23 (0.61-2.46)

p value 0.701 0.807 0.836 0.563

PDL1+TCs 3113.8 (1043.4-5461.6)

High vs Low 0.78 (0.46-1.34) 0.76 (0.42-1.35) 1.39 (0.70-2.77) 0.72 (0.35-1.47)

p value 0.371 0.351 0.342 0.369

PDL1+CTLs 223.7 (76.0-466.6)

High vs Low 0.74 (0.43-1.27) 0.68 (0.38-1.20) 0.54 (0.26-1.09) 0.55 (0.26-1.13)

p value 0.274 0.180 0.085 0.105

PDL1+Teffs 69.7 (33.5-148.3)

High vs Low 1.87 (1.07-3.27) 2.07 (1.18-3.65) 1.27 (0.64-2.52) 1.40 (0.69-2.83)

p value 0.027 0.012 0.497 0.348

PDL1+Tregs 32.2 (11.5-63.7)

High vs Low 2.34 (1.32-4.14) 2.54 (1.42-4.56) 2.00 (0.98-4.08) 2.01 (0.98-4.15)

p value 0.003 0.002 0.055 0.058

Gcross function valueb

GTC : Treg 1.80 (0.55-4.35)

High vs Low 2.35 (1.33-4.15) 2.43 (1.34-4.42) 2.27 (1.10-4.69) 2.20 (1.04-4.63)

p value 0.003 0.004 0.026 0.039

GTC : PDL1+Treg 1.07 (0.40-2.61)

High vs Low 1.61(0.93-2.79) 1.68 (0.96-2.95) 1.62 (0.81-3.26) 1.57 (0.77-3.18)

p value 0.090 0.072 0.176 0.215

GCTL : Treg 9.19 (3.49-17.12)

High vs Low 2.01 (1.14-3.52) 2.16 (1.21-3.87) 1.96 (0.96-4.00) 1.78 (0.86-3.68)

p value 0.015 0.009 0.066 0.121

GCTL : PDL1+Treg 4.21 (1.38-9.41)

High vs Low 2.08 (1.18-3.65) 2.15 (1.21-3.80) 2.03 (0.99-4.15) 2.08 (1.00-4.29)

p value 0.011 0.009 0.053 0.049

20 um radius

GTC : Treg 0.0008 (0.0002-0.0031)

High vs Low 1.67 (0.96-2.89) 1.75 (0.98-3.12) 1.42 (0.71-2.83) 1.44 (0.70-2.95)

p value 0.069 0.060 0.32 0.326

(Continued)
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demonstrate that a suppressive immune microenvironment had

a propelling effect on NPC progression regardless of potential

clinical confounders, with crucial implications for prognosis

prediction and immune-modulatory therapy.

TILs are well known for their vital role in mediating

antitumor immune responses. Cellular factors including

myeloid-derived suppressor cells (MDSCs), tumor-associated
Frontiers in Immunology 10
macrophages(TAMs), CD8+ T cells and regulatory T cells

(Tregs) in TME also may impact the prognosis of sloid tumors

(30). Therefore, a thorough understanding of the diversity and

complexity of TME emerges as a crucial approach to identifying

more valid biomarkers for failure prediction and therapeutic

targets. Previous studies on the prognostic significance of TILs in

various tumors, including NPC, have yielded conflicting results.
TABLE 2 Continued

Variables Median IQR
(cells/mm2)

Disease-free survival Overall survival

Univariate HR
(95% CI)

Multivariate HR
(95% CI)a

Univariate HR
(95% CI)

Multivariate HR
(95% CI)a

GTC : PDL1+Treg 0.0006 (0.0000-0.0017)

High vs Low 1.21 (0.71-2.07) 1.23 (0.70-2.15) 1.09 (0.55-2.15) 1.04 (0.51-2.10)

p value 0.493 0.467 0.808 0.918

GCTL : Treg 0.0089 (0.0014-0.0212)

High vs Low 2.29 (1.29-4.04) 2.39 (1.33-4.29) 2.31 (1.11-4.80) 2.06 (0.99-4.30)

p value 0.004 0.003 0.025 0.053

GCTL : PDL1+Treg 0.0034 (0.000-0.0104)

High vs Low 2.01 (1.15-3.53) 2.14 (1.21-3.80) 1.70 (0.84-3.44) 1.79 (0.88-3.64)

p value 0.011 0.009 0.139 0.110

30 um radius

GTC : Treg 0.0037 (0.001-0.0111)

High vs Low 2.17 (1.24-3.81) 2.25 (1.24-4.09) 1.98 (0.98-4.04) 2.01 (0.97-4.19)

p value 0.007 0.008 0.058 0.062

GTC : PDL1+Treg 0.0026 (0.0006-0.0067)

High vs Low 1.64 (0.94-2.84) 1.72 (0.97-3.04) 1.63 (0.81-3.28) 1.62 (0.79-3.22)

p value 0.080 0.065 0.170 0.183

GCTL : Treg 0.0326 (0.0088-0.0670)

High vs Low 2.26 (1.28-3.40) 2.37 (1.31-4.30) 2.29 (1.20-4.75) 1.91 (0.91-4.01)

p value 0.005 0.004 0.027 0.087

GCTL : PDL1+Treg 0.0161 (0.0028-0.0319)

High vs Low 2.20 (1.25-3.87) 2.43 (1.37-4.30) 2.14 (1.04-4.37) 2.20 (1.07-4.54)

p value 0.006 0.002 0.038 0.032

50 um radius

GTC : Treg 0.0127 (0.0036-0.0342)

High vs Low 2.42 (1.37-4.28) 2.38 (1.32-4.30) 2.33 (1.13-4.80) 2.19 (1.05-4.58)

p value 0.002 0.004 0.022 0.037

GTC : PDL1+Treg 0.0071 (0.0027-0.0201)

High vs Low 1.99 (1.12-3.49) 2.00(1.12-3.56) 2.19 (1.06-4.51) 2.07 (0.99-4.32)

p value 0.017 0.019 0.034 0.054

GCTL : Treg 0.0842 (0.0265-0.1597)

High vs Low 1.78 (1.02-3.10) 1.91 (1.07-3.41) 1.70 (0.84-3.44) 1.56 (0.76-3.21)

p value 0.042 0.028 0.139 0.230

GCTL : PDL1+Treg 0.0384 (0.0110-0.0855)

High vs Low 2.34 (1.32-4.14) 2.45 (1.38-4.38) 2.37 (1.14-4.91) 2.35 (1.12-4.92)

p value 0.003 0.003 0.021 0.023
a,Cox proportional hazards regression model adjusted for age, sex, N stage, T stage, TNM stage, smoking history, histological type.
b,Gcross function values measured as the probability of finding at least one Treg/PDL1+Tregs within a given radius from a tumor cell or CTLs.
CI, confidence interval; HR, hazard ratio; IQR, interquartile range.
TILs, tumor infiltrating lymphocytes; CTLs, cytotoxic T lymphocytes; Teffs, positive effector T cells; Tregs, regulatory T cells; PDL1+ TILs, PDL1 positive tumor infiltrating lymphocytes; PDL1
+TCs, PDL1 positive tumor cells; PDL1+CTLs, PDL1 positive cytotoxic T lymphocytes; PDL1+Teffs, PDL1 positive effector T cells; PDL1+Tregs, PDL1 positive regulatory T cells.
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Wang et al. (19) and Almangush et al. (23) used H&E-stained

slides to assess the prognostic value of TILs in endemic and

nonendemic areas of NPC, respectively. Both studies found that

overall TILs were significantly associated with survival, whereas

TILs subtypes were not further evaluated. Ooft et al. (24), Al-

Rajhi et al. (31), and Zhu et al. (32) found that increasing

intratumoral CD3+ TILs infiltration was associated with

superior OS and DFS without further investigation of

subphenotypes. Ono et al. investigated TILs subpopulations

and found that higher CTLs density was a significant factor in

favorable prognosis (33). However, in our study, neither the

abundance nor the density of TILs or CTLs was found to be

associated with clinical outcomes. In agreement with our

finding, Larbcharoensub et al. found that CTLs abundance was

not associated with a significant difference in clinical survival

(34). These inconsistencies suggest the presence of significant

heterogeneity in TME and the need for further investigation of

TME’s impact on the antitumor immune response.

Tregs play crucial roles in suppressing antitumor immunity in

TME by expressing ligands for inhibitory checkpoint receptors and
Frontiers in Immunology 11
secreting suppressive cytokines, promoting the occurrence and

development of tumors (35, 36). Therefore, it is not surprising

that Tregs are often associated with a poor prognosis in cancer.

Although the high density of Foxp3 positive TILs was consistently

associated with poor survival in patients with operable tongue

cancer (37), breast cancer (38), hepatocellular cancer (39), ovarian

cancer (40), and esophageal cancer (41), it was also reported to be

associated with favorable outcomes in patients with head and neck

squamous cell cancer (42), colorectal cancer (43), and SCLC (44).

Such controversial findings have also been reported in patients with

NPC. Ooft et al. found that a high Foxp3 count was an independent

predictor of better OS (45). In our study, patients with a higher

infiltration of Tregs had a significantly inferior OS and DFS, which

was consistent with Lu’s study findings (46). Lab work conducted

by Huo et al. demonstrated that EBV-EBNA1 enhanced the

chemotactic migration of Treg cells through the TGFb1-SMAD3-

PI3K-AKT-c-JUN-miR-200a-CXCL12-CXCR4 axis in NPC

microenvironment, thereby promoting NPC immune escape (47).

Alternatively, Tregs can secrete immunosuppressive cytokines

including TGF-b, IL-10, and IL-35, and subsequently suppress
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FIGURE 4

Forest plots of multivariate analysis and univariate analysis of Gcross function score in the whole cohort. (A) Hazard ratio of univariate (black
solid line) and multivariate (red solid line) analysis of GTC : Treg, GTC : PDL1+Treg, GCTL : Treg and GCTL : PDL1+Treg for disease free survival (DFS).
(B) Hazard ratio of univariate (black solid line) and multivariate (red solid line) analysis of GTC : Treg, GTC : PDL1+Treg, GCTL : Treg and GCTL : PDL1+Treg
within certain raidus (20um, 30um and 50um) for disease free survival (DFS). (C) Hazard ratio of univariate (black solid line) and multivariate (red
solid line) analysis of GTC : Treg, GTC : PDL1+Treg, GCTL : Treg and GCTL : PDL1+Treg for overall survival (OS). (D) Hazard ratio of univariate (black solid
line) and multivariate (red solid line) analysis of GTC : Treg, GTC : PDL1+Treg, GCTL : Treg and GCTL : PDL1+Treg within certain raidus (20um, 30um and
50um) for overall survival (OS).
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cytotoxic effect of CD8 positive CTL and effector T cells (Teff) (48,

49). Therefore, overcoming the suppressive signal of Tregs may be

critical to restoring exhausted CTLs function and enhancing patient

responsiveness to immune-modulatory therapy.

The PD1/PDL1 axis is a well-known immune checkpoint

that attenuates T-cells’ antitumor immune response and

mediates immunological escape (50). Despite the fact that a

considerable number of studies assessed the prognostic value of

PDL1 expression in NPC, the results were inconsistent among

studies (23, 24, 32, 33, 51–55). Zhang et al. and Li et al. reported

that high PDL1 expression on TCs was significantly associated

with poor DFS or OS (55) (56). However, Zhu et al. found that

positive PDL1 expression on TCs is a favorable prognostic factor

in patients with NPC (32). Conversely, Liu et al. found that high

PDL1 expression on TILs and TCs was highly associated with

decreased local recurrence in patients with NPC after

radiotherapy (54). Similarly, Ono et al. demonstrated that

patients with higher PDL1 expression on TILs had longer

progression-free survival and OS (33). However, another two

previous studies found no association between PDL1 expression

on TILs and survival outcomes (34, 51). Likewise, neither PDL1+

TCs nor PDL1+ TILs densities were found to be associated with

survival outcomes in patients with NPC in our present study.

Aside from PDL1 expression on TCs and overall TILs, our

study used the mfIHC method to conduct a more extensive and

meticulous investigation into the prognostic significance of

PDL1 expression on TILs subphenotypes. The combination of

mfIHC, high-quality image acquisition, and multispectral

imaging analysis, as advanced technology, allows for
Frontiers in Immunology 12
simultaneous multimarker labeling as well as cellular

proximity analysis in a single core of tissue, providing a novel

insight into TME research. One notable finding in the present

study was that patients with more abundant PDL1+ Treg

infiltration had the worst survival. A similar scenario has been

reported in other solid tumors. DiDomenico et al. found that

PDL1 was important in the expansion and maintenance of Tregs

immunosuppression activity in glioma (57). Furthermore, Wu

et al. found that the frequency of PD-L1hi Tregs was positively

correlated with PD-1-positive CD8 in the tumor stroma of non-

small cell lung cancer (58). Additionally, Wu et al. found that

PD-1hi CD8 with PD-L1hi Tregs group had the lowest

proportion of tumor necrosis factor-alpha- and interferon-

gamma-producing CTLs while achieving the best response to

PD-1 blockade immunotherapy. Based on the present research,

it is plausible to speculate that PDL1 inhibitors may aid in the

recovery of CTL tumor-killing capacity by attenuating PDL1+

Treg suppression, thereby introducing another appealing

mechanism of PD1/PDL1 axis blockade. De et al. reported that

tumor infiltrating Tregs can express surface specific molecules

such as PD-L1 and PD-L2 in order to bind their receptors on the

surface of CD8+ T cells, inhibiting CD8+ T-cell activation,

which also supported our outcomes and hypothesis (36).

In addition to the composition of the TILs subpopulation,

our study revealed the intercellular spatial association in TME.

Although a few studies have researched the TME either by using

mIF (59) or by applying spatial analysis (60) in NPC, mIF based

TME composition and spatial structure have not been

comprehensively investigated. As far as we know, our study
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FIGURE 5

Comparisons of Kaplan-Meier survival curves between high and low infiltration density of TILs and Gcross function scores. (Upper panel)
Disease free survival curves for Tregs (A), PDL1+ Tregs (B), GTC : Treg (C) and GCTL : PDL1+Treg (D). (Lower panel) Overall survival curves for Tregs
(E), PDL1+ Tregs (F), GTC : Treg (G) and GCTL : PDL1+Treg (H).
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was the first to investigate both the compositional abundance

and the spatial distribution of TILs in NPC. In the present study,

Gcross analysis was adopted to quantify the intercellular

proximity between any two types of cells. Herein, radii of 20,

30, 50, and 100 µm were selected as distances of interest for this

study since distances between 20 and 110 µm have been

previously suggested to represent physiological distances for

direct intercellular crosstalk (25, 61). According to Gcross

analysis, significant engagement of Tregs surrounding TCs was

independently associated with poor outcomes. These findings

are consistent with recent findings in lung cancer (15) and

esophageal cancer (17), highlighting the significance of the

close proximity of Tregs to TCs in prompting progression.

Another significant finding of the present study is that closer

and denser infiltration of PDL1+ Tregs surrounding CTLs was

independently associated with a worse outcome. Furthermore,

we found that Tregs and PDL1+ Tregs had a substantially higher

probability of infiltrating near CTLs than TCs. These findings

support our hypothesis that PDL1+ Tregs interact with CTLs via

the PD1/PDL1 axis and subsequently mediate CTL dysfunction

in antitumor activity, resulting in enhanced immune

suppression. This has implications for future clinical

investigations and mechanisms of prognosis prediction, as well

as immunotherapy for patients with NPC.

Our study also has other strengths. To the best of our

knowledge, this is the first study to investigate both the

compositional abundance and the spatial distribution of TILs in

NPC. Second, our study population included two groups of patients

with well-matched characteristics but distinct DFS, which reduced

the confounding effect of traditional prognostic factors and aided

the identification of valid differential immunomarkers. Third, rather

than semiquantitative measurements, the mfIHC technology allows

for the codetection of multiple markers at a single cell level,

demonstrating the high quality of cell phenotyping and accurate

cell densities.

Nevertheless, there are several limitations to our study. First,

patients in our study received treatment in the early 2010s, when

EBV DNA was not well known as a prognostic factor. Therefore,

the EBV DNA data in our database were incomplete and thus were

not considered in the present study. Second, we only investigated

classical TILs subpopulations along with PDL1 expression, whereas

other markers of TILs functional state were not covered in this

study. Future studies incorporating alternative lymphocyte markers

could offer a more comprehensive landscape of TME. Third,

although we established the prognostic role of PDL1+ Tregs

infiltration in NPC, other immune-suppressive cell populations,

such as MDSCs and M2 macrophages, may also play vital roles in

immune suppression. Future studies should delve into more

abundant cell subpopulations to provide a more precise cell–cell

interaction network. Finally, TMA cannot represent the whole slide,

just as the whole slide cannot represent the whole tumor. The

heterogeneity always exists within the tumor, especially in those
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with large tumor burden. However, many studies have shown good

concordance rate between TMA and whole slide (62).

To conclude, our study comprehensively demonstrates the

infiltrating profile and spatial distribution characteristics of TILs

in NPC. Increased Tregs infiltration, particularly PDL1+ Tregs, as

well as their proximity to TCs and CTLs, correlates with

unfavorable outcomes, highlighting the essential role of dynamic

intercellular interactions between heterogeneous T-cell subtypes

in disease progression. This study offers new insights into the

immunological landscape of NPC, adding evidence of the

prognostic value of TILs and the potential mechanism of PDL1/

PD1 axis blockade in the era of immune-modulatory therapy.
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