
sensors

Article

Angle-Sensitive Detector Based on
Silicon-On-Insulator Photodiode Stacked with
Surface Plasmon Antenna

Anitharaj Nagarajan 1,2 , Shusuke Hara 3, Hiroaki Satoh 3,4 , Aruna Priya Panchanathan 2

and Hiroshi Inokawa 1,3,4,*
1 Graduate School of Science and Technology, Shizuoka University, Hamamatsu 432-8011, Japan;

anithr.91@gmail.com
2 Department of Electronics and Communication Engineering, SRM Institute of Science and Technology,

Chennai 603 203, India; arunaprp@srmist.edu.in
3 Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu 432-8561, Japan;

hara.shusuke.14@shizuoka.ac.jp (S.H.); satoh.hiroaki@shizuoka.ac.jp (H.S.)
4 Research Institute of Electronics, Shizuoka University, Hamamatsu 432-8011, Japan
* Correspondence: inokawa.hiroshi@shizuoka.ac.jp

Received: 5 August 2020; Accepted: 23 September 2020; Published: 28 September 2020
����������
�������

Abstract: We present a pixel-level angle sensitive detector composed of silicon-on-insulator (SOI)
photodiode (PD) stacked with a gold surface plasmon (SP) antenna to affect the direction of the
incoming light. The surface plasmons are excited in the grating-type SP antenna and enhance the
diffraction efficiency of the grating. The diffracted light is coupled strongly with the propagation light
in the SOI waveguide when the phase matching condition is satisfied. The phase matching takes
place at a specific angle of light incidence, and the discrimination of the light based on the incident
angle is achieved. As spatial patterns in the polar coordinate of the elevation-azimuth angles (θ, φ) of
the incident light, we present the phase matching condition theoretically, the absorption efficiency in
the SOI by simulation, and also the quantum efficiency of the SOI PD experimentally for different SP
antennas of one-dimensional (1D) line-and-space (L/S) and two-dimensional (2D) hole array gratings
under various polarization angles. 1D grating offers a polarization sensitive angle detection and 2D
grating exhibits angle detection in two orthogonal directions, enabling a polarization independent
angle sensitivity. A good agreement among the theory, simulation, and experiment are attained.
The proposed device features relatively high quantum efficiency as an angle-sensitive pixel (ASP)
and gives wider opportunities in applications such as three-dimensional (3D) imaging, depth-of-field
extension, and lensless imaging.

Keywords: angle-sensitive pixel; phase matching condition; SOI PD; SP antenna; lensless imaging

1. Introduction

The current trend in the research field of advanced image sensors is to focus on the development
of pixel-level detectors for computational imaging [1–4]. A traditional camera forms an image by
recording only a two-dimensional (2D) intensity map of a scene. A light field camera or plenoptic
camera records light field information, which provides a more complete description of a scene than a
traditional camera. The light field is the collection of light rays flowing in every direction through every
point in space. The light field is defined by the mathematical function called plenoptic function denoted
by five-dimensional (5D) intensity data I(x, y, z, θ, φ) [5]. The 5D plenoptic function is the combination
of the three spatial coordinates (x, y, z) and the two angle information (θ, φ) which represent elevation
and azimuth angles, respectively, of the light ray. For simplicity, this function is reduced to 4D data
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I(x, y, θ, φ), by omitting z, as the intensity along a ray is a constant [6,7]. Several techniques have
been developed to capture the local angular distribution from the light field for many interesting
applications. For example, capturing the angle information allows computationally refocusing of the
image during post-processing [8]. Furthermore, it also allows 3D imaging, lensless imaging, and so
on [9–15]. Recently, a novel CMOS (complementary metal-oxide-semiconductor) image sensor has
been developed to detect the angular information as a representative angular sensitive pixel (ASP).
This sensor utilizes the Talbot effect between two diffraction gratings stacked over a conventional
photodiode and it became possible to measure one angular information I(θ) of the incident light [16].
However, in order to complete a plenoptic function, it is indispensable to be able to sense two angle
information, which includes elevation angle θ and azimuth angle φ. It was reported that this Talbot
pixel has a problem of reduction in quantum efficiency (QE) of 88% compared to the bare photodiode
and was improved to a 55% reduction rate after the post-fabrication process of ASP; however, it exhibits
an angular resolution of ~8◦. Moreover, the output response of Talbot pixel is sinusoidal and fades as
the angle increases. It requires four pixels to decode single angle information. Hence, the development
of CMOS compatible, easily fabricated, high QE possessing features with a less angular resolution and a
capability of using a smaller number of pixels to decode single angle information is highly anticipated.

In this article, the performance of incident angle dependence of light sensitivity in our proposed
silicon-on-insulator photodiode (SOI PD) with surface plasmon (SP) antenna [17–20] is investigated for
one candidate of advanced ASPs. In addition, the incident angle dependence for different incident
polarization is also clarified. Our proposed SOI PD with SP antenna basically utilizes the strong
coupling between the diffracted light from the grating structure of the SP antenna and the waveguiding
modes in the SOI layer. We have investigated the elevation-azimuth angle dependence of the light
sensitivity in SOI PD with a SP antenna, but the polarization angle directly depends on the azimuth
angle because of our previous measurement configuration with one axis goniometer stage [21,22].
Since such a situation is unnatural, a two-axis goniometer stage is introduced instead of a one axis
goniometer stage to evaluate a full elevation-azimuth angle dependence for a specific polarization.
In this case, the polarization angle is independent of the azimuth angle, and thus the investigation in
this article is close to the actual situation for light detection.

We investigate the directivity of light sensitivity in SOI PD with two types of SP antenna composed
of one-dimensional (1D) line-and-space (L/S) grating and 2D hole array grating by using theoretical
prediction, electromagnetic simulation, and experimental demonstration. The structure of 1D grating
is formed by the periodic arrangement of the Au line and space in one direction. The 2D grating is
formed by the superimposition of the 1D grating stacked orthogonally to each other, thereby resulting
in a periodic arrangement of holes in both of the directions. A theoretical prediction includes the
formalization for representing the peak position for an elevation-azimuth angular distribution of
incident light. The physical concept behind this theory is that a higher light sensitivity is achieved
at a specific incident angle when the phase matching condition between the diffracted light from the
antenna and the propagation light wave in the SOI waveguide is satisfied. The antenna primarily works
as a grating coupler and exhibits the angle sensitive characteristics for orthogonal polarized light for the
1D LS grating. In order to realize angle sensitive characteristics with polarization independent behavior,
2D hole array grating is employed, which has periodicity in both of the directions. An electromagnetic
simulation based on the finite-difference time-domain (FDTD) method can design and estimate the
performances of SOI PD with SP antenna for not only peak positions of the incident angle but also
light sensitivity. The monochromatic incident light is tilted and rotated along with the elevation and
azimuth angles, θ and φ, respectively for calculating the light absorption efficiency of the device.
The SP antenna over the light sensitive area of the SOI PD is fabricated by using an electron beam
lithography technique. The experimental demonstration of the fabricated devices is done by measuring
the directivity of quantum efficiency for different polarizations.
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2. Device Structure and Fabrication Process

The device structure of the SOI PD with SP antenna is shown in Figure 1a. The lateral p-n
junction SOI PD is formed by using commercial SOI wafer. In this work, the typical SOI thickness
of tSOI = 100 nm was used, since an SOI thickness of below 200 nm is widely used in SOI integrated
circuits. The silicon dioxide (SiO2) layer on SOI PD, which works as a gate oxide, has the thickness
of tGOX = 100 nm. The primary role of the SP antenna is to act as a grating coupler between the
incoming light and the lateral propagating light in the SOI layer. The tGOX was optimized to achieve
the maximum QE for an incident wavelength of 700 nm [17]. The QE is the ratio of the number of
photogenerated carrier to the one of incident photons to the device. Without SP antenna, the SOI PD
shows low QE due to the thin tSOI for light absorption, but the QE can be enhanced by up to 25% by
introducing the SP antenna with 1D L/S gold (Au) grating, as we previously reported [18]. This time,
we introduced two types of SP antennas with L/S and hole array gratings, and clarified the difference
between their characteristics. The L/S grating has a 1D periodic arrangement with a period p and a
line width w, and the hole array grating has a 2D periodic arrangement of square holes in a square
lattice with a period p and a line width w, as shown in Figure 1b,c, respectively. Au was chosen as
the material for a SP antenna because Au has higher durability towards the surface oxidation than
that of silver or aluminum. In order to obtain the sufficient adhesion strength between Au and SiO2,
thin titanium (Ti) layer was inserted. The thicknesses of the Au and Ti used were tAu = 50 nm and
tTi = 5 nm, respectively. The SP antenna acts not only as a grating coupler between incident and
laterally propagating waves in the SOI, but also as a gate electrode. When the device is irradiated,
the diffracted light from the SP antenna excites the SOI waveguide mode. A large QE can be obtained
only if the phase matching condition is satisfied, as will be discussed later. It is also important to apply
appropriate bias voltages to the gate and the substrate so that the photocurrent can be maximized by
expanding the depletion region to cover the entire light sensitive (p−) area [18]. The angle dependence
in light sensitivity was investigated in this work. The definitions of elevation angle θ, and azimuth
angle φ are shown in Figure 1d. In addition, the polarization angle φpol with respect to the grating
direction is defined in this figure. The incident light is called TE-polarized and TM-polarized when
the electric field component coincides with the x-direction (φpol = 0) and y-direction (φpol = 90◦),
respectively. The projected elevation angles on x-z and y-z planes, which are θxz and θyz, respectively,
are the variables used in the explanation of the physical origin of the peak angle in Section 3, and are
expressed as follows:

θxz = tan−1(tanθ cosφ), (1)

θyz = tan−1(tanθ sinφ). (2)

In this paper, the case is discussed for the first time where the polarization angleφpol is independent
of φ, whereas φpol was rotated together with φ in our previous work [21,22].

This SOI PD was fabricated by using the following steps. The first step was to adjust the thickness
of the p-type SOI layer through thermal oxidation and removal of the oxide layer. The second step was
to pattern the SOI layer by photolithography for the isolation of PDs. The third step was to implant
the BF2

+ and the As+ ions to form anode and cathode regions, respectively. The fourth step was to
form a gate oxide on the SOI layer by using oxidation and chemical vapor deposition. The final step
was to pattern the Au SP antenna by using electron-beam lithography and a lift-off process. The top
view of the fabricated device with Au grating stacked over the light sensitive p- area of 50 × 50 µm2

is shown in Figure 2. Since the SP antenna is surrounded by the frame, an electrical contact to the
gate electrode is established. This fabricated device is compatible with the CMOS integrated circuit
technology except for the usage of Au, and offers good manufacturability as a monolithic device with
multiple PDs in a single chip.
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Figure 1. (a) Cross-sectional view of the silicon-on-insulator (SOI) photodiode (PD) with a surface
plasmon (SP) antenna; (b) 1D line and space grating; (c) 2D hole array grating; (d) definitions of
azimuth (φ), elevation (θ), and polarization (φpol) angles of the incident light reproduced from [22].
The projected elevation angles θxz and θyz to x-z and y-z planes, respectively, are also clarified for
theoretical discussions.
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Figure 2. Top view (optical and scanning-electron micrographs) of the fabricated device with the 1D
line and space grating and a 2D hole array grating reproduced from [22].

3. Principle of Angle Detection

The basic principle of peak angle detection provided by the device is explained in this section.
The SOI photodiode functions as a waveguide, as its structure is similar to a symmetrical slab waveguide
where the Si layer acts as the core with high refractive index and the gate oxide and the BOX layer
act as claddings with a low refractive index (SiO2). In Figure 3a, a representation of the waveguide
modes in the SOI slab is shown. The main contribution of the SP antenna in the enhancement of light
absorption is caused by the strong coupling between the enhanced diffracted light and the propagation
mode in the SOI layer.
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The angle-selective enhancement of the device occurs when the phase matching condition between
the diffracted mode of the antenna and the propagation mode of the SOI waveguide is satisfied.
Through the concept of phase matching condition and the relation between the grating period of the
SP antenna, the waveguide mode of SOI PD, the wavelength, and the incident angle (φ, θ) of light
could be formalized and used to predict the directivity of the SOI PD with the SP antenna towards the
incoming light.

To analyze the basic principle in detail, we first considered the dispersion relation for the
symmetrical Si-core slab waveguide. The propagation wavelength of the waveguide mode can be
predicted by using the dispersion relation based on the following transcendental equations [23]:

For TE modes,
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√
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tcore is Si core thickness (100 nm in our design), while ncore and nclad are the refractive indices for Si
core and SiO2 claddings, respectively. Especially for ncore, the wavelength dependence is considered.
λ and λg are the free space wavelength and the propagation wavelength, respectively. Figure 3b shows
the calculated propagation wavelength of the waveguide in the visible light wavelength range.

We then considered a monochromatic incident light where the wavelength of λ is tilted in the x-z
plane with the angle of θxz and the peak angle could be obtained from the previously noted dispersion
relation and the following phase matching condition [20]. Figure 4 shows the schematics of the phase
matching condition between the diffracted light from SP antenna and the waveguiding mode in the
SOI layer when the incident angle is elevated. Due to the periodic arrangement of gold line and space,



Sensors 2020, 20, 5543 6 of 14

phase difference ∆ occurs between the rays entering the adjacent gold lines in the antenna, when the
incident angle is tilted, and ∆ is given by

∆ = p(2π/λ) sinθxz. (5)

Sensors 2020, 20, x FOR PEER REVIEW 6 of 14 

 

𝜃௫௭ ൌ sinିଵ 𝜆ൣሺ1 𝑝⁄ ሻ െ ൫1 𝜆⁄ ൯൧ (7) 

where λgf and λgb are the propagation wavelengths in forward and backward directions. These 
theoretical peak angles can be designed using the following procedure. At first, the propagation 
wavelength λg for the free space incident wavelength λ is obtained from the dispersion relation, as 
shown in Figure 3b. Substituting the calculated value λg for λgf or λgb in Equations (4) or (5), the peak 
angle θxz of forward or backward waves can be obtained for each grating period at a fixed  
incident wavelength. 

 
Figure 4. Phase matching conditions between the diffracted wave from antenna surface and the 
waveguide mode in the SOI layer for forward and backward waves reproduced from [22]. kgf = 2π/λgf 
and kgb = 2π/λgb are the wavenumbers for forward and backward waves, respectively. In the case of y-
direction, θyz is considered instead of θxz. 

When the phase matching condition between the waves in the antenna and the SOI layer is 
considered in the y-direction, the same manner can be adopted and θyz is considered instead of θxz. 

In the above equations, the elevation angle for a fixed azimuth angle could be predicted. i.e., 
when φ = 0 and 90°, θxz and θyz tilting occurs, respectively. For a 2D angular mapping, azimuth (φ) 
angle detection also needs to be precisely predicted in addition to the elevation (θ) angle. This can be 
calculated by considering Equations (1) and (2). 

It is important to consider the design of both types of SP antenna in Figure 1b,c. The structure of 
1D L/S grating has a periodic arrangement of line and space along the x direction, whereas along the 
y direction, a straight line is present. This phase matching condition effect appears only along the x-
z plane, i.e., when the light direction is perpendicular to the grating orientation, whereas along the y-
z plane, angle tilting has no effect on the optical phenomenon of detecting the angle, i.e., when the 
direction is parallel to the grating orientation. Thus, 1D grating would exhibit strong polarization 
sensitive angle detection. 

In the case of 2D hole array grating, the periodic arrangement of holes is present in both the 
directions, x and y and due to its square latticed arrangement, the alignment of holes is also similar 
in both of the directions. Due to their symmetry, two phase matching conditions in x-z and y-z planes 
were imposed, as discussed in Section 4.2. 
  

Figure 4. Phase matching conditions between the diffracted wave from antenna surface and the
waveguide mode in the SOI layer for forward and backward waves reproduced from [22]. kgf = 2π/λgf

and kgb = 2π/λgb are the wavenumbers for forward and backward waves, respectively. In the case of
y-direction, θyz is considered instead of θxz.

This phase difference is responsible for propagation of two different waves in the SOI waveguide:
forward and backward waves. The forward and backward waves have shorter and longer wavelengths,
respectively, with respect to the grating period of the antenna. At a specific angle, the SP antenna
strongly couples with the diffracted light from the antenna surface to the propagating wave in the
SOI layer when the phase matching condition is satisfied. This phase matching condition occurs at
different angles correspondingly with the grating period for forward and backward waves. Based on
this physical concept, the mathematical equations were modeled for predicting the peak angle in x-z
plane is (θxz) as follows:

For forward waves,
θxz = sin−1 λ

[(
1/λg f

)
− (1/p)

]
(6)

and for backward waves,
θxz = sin−1 λ

[
(1/p) −

(
1/λgb

)]
(7)

whereλgf andλgb are the propagation wavelengths in forward and backward directions. These theoretical
peak angles can be designed using the following procedure. At first, the propagation wavelength λg for
the free space incident wavelength λis obtained from the dispersion relation, as shown in Figure 3b.
Substituting the calculated value λg for λgf or λgb in Equations (4) or (5), the peak angle θxz of forward
or backward waves can be obtained for each grating period at a fixed incident wavelength.

When the phase matching condition between the waves in the antenna and the SOI layer is
considered in the y-direction, the same manner can be adopted and θyz is considered instead of θxz.

In the above equations, the elevation angle for a fixed azimuth angle could be predicted. i.e., whenφ
= 0 and 90◦, θxz and θyz tilting occurs, respectively. For a 2D angular mapping, azimuth (φ) angle
detection also needs to be precisely predicted in addition to the elevation (θ) angle. This can be
calculated by considering Equations (1) and (2).

It is important to consider the design of both types of SP antenna in Figure 1b,c. The structure
of 1D L/S grating has a periodic arrangement of line and space along the x direction, whereas along
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the y direction, a straight line is present. This phase matching condition effect appears only along the
x-z plane, i.e., when the light direction is perpendicular to the grating orientation, whereas along the
y-z plane, angle tilting has no effect on the optical phenomenon of detecting the angle, i.e., when the
direction is parallel to the grating orientation. Thus, 1D grating would exhibit strong polarization
sensitive angle detection.

In the case of 2D hole array grating, the periodic arrangement of holes is present in both the
directions, x and y and due to its square latticed arrangement, the alignment of holes is also similar in
both of the directions. Due to their symmetry, two phase matching conditions in x-z and y-z planes
were imposed, as discussed in Section 4.2.

4. Results and Discussions

4.1. 1D L/S SP Antenna

We first show the light sensitivity in the SOI PD with 1D L/S SP antenna to the elevation angle (θ)
tilting at a fixed azimuth angle (φ) and polarization angle (φpol). To predict the performance of our
devices quantitatively, the absorption efficiency in the SOI layer was calculated by using the FDTD
method. In this simulation, we used the Lorentz–Drude oscillator model and the single-pole Lorentz
model to introduce the dielectric constants depending on wavelength of metals (Au and Ti) and silicon,
respectively. These parameters are the same as the ones in [18]. The relative permittivity of SiO2 for
the layers of BOX and gate oxide were fixed at 2.13. In order to reduce the computation costs, the
periodic boundary condition and the absorbing boundary condition were adopted. Especially for
absorbing the boundary condition, we chose the perfectly matching layer (PML). FDTD simulations
mainly evaluate the absorption efficiency based on the ratio of the power absorbed in the SOI layer to
the one of incident light, because the absorption efficiency in the SOI layer corresponds to the external
QE of PD when it is assumed that the internal QE of PD is unity. The absorption power in the SOI layer
can be obtained by calculating the term of conduction loss in the Maxwell equation or by subtracting
the power passing through at the lower interface of SOI from the upper interface [17]. Figure 5a
shows the FDTD results of absorption efficiency in the SOI layer as a function of elevation angle θ for
various grating periods p ranging from 285 to 340 nm with an interval of 5 nm. The incidence was a
TM-polarized monochromatic light with the wavelength of 685 nm, and the incident direction was
moved along the perpendicular one to the L/S orientation, i.e., at φ = φpol = 90◦. An elevation angle
dependence of absorption efficiency with a sharp peak was observed at each period, and the peak
elevation angle clearly shifted due to the change of the grating period. The peak heights except for p =

285 nm were almost the same, and the peak height in the case of p = 285 nm was about 0.1 larger than
the others. The propagation wavelength of the symmetrical waveguide with 100-nm-thick Si for the
incident wavelength of 685 nm was 285.5 nm calculated from Equation (2). When the propagation
wavelength and the grating period p of SP antenna is matched, strong coupling of the diffracted light
with the SOI waveguide mode occurs for normal incidence. This characteristic has been already
discussed in detail in our previous research [17–20]. In Figure 5b, the peak elevation angle for the
different grating period p under the TM waveguide mode was predicted by the FDTD calculation and
phase matching condition for the forward waves in order to check their correlation. Similar trends
were obtained so that peak elevation angle linearly increases as the grating period p increases and the
peak positions coincide exactly with each other. The output response of each pixel could be modeled
by using a simple Gaussian distribution equation. Thus, it can be shown that p can tune the peak
elevation angle. The peak angle could also be controlled by varying the thickness of the SOI layer.
However, we fixed the tSOI to facilitate monolithic integration of PD with different grating periods
for achieving angle detection with different characteristics. Note that the phase matching condition
can estimate a peak elevation angle only, but FDTD results can investigate more details, including
absorption efficiency, peak width, and so on. Considering the actual incident angle detection, we had
to discuss not only the elevation angle but also the azimuth angle. In addition, the light in nature



Sensors 2020, 20, 5543 8 of 14

consists of polarized rays. Thus, the elevation-azimuth angle dependence of QE for different types of
polarization was investigated for a rich collection of light information for image processing applications.
A distribution of absorption efficiency based on polar coordinate system was used as a spatial pattern.
This spatial pattern is convenient to represent the complete spherical optical information emanating
from a point in space. Figure 5c shows the FDTD results of the spatial pattern at p = 300 nm and
φpol = 90◦. Figure 5d shows the peak position of azimuth and elevation angles based on the phase
matching condition. The spatial pattern based on the phase matching condition has good agreement
with the one estimated by FDTD calculation, with a small angle deviation of ~0.5◦.Sensors 2020, 20, x FOR PEER REVIEW 8 of 14 
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Figure 5. (a) Absorption efficiency as a function of the elevation angle in SOI PD with 1D L/S SP
antenna (FDTD calculation) with various grating periods p; (b) Comparison of appropriate grating
periods for designed peak elevation angle estimated by FDTD method and phase matching condition.
(c) Calculated spatial pattern of absorption efficiency at φpol = 90◦ and (d) theoretical spatial pattern of
peak incident angles based on the phase matching condition. Grating period is fixed at p = 300 nm.

The SOI PD with 1D L/S antenna is fabricated for measurements, where the thicknesses of SOI,
gate oxide, BOX, Au, and Ti are tSOI = 105 nm, tox = 100 nm, tBOX = 400 nm, tAu = 50 nm, and tTi = 5 nm,
respectively. The grating period and width are p = 286 nm and w = 143 nm, respectively. The spatial
pattern was measured for the elevation angles from 0 to 8◦ and the azimuth angles from 0 to 360◦ under
three different polarizations: φpol = 0, 45◦, and 90◦. Figure 6 shows our measurement system. The light
source is the solid-state laser, which emits a linearly-polarized light with a wavelength of 685 nm.
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The half-wave plate was used to calibrate a basic axis for the incident polarization angle φpol from the
grating orientation of PDs, and φpol was adjusted by the rotation stage. The collimated light by beam
expander was irradiated to the PDs. The azimuth angle φ and the elevation angle θ were adjusted
by moving the αβ goniometer stage. The electrical characteristics of fabricated PD were measured
by using a semiconductor parameter analyzer. Here, the photocurrent is evaluated when the reverse
bias voltage of −1 V is applied between the anode (p+ region) and the cathode (n+ region) electrodes.
Since our metallic SP antenna can be used for a gate electrode, the gate bias voltage was applied to
control the carrier distribution. Combined with the substrate bias voltage, the depletion region can be
expanded entirely in a p− light sensitive region [18]. In this paper, the gate voltage at VG = 7 V and the
substrate voltage at VSUB = −25 V are commonly used, including in the next subsection. The measured
spatial patterns for different polarization angles (i) φpol = 0, (ii) 45◦ and (iii) 90◦ are shown in Figure 7a.
The contour map with two-fold symmetry appeared in all the cases. When the incident light with the
electric field perpendicular to the grating orientation (TM polarization) is illuminated, strong coupling
occurs with the TM fundamental waveguide mode (TM0) in the SOI layer [21–24]. The QE reaches a
maximum of 0.4 as predicted in the FDTD results when φpol = 90◦, and reaches 0.2 (half value in the
case of φpol = 90◦) when φpol = 45◦. Thus, the QE is higher in the case of perpendicular polarization
and gradually decreases as the polarization decreases to zero. Such polarization dependence has
been already described in our previous work, and the maximum QE for each polarization angle in a
spatial pattern, denoted by ηmax (φpol), can be roughly estimated by ηmax (φpol) = ηmax (φpol = 90◦)
cos2φpol [22]. Figure 7b shows the theoretical spatial pattern for the grating period p = 286 nm based
on the phase matching condition. It is shown that the two-fold symmetry was also obtained that was
similar to the experimental demonstration. For the case of φpol = 0, (TE polarization), the coupling
occurs with the TE waveguide modes propagating in the SOI slab. However, the peaks corresponding
to this polarization are invisible in the elevation angle range of these measurements.
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Figure 7. (a) Measured spatial patterns in SOI PD with a 1D L/S SP antenna for different polarizations
(i) φpol = 0, 45◦ and 90◦; (b) theoretical spatial pattern of peak incident angle based on phase matching
condition to verify the measurements reproduced from [22]. The grating period was fixed at p = 286 nm.

4.2. 2D Hole Array SP Antenna

Here, the type of SP antenna was changed to a 2D hole array, and its spatial pattern depending on
incident polarization is discussed. As discussed in the previous subsection, the FDTD calculation was
performed before obtaining measurements for the PD with a grating period of p = 300 nm and SOI
thickness of tSOI = 100 nm. Figure 8a shows the spatial pattern for different polarization of φpol = 0,
45◦, and 90◦. In the cases of φpol = 0 and 90◦, the FDTD spatial patterns have two-fold symmetry in
the vertical and the horizontal directions, respectively. However, in the case of φpol = 45◦, the spatial
pattern with four-fold symmetry appears. This pattern may be caused by the superposition of the
patterns of φpol = 0 and 90◦. The peak elevation angle trend in φpol = 90◦ is the inverse of that of the
φpol = 0 as the azimuth angle increases. Thus, peak angle sensitivity is highly symmetric with the
parallel, and perpendicular calculation is also further expanded to predict the 2D angular distribution
and plotted in polar coordinates with the spatial pattern representation, as shown in Figure 8b.
The elevation-azimuth angular information mapping by the theory and numerical predictions were
in good agreement, ensuring that the peak angle appears based on the optical concept and phase
matching condition.

For the demonstration of polarization dependence in SOI PD with 2D hole array to
elevation-azimuth angle detectivity, the external quantum efficiency was measured for the polarizations,
φpol = 0, 45, and 90◦ and the corresponding spatial patterns are represented in Figure 9a. The polarization
0 and 90◦ shows a two-fold symmetry and follows the inverse trend of peak sensitivity with each
other. Due to the high symmetric structure of the 2D SP antenna, strong coupling occurs for both the
parallel and perpendicular polarizations. Also, the polarization 45◦ exhibits a superposition of the
polarizations 0 and 90◦. The experimental spatial pattern of SOI PD with 2D hole array SP antenna
trend is similar to that observed in the numerical prediction. The theoretical spatial pattern for SOI
PD with 2D SP antenna with p = 286 nm and tSOI = 105 nm for the TM mode is shown in Figure 9b.
The peak angles of the theory and the experiment are close enough with a small variation, which is
explained in Figure 10. The spatial patterns for both the devices clearly show the capability to detect
both azimuth and elevation angles and polarization of the incoming light. Each device is capable of
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decoding an angular information with a high angular resolution of ~2◦. The spatial pattern shows the
full sphere of optical information impinging on a point in space and reveals the angle detection in both
elevation and azimuth directions. LS grating owing to its 1D periodicity with high QE (45%) exhibits
a strong polarization sensitive behavior and stands as a promising candidate for developing pixels
for polarization vision applications. Hole array grating has the advantage of detecting angles with
polarization independent behavior.
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spatial pattern for SOI PD for a 2D hole array with a grating period of p = 300 nm reproduced from [22].
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Figure 9. (a) Measured spatial patterns in SOI PD with a 2D hole array SP antenna for different
polarizations of (i) φpol = 0, 45◦, and 90◦; (b) theoretical spatial pattern of a peak incident angle based
on phase matching conditions to verify the measurements reproduced from [22]. The grating period is
fixed at p = 286 nm.



Sensors 2020, 20, 5543 12 of 14

Sensors 2020, 20, x FOR PEER REVIEW 12 of 14 

 

width, and thickness of the SP antenna do not affect the peak angles [19], which is beneficial for 
attaining reproducibility. 

 
Figure 10. Comparison between measured peak elevation angles (circles and squares indicate LS and 
HA grating, respectively) and theoretical lines based on the phase matching condition. Samples with 
the grating periods p = 270 (blue) and 286 (green) nm have different measured SOI thicknesses tSOI = 
105.40 and 104.69 nm, (dotted lines) respectively. Theoretical lines for measured and estimated (solid 
lines) SOI thicknesses for p = 270 and 286 nm are shown. The arrows indicate the shift of measured 
angles from the estimated ones. 

5. Conclusions 

The effect of polarization on detectivity of light sensitivity in our proposed SOI PD with two 
types of SP antenna composed of 1D L/S grating and 2D hole array grating was investigated by using 
theoretical and simulated predictions, and experimental demonstration. While the conventional ASP 
focuses only on the local angular distribution of light, our proposed devices are capable of exhibiting 
elevation-azimuth angular detection. In addition, the spatial pattern representation was very unique 
for understanding the dependences of not only the elevation-azimuth angle but also polarization. 
The device with 1D grating shows angle detection with strong polarization selectivity. The 2D grating 
which was designed by simply changing the layout of the antenna by overlapping the 1D grating in 
two orthogonal directions, which exhibits angle detection with polarization insensitive behavior. The 
SP antenna played an effective role in affecting both the incident angle and polarization of light 
caused by the coupling between the diffracted light from the SP antenna and the waveguide mode in 
the SOI layer when the phase matching condition was satisfied. Several pixels with different grating 
periods could be integrated in a single chip for tuning multiple incident angles for sufficiently 
extracting the angle features of the image, and contributed to the development of an advanced ASP 
as a key component of plenoptic cameras that enable interesting applications such as three-
dimensional (3D) imaging, depth-of-field extension, lensless imaging, and so on. 1D grating 
especially opens an opportunity for developing tiny pixels to enable applications based on 
polarization vision due to its polarization sensitive behavior. 
  

Figure 10. Comparison between measured peak elevation angles (circles and squares indicate LS and
HA grating, respectively) and theoretical lines based on the phase matching condition. Samples with the
grating periods p = 270 (blue) and 286 (green) nm have different measured SOI thicknesses tSOI = 105.40
and 104.69 nm, (dotted lines) respectively. Theoretical lines for measured and estimated (solid lines)
SOI thicknesses for p = 270 and 286 nm are shown. The arrows indicate the shift of measured angles
from the estimated ones.

Figure 10 compares the measured peak elevation angles (indicated by symbols as shown in the
legend) for two grating periods of p = 270 (blue) and 286 (green) nm, and grating types of 1D L/S
(circle) and 2D hole array (square) with the theoretical lines based on the phase matching condition
for measured (dotted lines) and estimated (solid lines) tSOI. The SOI thicknesses were measured by
the spectroscopic reflectometer (Otsuka Electronics Co., Ltd., Tokyo, Japan, FE-3000) just before the
fabrication of the SP antenna. The measured peak angles are 2.8◦ larger and 3.0◦ smaller than the
theoretical ones for p = 270 and 286 nm, respectively. These deviations from the theory can be explained
by the reduction of tSOI by 2.17 and 2.44 nm, respectively. Note that the decrease in tSOI results in the
increase and the decrease of the peak elevation angles for forward and backward waves, respectively.
In order to understand the discrepancy in tSOI, optical constants of Si and SiO2 in the wavelength
range of 230–800 nm used in the tSOI measurement need to be analyzed as a future task. These results
indicate that the accurate control of tSOI is necessary to reproduce the peak incident angles, which is
not so difficult for advanced SOI CMOS technology. Also note that the material, i.e., optical constants,
width, and thickness of the SP antenna do not affect the peak angles [19], which is beneficial for
attaining reproducibility.

5. Conclusions

The effect of polarization on detectivity of light sensitivity in our proposed SOI PD with two
types of SP antenna composed of 1D L/S grating and 2D hole array grating was investigated by using
theoretical and simulated predictions, and experimental demonstration. While the conventional ASP
focuses only on the local angular distribution of light, our proposed devices are capable of exhibiting
elevation-azimuth angular detection. In addition, the spatial pattern representation was very unique
for understanding the dependences of not only the elevation-azimuth angle but also polarization.
The device with 1D grating shows angle detection with strong polarization selectivity. The 2D grating
which was designed by simply changing the layout of the antenna by overlapping the 1D grating in two
orthogonal directions, which exhibits angle detection with polarization insensitive behavior. The SP
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antenna played an effective role in affecting both the incident angle and polarization of light caused by
the coupling between the diffracted light from the SP antenna and the waveguide mode in the SOI layer
when the phase matching condition was satisfied. Several pixels with different grating periods could
be integrated in a single chip for tuning multiple incident angles for sufficiently extracting the angle
features of the image, and contributed to the development of an advanced ASP as a key component
of plenoptic cameras that enable interesting applications such as three-dimensional (3D) imaging,
depth-of-field extension, lensless imaging, and so on. 1D grating especially opens an opportunity
for developing tiny pixels to enable applications based on polarization vision due to its polarization
sensitive behavior.
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