
1Scientific RepoRtS |         (2020) 10:2881  | https://doi.org/10.1038/s41598-020-59498-y

www.nature.com/scientificreports

1Military University of Aviation, ul. Dywizjonu 303 nr 35, PL-08521, Dęblin, Poland. 2Institute of Nuclear Physics, 
Polish Academy of Sciences, ul. W. E. Radzikowskiego 152, PL-31342, Kraków, Poland. *email: j.baranski@law.mil.
pl; konrad.kapcia@ifj.edu.pl
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We analyze the influence of a local pairing on the quantum interference in nanoscopic systems. As a 
model system we choose the double quantum dot coupled to one metallic and one superconducting 
electrode in the T-shape geometry. The analysis is particularly valuable for systems containing coupled 
objects with considerably different broadening of energy levels. In such systems, the scattering of 
itinerant electrons on a discrete (or narrow) energy level gives rise to the Fano-type interference. 
Systems with induced superconducting order, along well understood fano resonances, exhibit also 
another features on the opposite side of the Fermi level. The lineshape of these resonances differs 
significantly from their reflection on the opposite side of the Fermi level, and their origin was not 
fully understood. Here, considering the spin-polarized tunneling model, we explain a microscopic 
mechanism of a formation of these resonances and discuss the nature of their uncommon lineshapes. 
We show that the anomalous Fano profiles originate solely from the pairing of nonscattered electrons 
with scattered ones. We investigate also the interplay of each type of resonances with the Kondo 
physics and discuss the resonant features in differential conductivity.

Impurities or nanoobjects like quantum dots (QDs) hybridized to superconductors (SC) adopt some SC proper-
ties via proximity effects. As a consequence, the ground state of a QD is represented by either single particle state 
|↑〉, |↓〉, or a superposition of empty and doubly occupied states u v0d d+ ↑↓ 1–3. The fingerprints of this local 
pairing can be observed in the Andreev spectroscopy as two quasiparticle peaks1,4,5. Currently, dynamic develop-
ment in fabrication of complex nanodevices on the top of SC substrate allows to construct SC-based systems built 
of multiple QD’s6, quantum rings7,8, monoatomic chains9, gate-controlled carbon nanotubes (CNT)10,11, multiwall 
CNT quantum dots12, modified Aharonov-Bohm rings with a QD embedded within one of the ring’s arms13, 
SQUID interferometers with gate-controlled CNT quantum dots14 or quantum dots connected to Rashba 
chains15. In such systems, the various paths for electron propagation give rise to quantum interference effects. 
Therefore, deep understanding of mutual relations between the proximity induced pairing and the quantum 
interference is highly demanded. A classic model to analyze such relations consists of a QD (QD1) coupled 
directly to (i) one metallic electrode and (ii) one superconducting electrode as well as side-coupled to second QD 
(QD2) [a schema of the system is shown in Fig. 1(a)]. In such system, the main charge transport between elec-
trodes leads directly through the central quantum dot (i.e., QD1), Fig. 1(b). Additional path includes the electron 
hopping between the central dot (QD1) and the side dot (QD2). Different paths for electron transport overlap 
giving rise to quantum interference effects. As the interfacial quantum dot (i.e., QD1) is connected to supercon-
ducting reservoir, scattering on a side level is accompanied by the local pairing. In metal-hybrid structures inter-
ference patterns can be observed in the spectral function and transport characteristics as asymmetric Fano 
features emerging at energies equal to the energy level of the side dot(s)16–23. In the presence of local pairing, two 
resonant structures emerge simultaneously on both sides of the Fermi level24–26. A shape of the feature located at 
the energy of the side dot resembles the ordinary Fano resonance. However, a structure on the opposite side of the 
Fermi level seems to diverge from the ordinary Fano profile24,25. Although a particle-hole mixing of states ration-
alizes an appearance of two resonances instead of just one, astonishing difference in their profiles is intriguing. 
One could even argue whether shape of additional resonance should be referred to as the Fano-like.

The Fano-like profiles have been reported in numerous works in various fields of physics including atomic27–29, 
molecular30 physics, photonics31,32, plasmonics33,34, electron-phonon interaction35–40, microwave physics41,42, 
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metamaterials and nonlinear optics34,43,44, ultra cold gases45, or nuclear physics46–49. The Fano resonances turn 
out to be particularly relevant also for nanoscale physics. In various systems, in which nanoobjects with dif-
ferent broadenings of energy levels are tunnel-coupled, similar resonances appear on the background of the 
Breit-Wigner resonance (or, equivalently, the Lorentz distribution). Such Fano-like resonances were predicted 
and observed, e.g., in double50–53 and triple26,54 quantum dots systems in various configurations50. The asymmetric 
resonances were also predicted in “bridge” realization, where two electrodes were tunnel coupled to a single QD 
and, additionally, to each other directly21,55. In such a realization, the Fano effect arises as a result of interference 
of waves traveling directly between electrodes with a localized state. It was predicted that the Fano resonances 
appearance in a similar configuration can enhance the effectiveness of a Cooper spliter device56.

Recently, it has been noticed that the Fano resonances can be useful in indicating the existence of the Majorana 
bound states57–59. In systems, in which the quantum dot is weakly connected to the Rashba chain, the scattering 
on the Majorana zero mode (MZM) suppresses the local density of states (LDOS) of QD only by one half59,60. This 
is because electrons scattered by the Majorana quasiparticle change their phase only by the fraction of π, while in 
the ordinary Fano effect, we observe π−0  phase shift features. Taking this into account, one can distinguish 
scattering of electrons on the MZM from scattering on the topologically trivial zero energy states. Rich interplay 
of the Fano resonances with strong correlations effects was analyzed by number of authors both in metallic21,61–63 
and superconducting environment24,64–69. Among others, it was found that suppression of the Kondo state by its 
coexistence with the Fano antiresonance reveals a novel Fano-Kondo resonance66,67. A pedagogical review of the 
Fano resonances in nanoscale physics was done by A. E. Miroshmishenko in ref. 70. Interplay of the Fano reso-
nance itself with local pairing was less widely explored. P. Orellana and coworkers71,72 analyzed configuration with 
one quantum dot placed between two metallic electrodes and side dot coupled only to the SC electrode. In such 
realization, scattering on narrow quasiparticle states gives rise to two Fano-like features on background of single 
particle broad level.

In this work, we present the analysis of the local pairing for electrons scattered on the side structure. In the 
considered model, the SC electrode is connected directly to the interfacial dot, thus quasiparticle states are con-
sidered as broad continuum while scattering occur on the dot decoupled from the SC environment (cf. Fig. 1). We 
discuss origin of appearing resonances and reveal the microscopic mechanism of their formation. We analyze the 
shape of obtained resonances by comparing them with the Fano profiles and calculate characteristic Fano factors 
such as asymmetry parameter. We also discuss the interplay of each resonant feature with the Kondo resonance 
and inspect the appearance of resonant features in differential conductivity.

Formulation of the Problem
A heterojunction depicted in Fig. 1(a) can be modeled by the Anderson impurity Hamiltonian in the following 
form
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refers to s-wave superconducting electrode. Electron energies kξ β
 are measured with respect to chemical poten-

tials µβ
 β = N S( , ). Two quantum dots connected with spin-dependent interdot hoppings tσ σ = ↑ ↓( , ) are 

represented by the following terms:

Figure 1. (a) The schematic illustration of the analyzed system. It consists of two quantum dots (QD1 and QD2). 
QD1 (interfacial one) is directly coupled with superconducting (SC) and normal metal (N) electrodes with spin-
independent couplings ΓS and ΓN , respectively. Coupling tσ between QD1 and QD2 (side one) is spin-dependent 
[cf., Eq. (1)]. (b) The schematic illustration of the scattering processes occurring in the strongly spin-polarized 
tunneling model (t 0≠↑  and t 0=↓ ). Orange (green) arrows indicate the propagation paths for σ = ↑ (σ =↓, 
respectively) electrons. Only spin-↑ electrons can directly scatter on side dot QD2 (vertical orange arrows), 
whereas spin-↓ electrons are paired with them (a blue spring represents the local pairing SΓ ) and scattered 
indirectly.
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where iε  is the energy level of i-th quantum dot, Ui stands for intra-dot Coulomb interactions =i( 1, 2), and σ 
denotes the spin opposite to σ (e.g., ↓ = ↑). The hybridization of the interfacial (i.e., i 1= ) quantum dot to the 
external reservoirs N S( , )β =  is given by

∑= + . . .β
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T

k
k k
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It is useful to introduce the wide band limit constant coupling strength between the interfacial dot and both res-
ervoirs: V ( )k k

2π δ ω ξΓ = ∑ −β β . In the deep superconducting atomic limit ∆ Γ( )S , the influence of supercon-
ducting electrode on interfacial quantum dot QD1 is reduced to the induced local pairing. A problem of the 
“proximized” quantum dot was widely explored by many authors2,73–77 including ourselfs3,78–80. In such conditions, 
the Hamiltonian of the interfacial dot coupled to the SC reservoir (i.e., + +H H HQD S TS1

) can be expressed by

†
∑ε= + + ≈ − Γ + . . + .
σ

σ σ ↑ ↓ ↑ ↓
^ ^ ^ ^ ^ ^ ^ ^ ^ ^H H H H d d d d h c U n n( )

(4)prox QD S TS S1 1 1 1 1 1 1 11

To gain a clear picture of the interplay between interference effects and the local pairing we will mostly focus 
on noncorrelated regime, i.e., U1 = U2 = 0 (excluding the section, where correlations are studied explicitly). 
Information on spectral properties and Andreev transmittance is encoded in particular Green’s functions 
G t t i t t t t( , ) ( ) { ( ), ( )}j j j1 0 1 0 1 0

ˆ ˆ †
θ= − − 〈 Ψ Ψ 〉σ σ  of 4 4×  matrix Ψ ≡σ σ σd d( , )j j j

ˆ ˆ ˆ† †
, ( )j j

ˆ ˆ † †Ψ ≡ Ψσ σ . In the present work, we 
assume spin-dependent interdot hopping tσ, therefore, Green’s functions for each spin component are not identi-
cal and for each index σ = ↑ ↓,  these functions need to be calculated separately. In the equilibrium conditions 
the equation of motion technique81 yields the following expression for a Fourier transform of the retarded Green 
function matrix for the interfacial quantum dot (QD1):

G
d d d d

d d d d

i t
i t( )

[ /( )]
[ /( )]

(5)

N S

S N
1

1 1 1 1

1 1 1 1

1
2

2

1
2

2

1

ω
ω ε ω ε

ω ε ω ε
=












=







− + Γ − − −Γ
−Γ − + Γ − +






.σ

σ σ σ σ

σ σ σ σ

σ

σ

−

˅ ⟨⟨ ˆ ˆ ⟩⟩ ⟨⟨ ˆ ˆ ⟩⟩

⟨⟨ ˆ ˆ ⟩⟩ ⟨⟨ ˆ ˆ ⟩⟩

†

† † †

ˉ

ˉ ˉ ˉ ˉ

Spectral function (local density of states) ρ ωσ( )1  of QD1 for each spin component σ is given by standard formula 
ρ ω π ω= − 




+ 

σ σ

+G˅ i( ) (1/ )Im ( 0 )1 1
11

. The position of the Fermi level is ω µ= S, which is located in the middle of the 

superconducting energy gap. In the following, for a sake of simplicity, we also take that 0S Nµ µ= = .

Fano-like resonances in nanoscopic systems. If low dimensional structures with discrete energy spec-
trum (such as, e.g., quantum dots) are coupled to reservoirs characterized by continuum of states, the energy 
levels of nanoobjects are broadened to form the Breit-Wigner (Lorentz) distribution with half-width controlled 
by QD-bath coupling strength (i.e., ΓN). Consequently, if subparts of a device are coupled to environment with 
different coupling strengths, broadening of particular energy levels differ significantly. Quantum interference of 
electron waves resonantly transmitted through narrow (quasidiscrete levels) and those transmitted through broad 
levels give rise to asymmetric Fano-like profiles observed in density of states and differential conductivity. For 
electrons whose energy tends to resonant energy from one side (e.g., resω ω→ +), scattering does not change their 
phase, while for electrons reaching the resonant level from the other side ω ω→ −( )res  phase is shifted by a factor of 
π67,70. Therefore, in the Fano-like profiles a constructive enhancement (i.e., the 0 phase shift) is accompanied by an 
antiresonant deep (i.e., the π phase shift).

In the original work82 and later review83, U. Fano described the asymmetric lineshapes in the absorption 
spectra of noble gases observed previously by H. Beutler84. He introduced the formula for such profiles on a flat 
background. This function can be expressed as

ω
ω ω
ω ω

=
Γ + −

Γ + −
F q( ) ( /2 )

( /2) ( )
,

(6)
R res

R res

2

2 2

where ωres and RΓ  stand, respectively, for the energy of the resonant level and the effective broadening of the reso-
nant level, and q represents a phenomenological factor called an asymmetry parameter.

 Because it will be very useful in the further discussion included in the next section (Profile analysis), it is 
worth noticing a few properties of this function. Function (6) has one local minimum and one maximum. 
Arguments of the extremes are located at ω ω= − Γ− q /2res R  and ω ω= + Γ+ q/(2 )res R , respectively. Due to the 
ideal anti-resonance, the minimum value of this function is equal to 0, while the maximum depends only on the 
asymmetry parameter and it is equal to 1 + q2. Away from the resonant energy (i.e., for ω ωres or ω ω res) the 
function reaches value equals to 1. For asymmetry parameter close to unity and small broadening of the resonant 
energy level ( )RΓ  the close proximity of the minimum and the maximum forms a well-pronounced asymmetric 
profile. Note that, for the asymmetry parameter approaching to zero, the Fano function corresponds to a symmet-
ric deep, whereas for the parameter going to the infinity, the resonant feature resembles the Lorentz function. 
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In the nanoscopic systems, the broadening of the resonant level is dependent on the coupling to the con-
tinuum of states. Namely, in the case of the double quantum dot, it is proportional to the square of the interdot 
coupling. For the strong interdot coupling, the broadening of the side level becomes comparable with the broad-
ening of the central dot (cf., e.g., refs. 85,86 and references therein). In such a case, the interferometric structures 
evolve into molecular states. Nevertheless, this issue is out of the scope of the present work, where we focus on 
the Fano-like features.

Fano-like resonances in a presence of superconducting electrode (symmetric case: t↑ = t↓ ≠ 0). In a hybrid system, 
where single QD is coupled to SC reservoir, due to proximity effects single particle QD’s level evolves into two 
quasiparticle peaks representing so-called Andreev bound states (ABS). These states in noncorrelated regime 
emerge at ω = ±E1, where quasiparticle energy levels are represented by E S1 1

2 2ε= + Γ , and they are weighted 
by a corresponding BCS coefficients ε= +u E(1 / )/22

1 1  and ε= −v E(1 / )/22
1 1 . In a particular case of 01ε = , the 

Andreev states are symmetric Lorentzians separated by ΓS. Density of states of the QD in such conditions (for 
ε = 01 ) can be expressed as

ω
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If one QD (QD1) is coupled to both metallic and superconducting electrodes and, additionally, side-coupled 
to the second quantum dot (QD2) with the spin-independent coupling (i.e., the system shown in Fig. 1, but with 
t t=↑ ↓), the combined effect of the electron scattering on discrete level and the local pairing gives rise to two res-
onant features on background of ABS states [see Fig. 2(a)]24,25. First one appears for energies close to energy level 
of the side dot ω ε≈( )2 . Asymmetric lineshape of this resonance resembles the characteristic Fano-like shape. 
Second feature emerges on opposite side of the Fermi level (ω ≈ −ε2). This resonance, however, differs signifi-
cantly from the former one. First notable observation is a sharp spike apparent on one side of the resonance near 
ω ≈ −ε2. In terms of the Fano function such imbalance emerges for very large asymmetry parameters q. Second 
peculiar observation is that local minima near this resonance (in particular this for ω =−ε2) have a finite value 
while the ordinary Fano function vanishes for ω ω= − Γq( )/2res R .

Strongly asymmetric spin-polarized tunneling model (t↑ ≠ 0 and  t↓= 0). To understand the origin of both reso-
nances, we consider a (“toy”) model in which we completely suppress the interdot coupling for one spin compo-
nent (e.g., for spin σ = ↓). In the metal-hybrid structures two spin channels are independent. In a presence of 
superconducting electrode spin-↑ and spin-↓ electrons are bound into the local pairs. Thus, every physical process 
that involves one spin component affects also the other one. By applying the strongly asymmetric condition (i.e., 
t 0=↓ ), we effectively decompose the effect of the direct interference, which occurs only for electrons coupled to 
the side dot (i.e., these with σ = ↑) from the effect of bounding them into the local pairs [cf. Fig. 1(b)]. The latter 
effect can be observed in the spectral function of electrons decoupled from the side dot (σ = ↓). As spin-↓ elec-
trons are not directly scattered the resonant characteristics appearing in their spectral function originate solely 
from pairing with scattered electrons.

The spectral function of QD1 for both directions of electron spin are shown in Fig. 2(b). In such conditions, for 
directly scattered electrons (σ = ↑), we obtain only the resonant feature near 2ω ε≈ , while the second resonance 
disappears. Counter-wise, for opposite spin electrons (with σ = ↓) only the feature located near ω ≈ −ε2 remains. 
It is worth noting that the shape of the resonant features remains unchanged, i.e., the shape of the resonance near 
ω ε≈ 2 (ω ≈ −ε2) for the symmetric case (t↑ = t↓ ≠ 0) is identical as the resonant feature that remains in ( )1ρ ω↑

 
(ρ ω↓( )1 , respectively) for the perfectly-polarized interdot coupling (t↑ ≠ t↓ = 0), cf. Fig. 2(a,b). Thus, this indicate 

Figure 2. (a) Spectral function ρ ω ρ ω=↑ ↓( ) ( )1 1  of QD1 for the spin-independent coupling with QD2. The model 
parameters are: = = . Γ↑ ↓t t 0 3 N , Γ = Γ4S N , 2 N2ε = Γ , 01ε =  (cf. also ref. 25). (b) Spectral functions ρ ω↑( )1  (solid 
blue line) and ρ ω↓( )1  (dashed red line) of QD1 for the spin-dependent coupling (the strongly asymmetric 
condition) with QD2. The model parameters are: t 0 3 N= . Γ↑ , =↓t 0, Γ = Γ4S N , ε = Γ2 N2 , ε = 01 . (c) Spectral 
functions ρ ω↑( )1  (solid blue line) and ( )1ρ ω↓

 (dashed red line) of QD1 for the spin-dependent coupling (the 
strongly asymmetric condition) with QD2. In the inset the region near ω ≈ 0 is shown. The model parameters 
are: t 0 3 N= . Γ↑ , t 0, 4S N= Γ = Γ↓ , ε ε= = 02 1 .
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that the resonance near ω ε≈ 2 originates purely from the direct scattering of electrons on a side level, while the 
resonant characteristic near ω ≈ −ε2 is merely a response to the pairing of a given electron with its scattered 
partner.

In other words, one spin component is directly scattered on side structure while the other one “feels” the 
scattering only by bounding into a local pair with directly scattered one. Such the conclusion is also visible if we 
compare the analytic formula for single particle Green’s functions for each spin component at QD1. These func-
tions for perfectly spin-polarized tunneling (t↓ = 0) are represented by
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⁎  are parts responsible for the scattering [cf. also Eq. (5)]. The 

scattering enters the spin-↑ propagator totally independently of pairing ΓS, cf. the fourth term [i.e, K ( )ω↑ ] in the 
expression for 〈〈 〉〉↑ ↑d d1 1

ˆ ˆ †
. For spin-↓ electrons, the response for scattering of spin-↑ electrons is provided solely by 

local pairing ΓS, cf. the last term with ⁎K ( )ω↑  in the denominator in d d1 1
ˆ ˆ †

〈〈 〉〉↓ ↓ .
It should be noticed that, in the case of the arbitrary tunneling (i.e., any ≠↑t 0, t 0≠↓ ), the self-energies of both 

types of electrons (i.e., with each spin direction ,σ = ↑ ↓) are composed of the part responsible for the direct 
scattering [connected with ω ∝σ σK t( ) 2 term] as well as the part related to the pairing ( )S

2∝ Γ  with scattered elec-
trons [i.e., the pairing with the convoluted scattering, associated with ⁎ ω ∝σ σK t( ) 2 term], namely:
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Therefore, for the nonpolarized case, we observe both the ordinary Fano feature near 2ω ε≈  and the “anom-
alous” Fano resonance near ω ≈ −ε2 for electrons with spin-↑ as well as for electrons with spin-↓. For t 0=↓ , the 
above equations for σ = ↑ ↓,  reduces to Eq. (8) and each resonant feature occurs in different spin channel.

The local density of states at QD1 for each spin component is given by the imaginary part of an adequate Green 
function G i d d( ) (1/ )Im ( 0 ) (1/ )Im1 1
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Andreev states (i.e., 01ε = ), Eq. (8) yields the following expressions for LDOS of each spin
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where f t( ) /( )r 2ω ω ω ε= − +↑ .
From the above equations, it is difficult to see if the shape around the resonant energies ω ≈ ±ε2 can be 

described as the Fano-like shape. Moreover, for ε = 02  the sharp resonant peak at ω ≈ −ε2 evolves into a symmet-
ric Lorenzian [cf. Fig. 2(c)]. In the next section, we present analysis of resonant features in both spin channels for 

=↓t 0. For a sake of simplicity we focus on the case of ε = 01 , which is studied further in this work.

Profiles analysis (asymmetric case: t↓ = 0). The Fano resonances were successfully used as a probe for 
electron phase coherence in quantum dots87. It was shown that dephasing time can be determined from the 
asymmetry parameter (q) of measured profiles. This issue was particularly relevant to take the meaning of Fano 
profiles appearing in single-electron transistor88). The influence of such dephasing on Fano resonances was also 
analyzed by one of us25. Thus, a proper evaluation of the asymmetry parameter for a given profile turn out to be a 
relevant issue. In the case of resonances that appear on non-flat backgrounds, straight fitting of the regular Fano 
function may produce highly inaccurate values. The problem becomes even more complicated if a given shape 
deviates from the regular Fano profile. In here analyzed system the resonances near ω ≈ −ε2 exhibit features that 
do not match the ordinary Fano shape.

In this section, we will analyze the obtained resonant lines to compare them with the Fano profiles and indi-
cate to what extent a given profile can be approximated by the Fano function [cf. Eq. (6)]. We develop a feasible 
procedure of fitting the Fano parameters to the assumed form. In the case of resonances that deviate from the 
ordinary Fano shape, we take into account and estimate the correction factor 0φ .

In general, the Fano-like resonances can be represented as a function F( )α ω , where F( )ω  [given by Eq. (6)] 
depends on the parameters q, RΓ , resω  and constant α is a flat background (in the original works82,83 α = 1 and the 
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resonance appears on a flat singular background). In our case, the resonant features emerge on the background of 
quasiparticle Andreev states described by Eq. (7). Therefore, we assume that one can approximate the density of 
states ( )1ρ ωσ  by a product of the ordinary Fano curve and a background composed of the Andreev states, i.e., by 

ω ω=σ σR F S( ) ( ), where ωS( ) is given by (7). If so, it should be possible to find the relations between the model 
parameters and the parameters used in the function F ( )ωσ : qσ, R ,Γ σ, and res ,ω σ in such way that the constructed 
function ω ωσF S( ) ( ) will reproduce the density of states ρ ωσ( )1  with high accuracy.

The resonance for directly scattered electrons (near ω ≈ ε2). We will start with an analysis of the 
LDOS ( )1ρ ω↑

 for electrons directly scattered on side dot QD2. For weak scattering (i.e., for 
 Γ↑t N

2 2 ), the resonant 
feature in exact function ( )1ρ ω↑

 is represented by a sharp deep-spike characteristic. The bare Andreev states are 
represented by smooth Lorentzians with the half-width controlled by ΓN . In such a case, one can assume that 
arguments ω for which the ω↑F ( ) takes the minimum ω ω= −( ) and maximum ( )ω ω= +  should be very close to 
local extremes of product function ω ω ω=↑ ↑R F S( ) ( ) ( ), where F ( )ω↑  has a form of Eq. (6) with 

↑q , R ,Γ ↑, and ω ↑res ,  
parameters. On the other hand, maximum value of the Fano function ω↑ +F ( ) is dependent only on asymmetry 
parameter ω = +↑ + ↑F q( ) 1 2 (ω+ is location of the maximum). Therefore, an expression for asymmetry parameter 
q↑

 can be obtained from a maximum of the exact function. Assuming that ω+ is an argument of the local maxi-
mum of ρ ω↑( )1  (around ω ε≈ 2) we have

q S( ) (1 ) ( ) (10)1
2ρ ω ω= + .↑ + ↑ +

The sign of asymmetry parameter 
↑q  is governed by a position of ε2 (i.e., for ε > 02  one gets q 0<↑

 and for 
ε < 02  one has >↑q 0). The other two parameters ω ↑res ,  and Γ ↑R ,  can be found by comparison of positions of local 
minimum and maximum of ρ ω↑( )1  and ω↑F ( ). Arguments ω for which the Fano function takes the minimum is 
given by ω ω= − Γ− ↑ ↑ ↑q /2res R, , , while for the maximum ω ω= + Γ+ ↑ ↑ ↑q/(2 )res R, , . This yields

ω
ω ω ω ω

=
+

+
Γ =

−

+↑
− ↑ +

↑
↑

↑ + −

↑

q

q

q

q1
,

2 ( )

1
,

(11)
res R,

2

2 , 2

where q↑
 is an asymmetry parameter estimated previously from Eq. (10). In Fig. 3(a) we examine the convergence 

of the obtained function with the exact prototype. One can note that for spin-↑ electrons the product function 
with Γ↑ ↑q , R ,  and ω ↑res ,  estimated by the above procedure reproduces original ( )1ρ ω↑

 with very high accuracy. 
Asymmetry parameter q↑ for this fit of the Fano resonant feature in ( )1ρ ω↑

 as a function of ε2 is shown in Fig. 4(b) 
as dotted green line.

The resonance for indirectly scattered electrons (near ω ≈ −ε2). Approximation with the regular 
Fano function. Situation is more complicated for opposite spin electrons, i.e., for spin-↓ electrons. The mini-
mum value of the exact function is finite, while minimal value for the ordinary Fano resonance is equal to 0. This 
means that product of the ordinary Fano resonant curve and arbitrary background [in particular, also function 
R F S( ) ( ) ( )ω ω ω=↓ ↓ ] will never reproduce the original function ( )1ρ ω↓

 for spin-↓ electrons accurately. However, we 
can still assume that spectral function can be approximated by the Fano function with small correction 0φ . Let us 
assume that the exact function can be approximated by a product of ωS( ) and

F F( ) ( ) , (12)0
⁎ ω ω φ= +↓ ↓

where 0φ  represents a (small) deviation (correction) dependent only on model parameters (and it is independent 
of ω) and ω↓F ( ) has a form of Eq. (6) with q↓

, R ,Γ ↓, and ω ↓res ,  parameters. One should note that if correction param-

Figure 3. (a) Convergence of assumed form R ( )ω↑  (dashed red line) and exact function ( )1ρ ω↑
 (solid blue line) 

obtained for following model parameters: 4S NΓ = Γ , t 0 2 N= . Γ↑ , 2 N2ε = Γ . In the inset the region near ω ε≈ 2 is 
enlarged. (b) Convergence of assumed forms R ( )⁎ ω↓  (dashed red line), R↓ (dotted green line) and exact function 
ρ ω↑( )1  (solid blue line) obtained for following model parameters: Γ = Γ4S N , = . Γ↑t 0 2 N , ε = Γ2 N2 . (c) 
Convergence of assumed forms ω↓R ( )⁎  (dashed red line), ↓R  (dotted green line) and exact function ( )1ρ ω↑

 (solid 
blue line) obtained for following model parameters: Γ = Γ4S N , = . Γ↑t 0 2 N , 0 001 N2ε = . Γ .
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eter 0φ  will be small enough (say less than 1) then one can state that the resonant shape can be approximated by 
the Fano function with high accuracy. Thus, auxiliary parameter φ0 can be considered as a measure to what extent 
one can fit the original Fano shape into a given resonant feature. Therefore, a high value of correction 0φ  indicate 
that the Fano function may not be adequate for fitting to the exact function. Introduction of 0φ  slightly rearranges 
the background of the ordinary Fano function, i.e., away from the resonant energy F ( )ω↓

⁎  reaches 1 0φ+  instead 
of just 1. This would cause problems in achieving acceptable convergence of assumed form and the exact function 
away from the resonant feature. To neutralize this obstacle we need to normalize our assumption. Therefore, 
instead of ω ω↓F S( ) ( )⁎ , we assume that ( )1ρ ω↓

 can be approximated by

⁎
⁎

ω
ω ω

φ

ω φ

φ
ω=

+
=

+

+
.↓

↓ ↓R
F S F

S( )
( ) ( )

1
( )
1

( )
(13)0

0

0

With this modification we find that a value in the minimum of ⁎ ω↓R ( ) is dependent solely on 0φ , while value in 
maximum of ⁎ ω↓R ( ) depends on 0φ  and 

↓q . Positions of 


ω , for which R ( )⁎ ω↓  gets its minimal and maximal values, 
remain unchanged [i.e., we assume that they are the same as those for F ( )ω↓ ]. Extreme arguments ω− and ω+ can 
be calculated numerically (in experimental realizations these values can be directly read from the data). Therefore, 
we should add just one step in our procedure. First, we get 0φ  comparing local minima of ( )1ρ ω↓

 and assumed 
form (13) of ω↓R ( )⁎ . Equation (13) with ω↓F ( ) vanishing for ω ω= − yields S( )/ ( ) ( )0 1 1φ ρ ω ρ ω ω= 


− 

↓ − ↓ − − . Then, 
we find asymmetry parameter 

↓q  by comparing the values at maxima of ρ ω↓ +( )1  and ω↓ +
⁎R ( ). This gives 

ρ ω ω φ ω= 


− + 
↓ ↓ + + +q S S( ) ( )](1 ) / ( )2

1 0  [using the property of the Fano function that F q( ) 1 2ω = +↓ + ↓
]. By means 

of acquired 0φ  and 
↓q , we obtain resonant energy res ,ω

↓
 and broadening R ,Γ

↓
. Using the above procedure, we find 

that the exact function ρ ω↓( )1  can be approximated with good accuracy by R ( )ω↓ , [cf. dashed red line and solid 
blue line in Fig. 3(b,c)]. However, good convergence with a small correction is achieved only for resonant energies 
close to the center of Andreev states ( )S2ε ≈ ±Γ  (see solid blue line in Fig. 4(a)). For resonant energies close to the 
Fermi level, spectral function ( )1ρ ω↓

 is represented by almost a symmetric peak [cf. Fig. 2(c)]. For the original 
Fano curve (6) such a situation is met when the asymmetry parameter approach infinity q( )→ ∞ . On the other 
hand, very large asymmetry parameter implies huge values for the maximum of the Fano function F ( )ω↓ . For the 
product to remain finite, the correction must grow together with the asymmetry parameter. Thus, in assumed 
form ⁎ ω↓R ( ) of ρ ω↓( )1  for ε ≈ 02 , “correction” φ0 (as well as asymmetry parameter q↓

) become enormously large (cf. 
Fig. 4(a); they tend to infinity if 02ε → ). A correction value is also inadequate if the resonant energy is located far 
outside the Andreev states (i.e., ε| | ΓS2 ). These make the statement about such resonances as the Fano-like one 
somewhat exaggerated. Asymmetry parameter q↓

 of F ( )ω↓  for this fit of the resonant feature in ( )1ρ ω↓
 as a function 

of ε2 is shown in Fig. 4(b) as solid blue line.

Approximation with the inverse of the Fano function. To underline the fact that the ordinary Fano function is not 
the best way to approximate the resonant feature near ω ≈ −ε2 (at least at same range of the model parameters), 
we will try to fit another asymmetric function with a well-defined asymmetry parameter and compare the result 
with fitting of the ordinary Fano function. The problem of an inadequate correction for a wide spectrum of ε2 can 
be reduced by a slight rearrangement of the assumption. The resonant feature in ρ ω↓( )1  is composed of a finite 
deep accompanied by an over-sized peak. We noticed that if we add a small parameter to the regular Fano func-
tion, and then we take the inverse of that structure, the resulting function should have similar features. Thus, we 

Figure 4. (a) Corrections values (φ0 and 0
φ ) as a function of energy of the side dot ε2 for both assumptions for 

anomalous Fano resonant features of indirectly scattered electrons. Solid blue line refers to φ0 in the assumed 
form of Eq. (13), while dashed red line is for 0φ  as assumed in Eq. (14). (b) Absolute values of asymmetry 
parameters as a function of side-dot energy ε2: q↓

 used in F ( )⁎ ω↓  of Eq. (13) (solid blue line), and 
↓q1/  used in 

F ( )ω↓
  of Eq. (14) (dashed red line), and 

↑q  used in F ( )ω↑  (dotted green line). The data on both panels are obtained 
for Γ = Γ4S N .
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propose to approximate the original function by a product of the Andreev states [i.e., S( )ω ] and an inversion of the 
Fano function. Taking into account the normalization as previously, our assumption should be in the following 
form









ω
φ

ω φ
ω=

+
+↓

↓

R
F

S( ) 1
( )

( ),
(14)

0

0

where F ( )ω↓  has a form of Eq. (6) with 
↓q , R ,
Γ ↓, and ω ↓res , . Using the procedure similar to the previous one, we 

determine the corresponding parameters and compared the obtained result with the exact function ρ ω↓( )1 . Here, 
maximum (minimum) of F ( )ω↓  at ω+ (ω−, respectively) corresponds to minimum (maximum) of ( )1ρ ω↓

. Thus, 
using the properties of the Fano curve ω↓F ( )  in the similar manner as previously, one gets that 
φ ω ρ ω ω= −− ↓ − −S S( )/[ ( ) ( )]0 1
  and φ ω ρ ω ρ ω= + 


− 

↓ + ↓ + ↓ +

q S(1 ) ( ) ( ) / ( )0 1 1 . We found that the new assumption 
reproduces the original function as accurately as the previous one [cf. Fig. 3(b,c)]. The advantage of such a fit is 
that correction φ0

  for such assumption is considerably smaller for a wide range of 2ε  excluding S2ε ≈ ±Γ , where it 
expands to infinity (Fig. 4(a)). If the resonant energy is close to ΓS, the spectral function can be approximated by 
the regular Fano shape with a small correction using Eq. (13) again, as described in previous section. The inverse 
of asymmetry parameter 

q↓
 of ω↓F ( )  for this fit of the resonant feature in ρ ω↓( )1  as a function of ε2 is shown in 

Fig. 4(b) as dotted red line. Note, that in this case, 
↓q1/  (rather than q↓) is a measure of the asymmetry comparable 

to the ordinary Fano asymmetry parameter (as for 
 →↓q1/ 0 resonant feature is represented by a symmetric deep 

and for → ∞↓q1/  by the Lorentz distribution).
One should note that, in contrast to the Fano function, which originates from a rigorous examination of trans-

mission rates in noble gases28, function (14) is a hypothetical (semiempirical) function that can be fitted into 
“anomalous Fano” curves more accurately at wide range of parameters. Nevertheless, using such a function one 
can estimate the parameter 

↓q , which is responsible for a measure of an asymmetry of the resonant feature (and 
thus, it is fragile for decoherence).

Concluding, the LDOS function for indirectly scattered electrons can be treated as a normalized product of 
the Andreev states and (i) Fano resonance or (ii) inverse Fano, both with a small correction. The first approach 
reproduces well the original function only for resonant energies close to ΓS, i.e., it describes a case when the reso-
nant energy coincide with the Andreev states. The second approach works well for resonant energies much 
smaller and much larger than ΓS. To have a full insight into the behavior of LDOS function, it would be useful to 
combine these two approaches or determine the ratio / S2ε Γ  and then use appropriate product.

Effects of correlations between electrons on the quantum dots. In nanoscopic systems, the 
Coulomb repulsion between electrons often plays an important role, therefore, in this section, we briefly discuss 
the interplay of correlations effects with the analyzed features. In the model, QD2 is not directly connected to any 
external reservoir and on-site interactions on QD2 (i.e., U2) lead only to appearance of an additional narrow state 
in the spectrum of QD2 located at U2 2ω ε= + . Consequently, the influence of such interactions on spectrum of 
QD1 is straightforward. For the perfectly polarized case (i.e., t 0=↓ ), two resonant Fano-like features emerge in 
ρ ω↑( )1  at energies ω ε= 2 and U2 2ω ε= + , as a consequence of direct scattering. In the spectrum of opposite spin 
electrons [i.e., ( )1ρ ω↓

], two anomalous resonances are formed at the opposite side of the Fermi level, i.e., at ω ≈ −ε2 
and U( )2 2ω ε= − + . In the case of =↑ ↓t t , all four features emerge (as shown in detail in ref. 24).

To account for the correlations on QD1, we adopt procedure used previously in ref. 24. In the presence of cor-
relations, the matrix of Green’s functions can be represented by

t

t
( )

( ) 0
0 ( )

,

(15)

S

S

N

N
1

1
1

2

2

1

2

2

,

,

˅
⁎G ω

ω ε
ω ε

ω ε
ω ε

ω
ω

=







− −
−

−Γ

−Γ − −
+







−





Σ
−Σ −




σ

σ

σ

σ

σ

−

where self energy ωΣ ( )N  is approximated using the decoupling scheme, which approximates higher order Green’s 
functions and reduces them to lower order once; details are given in ref. 24. It yields:

U U
n U

( ) ( )[( ) ]
(1 )

,
(16)N , 1

1 0 1 0 1 3 1 1

1 0 3 1
ω ω ε

ω ε ω ε
ω ε

Σ − −
− − Σ − − Σ − − Σ + Σ

− − Σ − Σ − − 〈 〉σ
σ

where Ση=1,3 are given by

V
U

f1
2

1 [ ( )]
(17)k

kN
kN kN

2

1 1

3 /2∑ ω ξ ε ω ξ
ωΣ = | |




 + − −

+
−






η

η−

with f k T( ) 1/[1 exp( / )]Bω ω= +  being the Fermi distribution at temperature T , 〈 〉σn  denotes an average occu-
pancy of QD1 with spin-σ electrons (calculated self-consistently), and i /2N0Σ = Γ . In this section, we will inves-
tigate the spin-dependent energy spectrum in the perfectly polarized case, i.e., =↓t 0. The symmetric spin 
interdot coupling case was described in ref. 24. We inspect two cases: (i) the strongly proximized case, where the 
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hybridization to superconducting electrode is considerably larger than coupling to metallic one, i.e, Γ = Γ4S N  
(used also in the previous sections of the present work) and (ii) the case with comparable hybridizations, namely 

S NΓ = Γ . For the former conditions, it is possible to inspect the interplay between the Kondo physics and the 
resonant features originating from electron scattering.

In the correlated case U( 0)1 ≠  each Andreev state splits into low and high energy branches separated by 
energy U1, cf., e.g., ref. 3 for a detailed discussion of this issue. In realistic systems, the Coulomb interactions are 
usually larger than the energy gap of the superconductor (i.e., ∆U1 ). Consequently, the high energy states 
coincide with the continuum outside the gap. Therefore, high energy branches of Andreev states are beyond con-
sidered energy scale and they do not introduce any meaningful physics to the scope of this work. The detailed 
analysis of the competition between the local pairing and correlations in the absence of the scattering is con-
ducted in refs. 2,3. In Fig. 5, obtained for strongly correlated regime U( 15 )N1 = Γ , we present the features of the 
scattering on the background of two low energy Andreev states in the case of spin-polarized tunneling [Fig. 5(a)] 
and, for a comparison, in the nonpolarized case [Fig. 5(b)]. One can note that resonant features, described earlier 
for noncorrelated case, remain qualitatively unchanged despite of strong correlations. Additionally, one can note 
a small step near ω ≈ 0. This can be described as underdeveloped Abrikosov-Suhl state also known as Kondo 
peak. These resonances appear as a result of screening of electron spin located on the quantum dot (or impurity) 
by opposite spin itinerant electrons from the metallic electrode.

To inspect the interplay between scattering features and Kondo state we will analyze the conditions more 
suitable for full development of the Kondo state. Namely, we put energy of QD1 dot slightly below the Fermi level 
( 1 5 )N1ε = − . Γ , comparable hybridizations Γ = Γ( )S N  and low temperature = . Γk T 0 01B N . In such conditions, two 
Andreev states overlap on each other forming a structure resembling Lorentzian. One should remember that this 
structure is still built of two quasiparticle states, which become well-separated if the hybridization to the SC elec-
trode Γ( )S  is considerably larger than broadening ΓN  (cf. Fig. 7 of ref. 3). On the top of that we note well-developed 
zero-energy Kondo state [cf. Fig. 6(a)] and one scattering feature for each spin (regular Fano one near 2ω ε≈  for 

( )1ρ ω↑
 and anomalous Fano one near ω ≈ −ε2 in ( )1ρ ω↓

]. Panels (a–d) of Fig. 6 show what happens when the 
energy of the side dot gradually approaches to zero, i.e., when the ordinary Fano shape in the spin-↑ spectra and 
the anomalous Fano feature in the spin-↓ component overlap with the Kondo state at ω = 0 [Fig. 6(a–d) are 
obtained for different values of 2ε  decreasing from . Γ2 5 N  to 0]. Due to destructive nature of the Fano-like interfer-
ence the Kondo state in the spin-↑ spectra is strongly suppressed when the scattering coincides with the resonant 
Kondo feature [solid blue line in Fig. 6(d)]. In contrast, the anomalous feature for opposite spin electrons seems 
to enhance the Kondo state [dashed red line in Fig. 6(d)].

In the realistic model with equal interdot hoppings for electrons of each spin =↑ ↓t t( ), both types of electrons 
are directly scattered (giving the ordinary Fano feature near 2ω ε≈ ) as well as coupled with scattered electrons of 
the opposite spin (giving the anomalous Fano feature near ω ≈ −ε2), cf. Fig. 6(e) as well as Fig. 5(b). Consequently, 
the ordinary Fano feature originating from direct scattering and the anomalous Fano feature coincide if the 
energy of the side dot 2ε  is equal to 0. As it can be seen in Fig. 6(f), in such a case, both these resonances also 
coincide with the Kondo spike. We note that, for such parameters, the destructive interference plays a dominant 
role as zero energy state is strongly suppressed (forming a structure resembling the Fano-Kondo feature). 
Contribution of the anomalous Fano resonance in this case is visible as a small spike slightly below the Fermi level 
and slight enhancement of the Fano-Kondo feature just above the Fermi level [cf. maximal values in the inset of 
Fig. 6(f) and in Fig. 6(d) for the fully spin-polarized case]. One should note that a similar Fano-Kondo structure 
was predicted, e.g., for the double-quantum-dot system coupled to ferromagnetic electrodes [c.f., Fig. 4(f) in ref. 
89]. However, in that work, the enhancement [and the features presented in the inset of Fig. 6(f)] associated with 
the anomalous Fano resonance are not present there due the absence of the local pairing in the system considered 
in ref. 89.

Figure 5. (a) Spectral functions ρ ω↑( )1  (solid blue line) and ρ ω↓( )1  (dashed red line) of QD1 in the strongly 
correlated regime = ΓU 15 N1  (and U 02 = ) for the perfectly spin-polarized interdot hopping (i.e., t 0 3 N= . Γ↑ , 
t 0=↓ ), energy of the side dot ε = Γ2 N2 , strong hybridization to SC electrode Γ = Γ4S N , energy of the interfacial 
dot 01ε = , and low temperature = . Γk T 0 01B N . (b) Spectral function ρ ω ρ ω=↑ ↓( ) ( )1 1  for the nonpolarized 
model with t t 0 3 N= = . Γ↑ ↓ . Other parameters are the same as on panel (a).
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Resonant features in differential conductivity. The spectral function is not a directly measurable quan-
tity. Therefore, the resonant features described in this paper can be investigated experimentally only by inspection 
of differential conductivity =G V dI dV( ) / . For junctions with one metallic and one superconducting electrode 
low energy charge transport is supported solely by so-called Andreev reflections. In such processes, single elec-
tron of a given spin from the metallic lead is converted into a Cooper pair propagating in the superconductor with 
simultaneous reflection of a hole (with the opposite spin) back to the metal. This process, however, involves elec-
trons of both spins equally. If an electron of a given spin and of energy ω is supposed to be converted into a 
Cooper pair propagating in the superconductor, it needs to “pick” additional electron of the opposite spin and of 
energy −ω. Particularly, for energies close to −ε2 (where the “anomalous” Fano resonance emerges in spectral 
function of σ = ↓ electrons) electrons are paired with the opposite spin electrons of energy ε2, for which the ordi-
nary Fano resonance emerges. Consequently, in the picture of the Andreev conductivity G dI dV/A A= , even for 
perfect spin-polarized case, resonant features near ω ε± 2 become a mixture of the ordinary Fano and the “anom-
alous” Fano resonances as seen in Fig.  7(a). Indeed, the total Andreev current can be expressed by 

= ΣI V I V( ) ( )A j A j, , where

I V e
h

T f eV f eV d( ) 2 ( )[ ( ) ( )] , (18)A j A j,

2

,∫ ω ω ω ω= − − +

Figure 6. (a–d) Spectral functions ( )1ρ ω↑
 (solid blue line) and ρ ω↓( )1  (dashed red line) of QD1 obtained for the 

spin-polarized interdot hopping (i.e., = . Γ↑t 0 3 N , t 0=↓ ) and in the Kondo regime. The model parameters are: 
U 15 N1 = Γ , =U 02 , Γ = ΓS N , ε = − . Γ1 5 N1 , and = . Γk T 0 01B N . The side-dot energy for each panel is: (a) 

2 5 N2ε = . Γ , (b) 0 75 N2ε = . Γ , (c) 0 3 N2ε = . Γ , and (d) 02ε = . (e–f) Spectral function ρ ω ρ ω=↑ ↓( ) ( )1 1  for the 
nonpolarized model with = = . Γ↑ ↓t t 0 3 N  for different side-dot energies: (e) 0 75 N2ε = . Γ  and (f) 02ε = . Other 
parameters are the same as on panels (a–d). The inset of panel (f) shows details of the resonant features near the 
Fermi level for 02ε = .

Figure 7. (a) Andreev conductance G dI dV/A A=  and (b) single particle conductance =↑ ↑G dI dV/  (solid blue 
line) and G dI dV/=↓ ↓  (dashed red line), both panels obtained for the spin-polarized case (t 0 3 N= . Γ↑ , =↓t 0). 
(c) Single particle conductance G G=↓ ↑ for equal interdot hoppings t t 0 3 N= = . Γ↑ ↓ . Model parameters used in 
all three panels are: Γ = Γ4S N , 2 N2ε = Γ , ε = 01 , = =U U 01 2 , and = . Γk T 0 01B N .
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whereas the Andreev transmittances are given by ˅ω ω= Γ ↑T G( ) ( )A N,1
2

1
12

 and T G( ) ( )A N,2
2

1
12˅ω ω= Γ ↓  ω↑G[ ( )1

12˅  and 
G ( )1

12˅ ω↓  are elements of the matrix of Green’s functions defined in (5); e is the electric charge of an electron and V 
is the voltage].

To detect the resonant features separately one should rather inspect single particle transport. Therefore, we 
assume that interfacial quantum dot QD1 is connected to an additional metallic electrode. Assuming that chemi-
cal potential of the superconducting electrode is tuned such, that no current is contributed on average from it 
(so-called floating lead), the only charge transport left is a single-particle current between two metallic electrodes. 
We calculate single-particle differential conductivity assuming that both normal electrodes are coupled to QD1. 
We assume that the energy unit is equal to a sum of the hybridizations of both metallic electrodes, i.e., 
Γ + Γ = ΓN N N1 2 . Single-particle current I V( )σ  is calculated using the Landauer formula90

∫ ω ω ω ω= − −σ σI V e
h

T f eV f d( ) 2 ( )[ ( ) ( )] , (19)

2

where ˅ω ω= Γ | |σ σT G( ) ( )N
2

1
11 2 is a single particle transmittance. In Fig. 7, we also present differential conductivity 

G dI dV/=σ σ  as a function of the applied voltage considering two cases (i) the toy model with the perfect 
spin-polarized scattering [t 0 3 N= . Γ↑ , =↓t 0, Fig. 7(b)] and (ii) the more realistic case where both spin compo-
nents can be tunneled between the dots [Fig. 7(c)]. In the first case, the ordinary Fano resonance emerges in the 
conductivity of directly scattered electrons σ = ↑ [blue line in Fig. 7(b)], while the feature related to pairing with 
scattered electron is visible as sharp spike in conductance of the opposite spin electron near ω ≈ −ε2. For the 
nonpolarized case, electrons of each spin σ = ↑ ↓,  are both directly scattered and bound into a pair with the 
scattered electron of spin σ [Fig. 7(c)]. Therefore, in the picture of conductivity, we can detect the regular Fano 
shape near 2ω ε≈  and the anomalous resonant feature near ω ≈ −ε2.

conclusions
In the present work, we inspect the energy spectrum of the double-quantum-dot system coupled to a supercon-
ducting reservoir in the T-shape geometry. In the analyzed system, combined effect of the electron scattering and 
the local pairing gives rise to two resonant features on the opposite sides of the Fermi level. Considering the per-
fectly spin-polarized interdot tunneling regime, we show that one of the resonances emerges as a result of the 
direct scattering. The other one emerges as a result of pairing of a given electron with a scattered electron of the 
opposite spin. Therefore, an existence of a pair of characteristic Fano and anomalous Fano resonances can be 
considered as a fingerprints for an occurrence of a bound state in the given system. We also obtained characteris-
tics for differential conductivity and identified the features associated with the discussed resonances. These results 
of the work, derived for both strongly asymmetric =↓t( 0) and symmetric = ≠↓ ↑t t( 0) cases, suggest that the 
regular Fano (near ω ε≈ 2) and the anomalous Fano (near ω ≈ −ε2) features could be detected in real nanoscopic 
systems. Such resonances can be observed in a variety of complex nano-systems (coupled to a superconductor) 
where the broadening of energy levels for each subsystem is considerably different. Although the spin-polarized 
model is hardly achievable experimentally without using the magnetic field, it allows to uncover the mechanism 
behind the formation of resonant features on both sides of the Fermi level appearing also in the realistic nonpo-
larized model (i.e., the symmetric case of =↑ ↓t t )24–26. Note also that systems in such a configuration (i.e., T-shape 
one) can be investigated experimentally (cf. refs. 16–23,91,92 and references therein).

In this work, we showed that the resonant feature that originates from direct scattering can be described in 
terms of the Fano-like function with great details. Particularly, for the double-quantum-dot system coupled to a 
(normal) metal and a superconductor (Fig. 1), the spectral function of directly scattered electrons was approxi-
mated by product of the Fano line-shape and the Andreev states. A convergence of such approximation and the 
exact spectral function turned out to be very accurate. To achieve satisfactory convergence for the resonant fea-
ture on the opposite side of the Fermi level, one needed to impose additional correction φ( )0  to the Fano function 
[Eq. (13)]. Using such an assumption, we managed to achieve a good convergence, but “correction” parameter φ0 
becomes enormously large, when the resonant level approaches the Fermi surface [e.g., for ε| | < . Γ0 1 N2 , param-
eter 0φ  becomes two order of magnitude higher than assumed energy unit (i.e., φ ≈ Γ300 N0 ), also the asymmetry 
parameter in such cases becomes as large as q 80≈↓

]. Therefore, we proposed to approximate such resonances by 
the inversion of the Fano function [Eq. (14)] rather than the direct Fano one. Using this assumption, we achieved 
a high convergence with keeping correction φ0 small for a wide range of the model parameters. We also discussed 
the interplay of both Fano-like features with the Kondo resonance in the presence of correlations.
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