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Abstract: Snake ‘dry bites’ are characterized by the absence of venom being injected into the victim
during a snakebite incident. The dry bite mechanism and diagnosis are quite complex, and the lack
of envenoming symptoms in these cases may be misinterpreted as a miraculous treatment or as proof
that the bite from the perpetrating snake species is rather harmless. The circumstances of dry bites
and their clinical diagnosis are not well-explored in the literature, which may lead to ambiguity
amongst treating personnel about whether antivenom is indicated or not. Here, the epidemiology and
recorded history of dry bites are reviewed, and the clinical knowledge on the dry bite phenomenon is
presented and discussed. Finally, this review proposes a diagnostic and therapeutic protocol to assist
medical care after snake dry bites, aiming to improve patient outcomes.

Keywords: dry bites; venom; non-envenoming; snakebite; antivenom; asymptomatic envenoming

Key Contribution: This review explores the epidemiology, history, diagnosis, and treatment of snake
dry bites.

1. Introduction

Every year, about 5.4 million snakebites occur worldwide. These cause up to 2.7 million
envenomings, almost 138,000 deaths, and 400,000 cases of sequelae or disability [1,2]. This serious
public health problem is a neglected, occupational disease in subtropical and tropical countries in Asia,
Africa, and Latin America [1]. Every year, two million snakebites occur in Asia, with India presenting
more than 46,000 deaths each year [1,3]. In Africa, snakebites are estimated to cause 435,000 to 580,000
accidents annually, with a range of 7000 to 32,000 deaths in sub-Saharan Africa, of which 3500 to
5400 deaths occur in West Africa [1,4–7]. In Latin America, there are 137,000 to 150,000 snakebite
reports and 3400 to 5000 deaths per year [8]. In developed countries in North America and Europe,
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these numbers are much lower. In North America, 3800 to 6500 annual cases with up to 15 deaths are
reported, while Europe experiences around 7500 cases and up to five deaths per year [4,7–10].

Snakebites are associated with poverty, and the most at-risk groups include farmers and their
families, fishermen, hunters, woodcutters, indigenous people, and indigents, as well as people who do
not have access to adequate health and educational systems [6,8,11]. Children and pregnant women
are also considered risk groups for this neglected disease, with children often being bitten when they
are playing outside, as curiosity might entice them to touch snakes. Due to the immaturity of their
immune systems and low body weights compared to adults, envenomings in children are often severe.
In pregnant women, snakebite envenoming has been documented to occasionally cause abortions,
mainly due to hemorrhage [8,12].

In May 2019, the World Health Organization (WHO) launched a program to prevent and control
snakebite incidents via (amongst other strategies) improved access to effective and safe treatment for
the most affected communities, thereby aiming to reduce snakebite mortality and morbidity by 50% by
2030. In addition, the WHO encourages the search for new treatments, diagnostics, and preventative
measures that can lead to faster recovery of snakebite victims or avoidance of victims being bitten in
the first place [13].

No venomous snake is large enough to consider human beings as prey, and the main reason
for human snakebite envenomings is that the snake defends itself against what it considers an
imposing threat. However, as venom is metabolically costly to produce [14] and may not in itself
immediately deter an imposing human or predator, as most venoms need time to exert their toxic
effects, snakes may benefit from delivering warning bites devoid of venom (‘dry bites’) to predators
and threats, thereby saving their venom for future prey. Thus, in many encounters, where snakes bite
human victims, the victim may fortuitously only receive a dry bite. For example, a study conducted
over three years at the Toxinology and Toxicology Unit of the General Hospital of the Central Province
of Sri Lanka in Peradeniya demonstrated that in over 776 snakebite admissions, 86% of the patients
had received a bite in which no venom had been injected [15]. It can, however, be difficult to determine
whether a bite is ‘dry’ or ‘wet’, as a bite from any animal will often cause inflammation and swelling.
This may complicate clinical diagnosis, making it more challenging to decide early on whether or
not a snakebite victim needs antivenom. In this article, we present the anatomy of the snake venom
apparatus, review the current knowledge on snake dry bites, and discuss the diagnostic and clinical
implications of these bites.

2. Snake Venom Apparatus and Venom Production

The anatomy of venomous snakes is diverse, but some aspects are universal [16]. All venomous
snakes have similar venom delivery apparatuses comprised of a set of fangs, venom ducts, a pair of
accessory glands, and a pair of postorbital glands, in which venom is produced. These venom glands
are comprised of three major cell types: basal cells, conical mitochondria-rich cells, and secretory cells,
which produce the venom (Figure 1). Venom is carried from the gland to the fang by a duct that flows
through an accessory gland (absent in some snake families). It has been postulated that this accessory
gland may be a site of activation of venom components [17–19], however, protein components that have
been added to the venom after passing through the accessory gland, compared with venom extracted
from the main venom glands, are yet to be identified. Finally, the apparatus ends with fangs, which are
cone-shaped, tapered, and are usually curved, essentially making them into hollow venom delivering
tubes [20]. Fangs can be replaced if lost or damaged, and some species even have reserve fangs that
remain in a suspended and immature state until they are stimulated to develop [21]. The fangs are
specialized for venom delivery, and some fangs have specialized even further to allow the snake to
spit venom. The fangs can occupy various positions on the upper jaw but are always found on the
maxilla. Additionally, in venomous colubrids (sensu lato) and elapids, the venom fang is attached to a
stable maxillary bone, and for this reason it is always erect. In viperid snakes, the maxilla is capable of
rotating, enabling the fang to be erected during a bite or laid parallel to the jaw when in the relaxed
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state [21]. Advanced snakes, which utilize venom for prey capture (colubrids, Viperidae, Elapidae,
and Actraspidae) [20], are often referred to by the position of their fangs as either rear- or front-fanged
snakes. The vast majority of snakes that are medically important to humans are front-fanged (Viperidae
and Elapidae) [17,20].
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Figure 1. Snake venom delivery systems. Schematic anatomy of snake venom delivery systems.
(A) Viperidae venom system: The venom gland is triangular and large; the lumen is voluminous
and can store high quantities of venom; the lumen forms the primary duct, which is connected to an
accessory gland and finally to the secondary duct and the fang. (B) Elapidae venom system: The venom
gland is oval; the lumen is narrow, and the majority of venom is stored in the secretory cells rather than
the lumen; the accessory gland is placed in the distal part of the venom gland and has only one duct.

The initiation of venom production appears to be controlled by the sympathetic nervous system
in the venom glands of rattlesnakes (Viperidae), which have been taken as an excellent model system
for the study of the synthesis, secretion, and storage of toxic proteins [22,23]. Venom production in
both adult and juvenile specimens occurs very rapidly. The protein re-synthesis triggered by venom
expulsion peaks between days 3–7 of the cycle of venom replenishment [24]. Protein synthesis is
thought to be maintained at a high rate until completion, and studies have suggested that secretory
cells can remain active for up to 30 to 60 days post venom extraction, indicating that the complete cycle
of venom synthesis may be longer than previously expected [25]. After synthesis, the venom is stored
in the basal lumen and ductules of the venom gland and is therefore available when needed [17].

Venom injection is a form of venom expulsion, in which the venom is discharged while the fang is
imbedded in the tissue of the prey. It is characterized by variation in both the volume and pressure of
the venom. In Viperidae, Elapidae, and Atractaspidinae snakes, the venom glands are enclosed in a
fibrous sheath that facilitates the attachment of muscles. This muscularization of the venom glands
allows the ejection of venom from the glands into prey in a high-pressure manner by contraction of the
compressor muscle [26–28]. In viperids, the ability to rotate the maxilla offers an additional layer of
control, as venom flowing through the distal portion of the venom ducts is affected by the degree of
fang erection, at least until a threshold of approximately 60◦ degrees is reached. This enables the fang
to be erected in the event of an attack or laid parallel to the jaw when in the relaxed state, as opposed to
venomous elapids, in which the venom fang is attached to a stable maxillary bone and for this reason is
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always erect [26]. As such, viperids possess the most morphologically specialized and efficient venom
delivery systems of all venomous snakes.

3. History of Snake Dry Bites

In London in 1892, a 30-year-old male was bitten by his pet South American rattlesnake
(Crotalus durissus) [29]. The patient sought medical assistance and was examined by a physician one
hour after the bite. The medical examination confirmed the presence of one fang puncture mark, and the
physician applied a tourniquet, nitric acid, and potassium permanganate to the bite site (these were
contemporary methods used for chemical cauterization and venom inhibition, respectively [30,31]).
The patient neither presented evident signs and symptoms of envenoming while staying overnight
at the hospital nor in the follow-up after discharge. In the physician words, “I am inclined, however,
to believe that either no poison had been injected at all, or so little as to cause no ill effects” [29]. This case
report possibly constitutes the first formal clinical report of a venomous snakebite accident without
clinical manifestations. Since then, asymptomatic cases have been reported in epidemiological studies
involving snakebites worldwide, combining reports from both venomous and non-venomous snakes.
Bites that do not cause clinical manifestations were classified in the late 1950s and early 1960s as
asymptomatic or grade 0, and they comprise bites with the presence of fang marks but minimal or no
local or systemic signs and symptoms of envenoming [32,33]. These cases account for about 50% of
bites globally, and for up to 80% of bites for some snake species [34].

The term ‘dry bites’ did not appear until the early 1980s, when it was defined as a venomous
snakebite with no or negligible venom injection, characterized by a lack of clinical manifestations of
envenoming [35]. The amount of snake venom injected at the site of the bite is considered the key
factor influencing the severity of a venomous snakebite. The propensity of snakes to deliver dry bites
has a multifactorial explanation, part of which is related to snake behavior. This was demonstrated by
Kardong et al., who studied the biting habits of Northern Pacific rattlesnakes (Crotalus viridis oreganus)
and found that often less venom was injected in the first strike of a series, and that defensive strikes
resulted in more cases of dry bites compared to offensive (predatory) strikes [36]. Behavioral disparity
is also reflected in the rates of dry bite cases reported for different venomous snake species [34,37].
Therefore, the dry bite definition represents an important hallmark in clinical snakebite investigations,
considering its major medical importance and misestimated frequency rates compared to non-venomous
snakebites. An example of this was reported by Walter et al. (2010) [38], who performed a retrospective
epidemiological study concerning coral snakebites in the USA using data from 1983 to 2007. In that
study, authors found a significant decrease in annual incidence rates of patients with no clinical
manifestations of envenoming. These results can be explained by a lack of standardization of the
definition of dry bites and their distinction from envenomed cases, especially mild envenomings, at the
beginning of the period, and an improvement in surveillance over time [38].

It is important to diagnose dry bites in clinical settings as this diagnosis informs an adequate
medical response, e.g., on whether antivenom is indicated or not. However, another important reason
for dry bites to be diagnosed and reported concerns the spread of misinformation pertaining to so-called
miraculous treatments. Traditional medicines and outdated treatment methods are still employed
to combat snakebites in many parts of the world, whether alone or in conjunction with regular
antivenom therapy. Examples include a wide variety of techniques and therapeutic formulations,
such as tourniquets, snakestones, freezing the bite wound, making incisions to the bite wound and
attempting to suck out the venom, applying herbs, or using electric shock therapy in an attempt to
neutralize the venom [31,39]. Many snakebite victims seek out traditional healers as their first point
of care, and in cases of dry bites, these snakebite victims may get the impression that the traditional
treatment successfully cured them of snakebite envenoming. Therefore, treatment methods with no
proof of efficacy can gain support, which represents a substantial risk to snakebite victims, who may
delay seeking evidence-based medical attention and thereby cause an aggravation of the clinical
manifestations of envenoming [31].
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The reporting protocol for notification of cases of dry bites is not standardized between clinical
practices around the world. Among the parameters used in diagnosis, the absence of local or systemic
signs and symptoms of envenoming is the main characteristic, which can be accompanied by the
presence of fang marks, identification of the venomous snake, absence of laboratorial abnormalities,
and an absence of detectable venom levels in body fluids (such as blood and urine). Table 1 reports
epidemiological studies on dry bites over the years, and highlight the rates, snake species involved,
and diagnostic criteria used to define the bite as dry.

Table 1. Historical reports of confirmed cases of dry bites: Frequency, snake species, and diagnostic criteria.

Reference Dry Bite
Incidence (%)

Location of
Snakebite

Data
Collection

Period #

Snake Species
Involved Criteria for Dry Bite Diagnosis

Silveira and
Nishioka,
1995 [32]

13/40 (32.5%) Brazil 1992–1994
Lance-headed

viper and
rattlesnakes

No clinical or laboratory evidence
of local or systemic envenoming.

Russell,
1960 [40] 5/22 (22%) USA Not

reported Pacific rattlesnakes

No local or systemic signs
and symptoms,

No lab abnormalities,
Presence of fang marks

Campbell,
1963 [41] 29/152 (19%) Papua New

Guinea 1960–1962
Oxyuranus sp.
Acanthophis sp.

Pseudechis papuanus

No local or systemic signs
and symptoms,

Presence of fang marks,
Snake identified

Reid et al.,
1963 [42] 107/212 (50%) Malaya 1960-1961 Calloselasma

rhodostoma

Minimal or no local signs
and symptoms,
Snake identified

Parrish et al.,
1966 [33] 335/1,315 (25%) USA 1958–1959

Crotalus sp.
Agkistrodon
piscivorus

Agkistrodon
contortrix

Coral snakes

No local or systemic signs
and symptoms,

Presence of fang marks,
Snake identified

Parrish,
1966 [43] 667/2,433 (27%) USA 1958–1959

Crotalus sp.
Agkistrodon sp.

Sistrurus sp.
Micrurus sp.

No local or systemic signs
and symptoms,

Presence of fang marks

Myint-Lwin
& Warrell,
1985 [44]

34/123 (27%) Myanmar 1983–1985

Daboia siamensis
Trimeresurus

erythrurus
Naja kaouthia

No local or systemic signs
and symptoms,
Snake identified

Kitchens &
Mierop,

1987 [45]
4/20 (20%) USA 1975–1986 Micrurus fulvius

No local or systemic signs
and symptoms,

Presence of fang marks,
Snake identified

Kouyoumdjian
and Polizelli,

1989 [46]
1/22 (4%) Brazil 1986–1987 Bothrops moojeni

No local or systemic signs
and symptoms,

No lab abnormalities
(coagulopathy),
Snake identified

Curry et al.,
1989 [47] 15/146 (10%) USA 1984–1986 Rattlesnake

No local or systemic signs
and symptoms,

No lab abnormalities
(coagulopathy),
Snake identified

Tun-Pe et al.,
1991 [48] 91/234 (38%) Myanmar 1984–1988 Daboia siamensis

No local or systemic signs
and symptoms,
Snake identified

Tibballs,
1992 [49] 10/46 (22%) Australia 1979–1990

Pseudonaja textilis
Notechis scutatus

Austrelaps superbus
Pseudechis

porphyriacus

No local or systemic signs
and symptoms,

Presence of fang marks,
No lab abnormalities

(coagulopathy),
Venom not detected (blood, urine,
or washings from the suspected

bite site)
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Table 1. Cont.

Reference Dry Bite
Incidence (%)

Location of
Snakebite

Data
Collection

Period #

Snake Species
Involved Criteria for Dry Bite Diagnosis

Mead and
Jelinek, 1996

[50]
32/156 (20%) Australia 1984–1993

Pseudonaja sp.
Notechis sp.

Pseudechis sp.

No local or systemic signs
and symptoms,

Presence of fang marks,
No lab abnormalities

(coagulopathy),
Snake identified

Milani et al.,
1997 [51] 1/29 (3%) Brazil 1975–1995 Bothrops jararacussu

No local or systemic signs
and symptoms,
Snake identified

de Rezende et
al., 1998 [52] 5/41 (12%) Brazil 1994–1996 C. durissus

No local or systemic signs and
symptoms,

Presence of fang marks,
No lab abnormalities,

Venom not detected (plasma)
Snake identified

Tanen et al.,
2001 [53] 7/236 (3%) USA 1994–2000 Crotalus sp.

No local or systemic signs
and symptoms,

No lab abnormalities
(coagulopathy + hematological),

Snake identified

Kularatne,
2002 [54] 22/210 (10%) Sri Lanka 1996–1998 Bungarus caeruleus

No local or systemic signs
and symptoms,

Presence of fang marks,
Snake identified

Spiller &
Bosse,

2003 [55]
31/128 (24%) USA 2001

Agkistrodon
contortrix Crotalus

horridus Agkistrodon
piscivorus

No local or systemic signs
and symptoms,

Presence of fang marks,
No lab abnormalities

(coagulopathy)
Bawaskar

and
Bawaskar,
2004 [56]

1/29 (3%) India 2001–2003 Bungarus caeruleus
Naja naja

No local or systemic signs
and symptoms,
Snake identified

Bucaretchi et
al., 2006 [57] 1/11 (9%) Brazil 1984–2004 Micrurus

lemniscatus

No local or systemic signs
and symptoms,
Snake identified

Köse,
2007 [58] 4/21 (19%) Turkey 2004–2005 Macrovipera

lebetinus

No local or systemic signs
and symptoms,

Presence of fang marks

Ariaratnam et
al., 2008 [59] 4/88 (4%) Sri Lanka 1993–1997 Bungarus ceylonicus

No local or systemic signs
and symptoms,
Snake identified

Kularatne et
al., 2009 [60] 5/20 (20%) Sri Lanka 1995–1998;

2002–2007 Naja naja
No local or systemic signs

and symptoms, Presence of fang
marks, Snake identified

Walter et al.,
2010 [38] 117/838 (13%) USA 1983–2007 Micrurus sp.

No local or systemic signs
and symptoms,
Snake identified

Warrell,
2010 [61] 5–50%

South
East-Asia
Countries

Not
informed

Calloselasma sp.
Daboia russelii

Echis sp.

No local or systemic signs
and symptoms

Nicoleti et al.,
2010 [62] 19/792 (2%) Brazil 1990–2004 Bothrops jararaca

No local or systemic signs
and symptoms,

No lab abnormalities
(coagulopathy),
Snake identified

Kularatne et
al., 2011 [63] 2/26 (8%) Sri Lanka 2009–2010 Echis carinatus

No local or systemic signs
and symptoms,

No lab abnormalities
(coagulopathy),
Snake identified
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Table 1. Cont.

Reference Dry Bite
Incidence (%)

Location of
Snakebite

Data
Collection

Period #

Snake Species
Involved Criteria for Dry Bite Diagnosis

Kularatne et
al., 2011 [15]

1/19 (5%)
2/36 (5%)

Sri Lanka
(Central

hills)
2006–2008 Daboia russelii

Hypnale species
No local or systemic signs

and symptoms, Snake identified

Spano et al.,
2013 [64] 5/46 (10%) USA 2000–2010 Rattlesnake

No local or systemic signs
and symptoms,

No lab abnormalities
(coagulopathy)

Valenta et al.,
2014 [65] 51/191 (26%) Czech

Republic 1999–2013 Vipera berus

No local or systemic signs
and symptoms,

Presence of fang marks,
Snake identified

Roth et al.,
2016 [66] 5/104 (4%) USA 2009–2011 Agkistrodon sp.

No local or systemic signs
and symptoms,

Presence of fang marks,
Snake identified

Silva et al.,
2016 [67] 8/33 (24%) Sri Lanka 2014–not

informed Bungarus caeruleus No local or systemic signs
and symptoms,

Bawaskar
and

Bawaskar,
2019 [68]

1/77 (1.75%) India Not
reported

Echis carinatus
Daboia russelii

No local or systemic signs
and symptoms,

Presence of fang marks,
No lab abnormalities

(coagulopathy),
Snake identified

The literature search was performed using the platforms PubMed (pubmed.ncbi.nlm.nih.gov) and Google Scholar
(scholar.google.com) using the descriptors “snakebite” added to variations, such as “dry bites”, “asymptomatic”,
or “grade 0”. Literature search within references was also performed in order to reach grey literature. # Represents
the approximated period of data collection. In one case, authors only mention “during the past 12 years”.

It is likely that dry bite incidence is often underestimated in different studies, due to a number of
factors. Among these, there is a trend among some healthcare professionals to not report mild cases
and dry bites to the official surveillance system, or to not consider the possibility that a venomous snake
can cause a dry bite, in addition to the fact that medical records will naturally be biased towards actual
envenomings. The attribution of these cases to injuries by non-venomous snakes can also generate
underreporting. Finally, the low demand for medical care due to poor access, ethnic-cultural issues,
and preference for alternative treatments, especially in asymptomatic cases, are factors that can also
lead to underreporting of dry bites.

Table 1 shows that studies that reported the proportion of dry bites in the literature refer only to
bites by viperids and elapids. Since vipers have more advanced venom delivery systems, they are
expected to cause fewer dry bites compared to elapids. In our review, it was possible to identify the
family of the offending snake for a total of 3025 bites, with a very similar proportion of dry bites for
viperids (14.7%) and for elapids (14.5%) (OR = 0.99, CI 95% 0.83–1.18; P = 0.886). Thus, contrary to
expectations, there was no observed difference in the proportion of dry bites between these two snake
families. We suggest that the lack of harmonization in the diagnosis of dry bites among the different
studies, as well as potential selection biases that may occur in the search for medical assistance for
the different bite cases for different snake families, may explain this result. We highlight that our
literature search revealed no information about the participation of other snake families than viperids
and elapids in dry bite cases. There are several colubrid genera that possess opisthoglyphous fangs
with low-pressure venom delivery systems (such as genera Boiga, Rhabdophis, and Chrysopelea) that
often result in dry bites due to the opisthoglyphous fangs. Unfortunately, it seems that research for the
clinical characterization of envenomings by colubrids and lamprophiids has been largely neglected,
which prevents analysis of their severity grading and proportion of dry bites.

pubmed.ncbi.nlm.nih.gov
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4. Diagnosis of Snake Dry Bites

The diagnosis of snakebite envenoming can be a complicated task or a comparatively simple one.
It all depends on the diversity of venomous snakes in the area, whether the snake was seen, how much
time has elapsed between the bite and medical intervention, which clinical manifestations (if any)
develop, which tools and assays are available to support diagnosis, and how much experience the
treating physician has with clinical management of this highly neglected disease. In general, snakebite
diagnosis is often based on a combination of patient history and a syndromic approach, supported
by national guidelines and assays assessing e.g., serum biochemistry, coagulopathy (for example
by measuring clotting time), and renal function [69]. The diagnosis of a dry bite is generally made
retrospectively, once it has been confirmed that the bite was sustained from a venomous snake and
that no envenoming occurred. For this reason, the same diagnostic strategies are used for dry bites as
for wet bites.

To confirm the diagnosis of a dry bite, it must be ascertained that the responsible snake was
venomous. In cases where the snake was photographed or killed and brought to the clinic, it might be
possible to have an expert herpetologist identify it [8,69]. This can rule out bites from non-venomous
snakes, even those closely resembling their venomous brethren due to biomimicry. The presence of one
or two puncture wounds left by a fang or set of fangs can similarly indicate a bite from a venomous
snake, as these marks will often be distinct from those left by non-venomous snakes, which tend to
consist of multiple smaller puncture wounds arranged in a semi-circle. While identifying the offending
snake as a non-venomous species excludes the possibility of envenoming and dry bite, it should
be noted that ‘non-venomous’ does not equate to being harmless. Bite wounds from venomous
and non-venomous snakes alike may be contaminated with the snake’s oral flora and can cause
non-venom-related illness and discomfort [61]. Snakebites can cause behaviors, which may initially be
mistaken for symptoms of toxicity. For example, the bitten person might panic, which can result in
hyperventilation, syncope, vomiting, and other clinical features, which can also be observed in some
cases of systemic envenoming [8,61,70]. Additional clinical features of dry bites will be discussed in a
subsequent section.

If the herpetologist can positively identify the offending species as a venomous snake, knowledge
of the species can help treating personnel better prepare for clinical management of the bite. Knowledge
of the species might prepare physicians to source antivenom and give an indication of which type of
clinical manifestations can be expected to occur and possibly roughly within which time frame. In the
rare cases where the frequency of dry bites is known for the species, the dry bite rate might (at least
theoretically) suggest physicians to expect (or not expect) a dry bite. However, even for species with
high rates of dry bites, the risk of a wet bite cannot be excluded except retrospectively [69].

When it is not possible to visually identify the snake, the diagnosis is often based solely on patient
history and a syndromic approach, in which it might be possible to use the clinical manifestations
of envenoming, as assessed by laboratorial tests, to infer the type of snake involved. A minimum
period of observation is necessary to exclude a snakebite envenoming, in which patients bitten by
juvenile species may present no remarkable local manifestations and no signs or symptoms of systemic
envenoming, but may present blood incoagulability detected hours after the incident. Thus, laboratorial
tests are also important when ruling out envenoming. In most envenomings by viperids, coagulation
disorders occur due hemostatically active toxins. The Lee-White clotting time (LWCT) and the
20 min whole-blood clotting test (WBCT20) are simple, inexpensive, and available even in remote
health facilities. In general, clotting time tests have had their accuracy estimated in experimental
conditions rather than in clinical practice, which may lead to a mistakenly optimistic interpretation
of the results in the clinical practice. One study reports that an abnormal clotting time was found
in 100% of Echis carinatus victims, who presented any sign or symptoms of envenoming, and in the
only two cases of dry bites, the clotting time was normal [63,71]. In Manaus, out of 186 patients with
Bothrops envenoming, 75.3% had prolonged clotting times, and 85.5% had hypofibrinogenemia [72].
Systemic envenoming by juvenile C. durissus terrificus resulted in coagulopathy as the main systemic
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manifestation without other features normally associated with this type of specimens [73]. In Malayan
pit viper-bitten patients, an International Normalized Ratio (INR) > 1.155 had a sensitivity of 78.5%
and a specificity of 90.3%, while the 20WBCT had a sensitivity of 81.0% and a specificity of 90.3% to
assess coagulation abnormality [74]. Thus, such tests constitute valuable tools for the diagnosis of
snake envenoming and indication of antivenom therapy.

Tissue injury biomarkers, acute phase proteins, or pro-inflammatory cytokines/chemokines in
snakebites may also be used for discriminating between envenomings and dry bites, which could
find utility in the clinic. However, few studies exist where the accuracy of these biomarkers has
been evaluated. A recent study from Manaus showed that detection of cell-free nucleic acids may
be used to discriminate patients envenomed by Bothrops and healthy controls [75]. Levels of the
inflammatory biomarkers CXCL-9, CXCL-10, IL-6, and IL-10 were higher in Bothrops-envenomed
patients when compared to the healthy controls on admission [76]. Furthermore, there is a number of
interactions of CXCL-8, CXCL-9, CCL-2, IL-6, and IFN-γ and fibrinogen levels in patients bitten by
viperids, suggesting these cytokines as biomarkers for this type of envenoming [77]. Detection of other
biomarkers, such as lactic dehydrogenase, creatine phosphokinase, and transaminases, mostly available
in the hospitals, may possibly be relevant in future well-designed studies.

In addition to the more established laboratory tests and novel biomarkers of envenoming
described above, several assays capable of detecting venom components in patient samples have been
developed. Many of these are immunoassays, e.g., in the form of enzyme-linked immunosorbent assays
(ELISAs) [78–85], lateral flow assays (LFAs) [86,87], impedimetric immunoassays [88], and others [89–92].
Other researchers have instead explored the potential of utilizing technologies, such as polymerase
chain reactions (PCRs) [93–95] and enzymatic assays [96], for diagnosis of snakebite envenoming.
The differences between these assays in terms of how long time they take to run, user-friendliness,
species covered, sensitivity, specificity, limit of detection (LoD), and limit of quantification (LoQ) make
them differentially suited for clinical and research use. Despite the availability of several venom
detection assays described in the literature, to the best of our knowledge, the only such assay in
widespread clinical use is the Snake Venom Detection Kit produced by Seqirus in Australia [97–99].

Once it has been confirmed that a patient was bitten by a venomous snake, another question to be
answered is for how long asymptomatic patients should be observed before they can be discharged.
The time from the bite occurs until clinical manifestations of envenoming become noticeable is affected
both by the toxin composition and dose of the specific venom, as well as the anatomical site of the bite
wound. Some toxins may exert their effects within minutes, while others may require several hours
to take effect [8]. Therefore, it is crucial to observe the patient long enough to enable differentiation
between delayed onset of toxicity and a dry bite. Usually, clinical manifestations present within
12–24 h (or less) of the bite incident [8]. One study of 360 snakebite patients in Southeast Queensland,
Australia, even found that six hours of observation of asymptomatic patients was adequate to exclude
elapid envenoming [100], but this claim has since been debated. Another study in Australia proposed
a combination of repeated laboratory tests and clinical examination to reliably detect or exclude
envenoming at 6 h and 12 h after a snakebite [101]. In South America, an important aspect of Bothrops
envenomings is that bites by juvenile snakes can cause no local or very mild local manifestations,
which can be misdiagnosed as dry bites. However, these cases require a careful examination of the
patient’s coagulation parameters, considering the predominance of coagulotoxins in the venom of these
immature specimens, which may cause systemic bleeding [102,103]. Figure 2 shows the characteristics
of a patient presenting mild, local manifestations and two true dry bites by snakes from the Bothrops
genus. Once the physician is confident that envenoming can be ruled out and the patient can be
discharged, the final diagnosis of a dry bite can be made.
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Figure 2. Snakebite cases. (A) A case of juvenile Bothrops jararaca bite causing mild, local traumatic
injury, along with gum bleeding and persistently bleeding chin. Patient also presented hemorrhage
in the central nervous system. Patient from the Hospital Vital Brazil, São Paulo—SP. (B,C) Two
cases of juvenile Bothrops atrox snakebite presenting only fang marks. No hemostasis disorder was
detected. The comparison with the contralateral limb does not show the presence of edema or
ecchymosis. The patients had no local or systemic complications at follow-up. Patients from the
Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus—AM (ethical approval number
492.892/2013—FMT-HVD Ethical Board).

5. The Snake Dry Bite Phenomenon

Different factors can cause snakes to deliver dry bites, some of which are related to humans,
and some of which are related to the snakes themselves.

5.1. Snake-Related Factors Involved in Dry Bites

Snake-related factors are responsible for the majority of cases of dry bites (Figure 3), with failure
to deliver venom being the main one. Failure to inject venom can in turn be caused by viral infections,
physical agents, traumas during defense, excessive pressure on the venom glands (i.e., during manual
extraction in captivity), and any other inflammatory response [104]. Therefore, venom gland tissue
damage will result in empty venom glands and, consequently, in dry bites. Calcification of fangs and
obstruction of the secondary venom ducts can also result in a dry bite. Aged snakes often present these
alterations [52]. Mechanical failure resulting in inefficient lunge of the fangs to deliver the venom from
the venom sack to the bite site can be also responsible for the phenomenon [69].
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However, the dry bite phenomenon cannot be reduced to a matter of faulty venom delivery
caused by pathologies, which occurs with the high frequency of 20–50% of bites. In fact, most dry bites
result from a (deliberate) decision to conserve venom. Snake behavior is age-related, and the age of a
snake directly influences the likelihood of it delivering a dry bite. Adults are thought to be far more
judicious than juveniles and will therefore more often deliver a dry bite if they perceive that they are
under threat, which usually provides them with enough time to escape. In these cases, the dry bite is
intentional and could arise in at least one of two ways: (1) The snake could assess the encounter with
the target and decide not to activate the extrinsic venom gland musculature, or (2) the snake could
activate the venom gland musculature at a level insufficient for venom expulsion [105]. This strategy
is called venom metering, which is generally described as a decision on the part of the snake that
optimizes energy-related or ecological factors [106]. On the other hand, neonates and juvenile snakes
are known to not control venom metering and usually empty their glands during the bites.

If a victim is lucky, the venom glands of a perpetrating snake might be empty when the snakebite
occurs. The likelihood of empty venom glands is affected by the duration since the snake last used its
venom and by the age of the snake. Older snakes store more body fat than younger snakes and can
replenish venom quicker. Studies show that a delay of around 14 days exists between depletion of
venom (due to milking) and maximal rates of venom synthesis [107,108].

Another important snake-related cause of dry bites is a misjudgment by the snake pertaining
to its distance to the victim. Snakes can interpret this distance using strike-induced chemosensory
searching (SICS), which relies on a sustained high rate of tongue flicking [109]. A tiny SICS mistake
can mean that the fangs only partially penetrate the prey or that venom is ejected prior to penetration,
resulting in a dry bite [110].

5.2. Human-Related Factors Involved in Dry Bites

Although less explored, human-related actions are also responsible for dry bites. Snakes instill a
deep-rooted fear in many people, which can cause them to make sudden movements in an attempt
to escape. Such swift movements at the moment of the bite can result in incomplete penetration of
the skin by the snake’s fangs, resulting in a dry bite [110]. Additionally, some clothing materials can
obstruct bites. For instance, denim clothing has been demonstrated to reduce the venom release by
up to 66% during a bite [111]. Wearing shoes and boots, or any other protective footwear, instead of
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sandals, can also prevent the venom from being injected into the body of the victim, thereby resulting
in a dry bite.

It has been proposed that, in rare cases, clinical manifestations of venomous wet snakebites can
go unnoticed and cause the bite to be misinterpreted as a dry bite due to the natural immunity of
some victims [69,112,113]. Some studies have demonstrated the presence of high titers of specific
antibodies against toxins from viper venoms in individuals previously and repeatedly exposed to
snakebites in the Amazon region, suggesting that there may be some degree of protection against
morbidity and mortality in certain individuals [114–117]. This situation would theoretically imply
asymptomatic or oligosymptomatic cases of snakebite envenoming in naturally immunized individuals.
However, such cases have never been demonstrated in well-designed cohorts in the region. Likewise,
studies have suggested that humans can endocytose venom toxins through antigen presenting cells,
such as dendritic cells and macrophages, resulting in the activation of the acquired immunity [113,118].
A study conducted in Nigeria demonstrated that persistent and high levels of IgG antibodies have a
protective role against subsequent snakebites [114]. On the other hand, even with detectable titres
of antibodies, people who are bitten twice by snakes of the same genus still develop symptoms
(e.g., myotoxicity) [119]. Thus, it may be speculated that the potential protective effects of circulating
antibodies in recurrent snakebite victims (and self-immunizers) that have developed an adaptive
immune response may be dependent on the immunogenicity of the venom toxins of the perpetrating
snake species. It is possible that victims bitten by snakes possessing venoms, where the medically
most important toxins are low molecular weight toxins, such as three-finger toxins, dendrotoxins,
or phospholipases A2, are less likely to develop immunity [120,121].

6. Clinical Features of Dry Bites: To Treat or Not to Treat?

In the case of dry bites, patients can report pain, usually of light intensity. Local bleeding and
erythema can be observed as well, the fang marks may or may not be present, and the systemic
signs and changes in laboratory parameters will be absent. It is relevant to note that often, due to
the stress caused by the encounter with a snake, the patient can present himself in health services
with signs of anxiety, such as tachycardia and tachypnea. It is up to the healthcare professional,
at the time of collecting the patient’s clinical history and anamnesis, at admission, and during the
observation period of the patient in the hospital environment, to discriminate whether systemic signs
could be associated with envenoming (Figure 4). Likewise, the absence of signs and symptoms at the
time of admission does not necessarily mean that the patient suffered a dry bite, but that insufficient
time has passed for the patient to develop signs of envenoming. Thus, the final diagnosis of a dry
bite is always performed retrospectively after confirmation of the absence of local or systemic signs
and symptoms even after a follow-up, which may be required up to 12 h later, depending on the
aggressing snake species [52,69]. There is a possibility that actions taken by the patient prior to hospital
admission, such as the use of anti-inflammatory drugs and even over-the-counter medicines, can delay
the appearance of envenoming signs, reinforcing the need for follow-ups.
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In tropical areas, there are many reports of individuals living in places with high exposure to
snakebites, who did not seek medical assistance because there was an absence of signs indicating that
the patients were at risk. These cases are, however, poorly investigated. For instance, in the Brazilian
Amazon, many snakebites are caused by snakes of no medical importance, as their bites only lead to
minor trauma with or without fang marks [122]. If the clinical investigation is based only on the report
of individuals who have had conditions of this severity during their lifetime, incorrect conclusions
can easily be drawn. In some situations, the bitten individual may not have seen the snake or did not
observe characteristics that would allow the investigator to identify it. In addition, there are a number
of inconsistencies in the nomenclature of some venomous and non-venomous snakes due to similar
characteristics (e.g., color and body shape). Therefore, non-venomous snakes are often commonly
referred to by the same name as venomous snakes.

Incorrect identification of species happens with specimens of the Leptodeira genus and the species
Helicops angulatus, in the Amazon region, which due to their brownish color are often confused with
the venomous species Bothrops atrox. In these cases, blood incoagulability is unexpected if the snake
is non-venomous, just as in dry bites by pit vipers, but may manifest itself when the bite is from the
venomous species. Thus, great care must be taken in the differential diagnosis between dry bites and
injuries caused by snakes of limited medical importance. The act of bringing the dead snake that
caused the snakebite to the treatment facility, although not recommended, or even photographing it,
is important in order to facilitate the identification of a non-venomous snake, and it can be essential
in view of the fact that it will prevent the unnecessary use of antivenom, as well as other medicines.
However, it does not exclude the need for observation of patients for up to 12 h after the bite.
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When a snakebite is confirmed to be a dry bite, antivenom is not indicated. As no venom was
injected into the victim, it is expected that there will be only local manifestations of low intensity
and limited clinical repercussion, represented mainly by the trauma of the bite itself. The mistaken
administration of antivenom in these cases will not bring any clinical benefit to the patient, but may
potentially instead lead to early or late adverse reactions resulting from the administration of
heterologous immunoglobulins [123]. The bite site must be cleaned with soap and water, and tetanus
prophylaxis is an important complementary measure, while antibiotic therapy is only indicated
when signs of secondary infection are present. For some types of envenomings, such as those
caused by rattlesnakes (Crotalus genus) and elapids, local manifestations are generally very discreet,
and the systemic signs and symptoms can appear hours after the bite [124–126]. Thus, the healthcare
professional who assists the case must take care to keep the patient in the healthcare unit under
observation, as described above. On the other hand, the clinician may encounter situations in
which the benefit of treatment may outweigh the risk of adverse reactions, as in suspected elapid
envenomings. As these envenomings can abruptly become more complicated, the practitioner may
choose to prescribe the antivenom early [125,126]. With further innovation in envenoming therapy,
i.e., the development of recombinant antivenoms based on fully human antibodies [127], the early
administration of next-generation antivenoms may become even more warranted, as improvements,
in particular to safety, may significantly reduce the risk of adverse reactions [128].

7. Conclusions

When biting and injecting their potent venoms into victims, many venomous snakes may impose
a serious medical threat to human health. However, as humans are too large to be considered prey
for even the largest of venomous snakes, snakes may not always deliver venom when they bite,
as they may instead preserve this metabolically costly weapon for predation. Dry bites may cause
similar clinical manifestations as bites from non-venomous snakes (or other animals), including
inflammation and infection, as well as signs of anxiety, such as tachycardia and tachypnea. As the onset
of venom-induced pathophysiology may not occur immediately upon envenoming [129], but instead
be delayed until the venom toxins have left the bite site and reached their anatomical site of action, it is
of high importance that treating healthcare personnel can provide unambiguous differential diagnosis
of dry and wet snakebites. Such diagnosis will determine whether or not antivenom is indicated,
as well as it will help inform the treating healthcare personnel about what other supporting measures
may need to be arranged in a timely manner to improve clinical outcome. To aid such diagnosis,
a more thorough understanding of the both the snake-related and human-related factors involved in
dry and wet snakebites is important to obtain, which, in turn, warrants further studies and collection
of epidemiological data surrounding both venomous and non-venomous snakebites.
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