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Abstract: This study was performed to improve the ability to predict the concentrations of Escherichia
coli in oyster meat and estuarine waters by using environmental parameters, and microbiological and
heavy metal contamination from shellfish growing area in southern Thailand. Oyster meat (n = 144)
and estuarine waters (n = 96) were tested for microbiological and heavy metal contamination from
March 2016 to February 2017. Prevalence and mean concentrations of E. coli were 93.1% and 4.6 × 103

most probable number (MPN)/g in oyster meat, and 78.1% and 2.2 × 102 MPN/100 mL in estuarine
water. Average 7-day precipitation, ambient air temperature, and the presence of Salmonella were
associated with the concentrations of E. coli in oyster meat (p < 0.05). Raw data (MPN/g of oyster
meat and MPN/100 mL of estuarine water) and log-transformed data (logMPN/g of oyster meat and
logMPN/100 mL of estuarine water) of E. coli concentrations were examined within two contrasting
regression models. However, the more valid predictions were conducted using non-log transformed
values. These findings indicate that non-log transformed data can be used for building more accurate
statistical models in microbiological food safety, and that significant environmental parameters can
be used as a part of a rapid warning system to predict levels of E. coli before harvesting oysters.

Keywords: Crassostrea; Escherichia coli; estuarine water; fecal contamination; heavy metal
contamination; log-transformation; Salmonella; Shigella

1. Introduction

The consumption of raw seafood products, especially bivalves, poses potential risks for human
health, since bivalves are effective filler feeders that can concentrate both nutrients and hazardous
substances from the environment [1]. Bivalves can accumulate high bacterial loads and chemical
contamination. Numerous seafood-borne outbreaks of Salmonella, Shigella, Vibrio parahaemolyticus,
Vibrio vulnificus, Streptococcus aureus and Clostridium botulinum derived from oysters have been
continuously reported globally [2–5]. The most common route of oyster-borne outbreaks has been
traced to the consumption of raw or minimally-cooked oyster meat [6]. Heavy metal contamination in
oyster meat has also been investigated in different locations. For example, in northern Vietnam, high
levels of Zn, Cu, As, Cd, Pb and Cr were reported in rocky oysters, and in the north-central coast of
Sinaloa in Mexico, the contamination of Zn, Cu, Cd, Pb, and Hg was observed in oyster meat intended
for human consumption [7,8].

Laboratory microbiological analyses of pathogenic bacteria are generally expensive, difficult to
perform and time-consuming; as a consequence, the determination of indicator bacteria i.e., fecal
coliform and Escherichia coli, can be used as proxy to identify fecal contamination in seafood products
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and in harvested area [9]. In seafood safety monitoring programs, bivalves have been frequently used
as a good environmental and biological indicator to identify contamination [10].

In field-based studies, average ambient air temperature, relative humidity, wind speed, seasons,
geographical location, climate change, and aquatic animal captive approaches have been found to
have had a strong influence on biological and chemical contamination of shellfish products [11].
Climate change is currently a global concern and it may contribute to a myriad of environmental
factors such as heavy precipitation and temperature increase, influencing the persistence of bacterial
impact on the dispersal of foodborne pathogens to the environment [12,13]. In oyster cultivation, main
sources of fecal contamination from the environment to bivalve cultivation areas have been reported
to come from domestic animals, wildlife, water runoff, birds, recreational sports, and sewage [14].
Nevertheless, it is challenging to identify the exact source of contamination to seafood products, which
is often impractical, infeasible, and very difficult to perform. Therefore, monitoring and surveillance
of environmental parameters can be adopted to predict bacterial accumulation in oyster meat and
estuarine water.

Authorities from different countries such as the United States, the European Union (EU) and
New Zealand have established national standards or guidelines regarding microbial contamination of
shellfish, and criteria for determining the safety of shellfish intended for human consumption [15–17].
However, in many countries, including Thailand, no stringent guideline or standard has been strictly
implemented with regard to the allowed level of E. coli contamination in fresh oysters for human
consumption. Monitoring of environmental parameters, together with testing the concentrations of
indicator bacteria of bivalves and estuarine waters in aquaculture growing areas, should be performed
public health reasons. This information can also help farmers to identify the proper time to harvest
oysters in order to decrease possible pathogenic bacterial contamination.

This study was conducted to improve the ability to predict the concentrations of E. coli in oyster
meat and estuarine waters by using environmental parameters, the concentrations of total coliforms,
fecal coliforms, and V. parahaemolyticus, the presence of Salmonella and Shigella, and levels of heavy
metal contamination, including lead, manganese, and cadmium, in the Phang Nga area of southern
Thailand. Many previous microbiological quality studies have primarily used log-transformed data to
illustrate their results. Therefore, no log and log-transformed data of E. coli concentrations were used
to generate and compare mixed-effect regression models of cultivated oysters and estuarine waters
under tropical environmental conditions. The main objective of this study was to compare mixed
regression models of oysters and estuarine waters, using non-log and log-transformed data to generate
proper microbiological data.

2. Materials and Methods

2.1. Sample Collection

In this study, the data collection was conducted in aggregation with another experiment connected
to a previous study [18]. Wild-caught natural oyster larvae, or spats, have been mainly used for
oyster aquaculture in southern Thailand. These oyster larvae settle and attach to either man-made
bamboo poles or motorcycle tires. When the oysters reach the age of 2–3 months, they are relocated to
a grow-out structure cultivated area. The oyster shells are attached to one another on a nylon rope
with cement. Oysters are raised under this hanging method until they reach the age of 10–12 months,
which is provides market sized fresh oyster products.

A total of 240 samples derived from mature cultivated oysters (Crassostrea lugubris and
Crassostrea belcheri) (n = 144) and estuarine waters (n = 96) were collected from March 2016 to
February 2017 along the Phang Nga bay, Thap pud district, Krabi province in southern Thailand.
Pooled oyster samples (n = 12) containing 10–12 market size oysters, and 500-mL samples of estuarine
water (n = 8) were collected from four oyster cultivation sites each month for one year. All samples
were kept in a cool box with ice pack during transportation. Following collection, oyster meat and



Int. J. Environ. Res. Public Health 2019, 16, 1971 3 of 14

estuarine water samples were processed immediately after arrival at the laboratory of the Department
of Veterinary Public Health in Faculty of Veterinary Science in Chulalongkorn University.

2.2. Environmental Data Collection

Environmental parameters were measured, including average daily and weekly ambient air
temperature (◦C), relative humidity (%), maximum wind gust (m/s), wind speed (m/s), and precipitation
(mm). Average daily environmental data was received on the day that samples were collected, and the
data was recorded using a mobile anemometer wind meter (Kestrel 3000, Boothwyn, PA, USA). For
average 7-day environmental parameters, all variable values were measured every three h/days, and
then summarized. These 7-day environmental parameters were retrieved from the Thai meteorological
department (https://www.tmd.go.th). Other factors, such as the presence of precipitation (present or
absent), season (rain, summer, or winter), sampling month (month 1 to 12), and tidal condition (ebbing
or flooding), were also recorded in this study.

2.3. Enumeration of Total Coliforms, Fecal Coliforms, E. coli and V. parahaemolyticus

The levels of total coliforms, fecal coliforms, E. coli and V. parahaemolyticus were quantified as
most probable number (MPN) using a three-tube method, while the presence or absence of Salmonella
and Shigella were tested in the oyster and estuarine water samples. Enumeration of total coliforms,
fecal coliforms, and E. coli followed the United States Food and Drug Administration (U.S. FDA)
Biological Analytical Manual (BAM) [19]. Briefly, 200 g of pooled oyster meat was blended at high
speed for at least 30 s. Fifty grams of blended oyster meat were weighed and added to 450 mL of
sterile phosphate buffered saline (PBS) (Difco, Sparks, MD, USA). For estuarine water, the sample
was mixed with PBS at a 1:10 dilution. The remaining blended oyster meat and estuarine water were
kept for further bacterial and heavy metal analyses. The mixture solution of each oyster and estuarine
water sample was individually diluted in lactose broth (Difco) and incubated at 37 ◦C overnight. One
loopful of individual lactose broth tube was transferred to brilliant green lactose bile (BGLB) (Difco)
and incubated at 35 ◦C for 24 h. Then, positive tubes were recorded. To confirm fecal coliforms, a
loopful of lactose broth tube was transferred to EC broth (Difco). After overnight incubation at 44.5 ◦C,
the gas production was recorded as positive. For confirmation of E. coli, a loopful of EC broth was
streaked onto Levine-eosin methylene blue (L-EMB) (Difco) agar plates. The suspected E. coli colonies
were streaked on plate count agar (PCA) (Difco), and then confirmed using biochemical testing.

Measurement of concentrations of V. parahaemolyticus in pooled oyster meat and estuarine water
samples also followed the U.S. FDA’s BAM method [20]. Briefly, mixture solution of the prepared
samples from the previous step was serially diluted in alkaline peptone water (APW) (Difco) in
three consecutive tubes to determine the populations of V. parahaemolyticus in oyster and estuarine
water samples. The APW tubes were incubated at 37 ◦C overnight, and then a loopful from APW
positive (turbid) tubes was streaked to thiosulfate-citrate-bile salts-sucrose (TCBS) (Difco) agar plate
and confirmed by CHROMagarTM Vibrio (HiMedia Laboratories Ltd., Mumbai, India) agar plate.
Positive colonies were biochemically confirmed.

In determining bacterial loads in all samples from oyster and estuarine water, the concentrations
of total coliforms, fecal coliforms. E. coli, and V. parahaemolyticus were reported in MPN/g or logMPN/g
of oyster meat and MPN/100 mL or logMPN/100 mL of estuarine water.

2.4. Determination of Salmonella spp. and Shigella spp.

The detection of Salmonella and Shigella followed protocols as described by the U.S. FDA’s
BAM method, with slight modification [21,22]. Twenty-five g of oyster meat was enriched with
225 mL of lactose broth (difco), and estuarine water was mixed with double strength lactose broth.
The mixture solution of the samples was set at room temperature (25 ◦C) for 60 min. Then, the
suspension was incubated at 35 ◦C overnight. Each mixture solution (0.1 mL) was transferred into
10 mL of Rappaport-vassiliadis (RV) (Difco). A loopful of the suspension was streaked onto xylose
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lysine deoxycholate (XLD) (Difco), MacConkey (Difco) and Hektoen enteric (HE) (Difco) agar plates.
Biochemical testing was then used to confirm presumptive colonies of Salmonella spp. For all positive
Salmonella isolates, serotyping on a slide agglutination assay followed the Kaufman-White scheme
method, based on commercial antiserum (S&A Reagents Lab, Bangkok, Thailand) [23].

For Shigella spp. detection, briefly, a total of 25 g of blended oyster meat and 25 mL of estuarine
water were separately enriched with Shigella and Salmonella broth (Difco). The mixture suspension was
incubated at 35 ◦C overnight. A loopful of suspension was streaked onto MacConkey (Difco) agar
plate. All positive colonies were confirmed using biochemical testing.

2.5. Determination of Heavy Metals

Concentrations of lead (Pb), cadmium (Cd) and manganese (Mn) in pooled oyster meat and
estuarine water samples were analyzed following the guidelines of the Association of Analytical
Communities [24]. Briefly, 5 g samples of blended pooled oyster meat were weighed out, and then
dried over an oven. The sample was added to HNO3 concentrate (Merck, Washington, DC, USA). The
mixture solution was dried over a hot plate to receive one ml of residue. For each estuarine water
sample, a total of 200 mL of water was thoroughly mixed and filtered, passing through 11 µm filter
paper (Whatman, Maidstone, UK). The filtered solution was added to 30 mL of HNO3 and set overnight
at room temperature. The mixture solution was then dried, and adjusted to the final solution by adding
distilled water to receive 25 mL. The final solution of all samples was then filtered, passing through
0.45 µm filter paper (Whatman) and kept in the refrigerator for further analysis. The concentrations
of Pb, Cd, and Mn were quantified using the Atomic Absorption Spectrophotometry (AAS: Varian
model AA280FS, Agilent, USA) in the Science and Technology Research Equipment Centre (STRE) at
Chulalongkorn University.

2.6. Statistical Analyses

The concentrations of E. coli in both pooled oyster meat and estuarine water samples were used in
two different regression models. The dependent variable of the levels of E. coli was separately calculated
on raw, or non-transformed, data (MPN/g of oyster meat and MPN/100 mL of estuarine water) and
log-transformed data (logMPN/g of oyster meat and logMPN/100 mL of estuarine water). Mixed-effect
regression models were used to describe the association between the concentrations of E. coli in oyster
meat or estuarine water samples, and average daily and 7-day environmental parameters, bacterial
contamination of total coliforms and fecal coliforms, Salmonella, Shigella, and V. parahaemolyticus, and
the levels of Pb, Mn and Cd. The p-values and C.I.’s of regression analyses for potential correlated data
within the same location were adjusted by using a robust variance estimator. Univariate analysis and a
backward elimination analysis were performed to build the multivariable mixed-effects regressions of
pooled oysters and estuarine waters. The criteria used to select biological, chemical, and environmental
factors affecting the concentrations of E. coli were based on potential biological meaning and AICs
of individual models in order to select appropriate mixed-effect regression models. To perform all
statistical analyses, Stata version 14 software (StatacCorp LP, College Station, TX, USA) was used.

3. Results

Average daily and 7-day environmental parameters on maximum wind gust (m/s), current
wind speed (m/s), precipitation (mm), ambient air temperature (◦C) and relative humidity (%) were
summarized (Table 1). No log or log-transformed data were calculated and then used to compare
within the same sample type. No log-transformed or raw data of the concentrations of E. coli of MPM/g
of oysters (Model A) and log-transformed data of logMPM/g of oysters (Model B), and MPN/100 mL of
estuarine water (Model C) and logMPN/100 mL of estuarine water (Model D) were then compared.
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Table 1. Summary of 1-day and 7-day data for descriptive statistics on environmental parameters
collected by Thai metrological department station prior to collection of oysters and estuarine waters
over 12 months from March 2016 to February 2017.

Parameter Med SD Min Max
Pooled Oyster (p-Value 1)

Estuarine Water
(p-Value 1)

Model A 2 Model B 3 Model C 2 Model D 3

1-day environmental data
Maximum wind gust (m/s) 6.2 2.4 5.2 12.9 0.001 <0.0001 0.968 0.313
Current wind speed (m/s) 0.8 0.4 0.0 1.5 0.002 0.066 0.713 0.383

Precipitation (mm) 2.4 28.8 0.0 87.8 <0.0001 0.001 <0.0001 <0.0001
Temperature (◦C) 28.0 1.5 25.2 29.7 0.020 <0.0001 0.008 <0.0001

Relative humidity (%) 83.0 7.8 74.0 97.0 <0.0001 <0.0001 <0.0001 <0.0001
7-day environmental data
Maximum wind gust (m/s) 6.6 1.9 5.6 11.4 <0.0001 <0.0001 <0.0001 <0.0001
Current wind speed (m/s) 1.0 0.4 0.6 1.8 <0.0001 <0.0001 <0.0001 <0.0001

Precipitation (mm) 19.1 24.4 0.0 79.8 <0.0001 <0.0001 <0.0001 <0.0001
Temperature (◦C) 27.3 1.0 26.1 29.6 <0.0001 <0.0001 <0.0001 <0.0001

Relative humidity (%) 86.1 4.9 78.3 92.7 <0.0001 <0.0001 <0.0001 <0.0001
1 p-values were adjusted for potential intra-group correlation within sampling locations; 2 No log of E. coli (MPN/g
of oyster meat or MPN/100 mL of estuarine water); 3 LogMPN of E. coli (LogMPN/g of oyster or LogMPN/100 mL of
estuarine water; Med: Median; SD: Standard Deviation; Min: Minimum; Max: Maximum.

Under the univariate analysis, most environmental variables were found to be of significance
(p < 0.05) in predicting the concentrations of E. coli in oyster meat and estuarine water, except the daily
maximum wind gust in the Models C and D, and the daily current wind speed in the Models B, C, and
D (Table 1).

In this study, the concentrations of E. coli ranged from 4.6 to 2.2 × 104 MPN/g of pooled oyster
meat, and 8.0 to 4.6 × 103 MPN/100 mL of estuarine waters. The prevalence of E. coli was observed
in 93.06% of oyster meat and 78.13% of estuary water. In this study, the lower limit of detection was
approximately 5 MPN of E. coli/g of oyster meat and 8 MPN of E. coli/100 mL of estuarine water. The
detection of Shigella and Salmonella were 7.64% and 30.56% of pooled oyster meat. Prevalence of Shigella
was as high as 27.08% in 100 mL of estuarine waters, while no positive Salmonella was observed in
pooled oyster meat samples. The positive Salmonella isolates from oyster meat samples were serotyped,
and the results of this Salmonella serotyping showed that dominant serotypes were Paratyphi B 22.7%
(n = 10/44) followed by Seremban 11.4% (n = 5/44) and Kentucky 9.1% (n = 4/11), respectively.

The univariate analysis of the concentrations of E. coli for variables associated with the
concentrations of total coliforms, fecal coliforms, and V. parahaemolyticus, the presence of Salmonella and
Shigella in the sample, and the levels of Mn, Pb and Cd are presented in Table 2. The concentrations of
total coliforms and fecal coliforms, and the presence of Shigella were significant parameters in Models
A, B, C and D (p < 0.05). The presence of Salmonella in the pooled oyster samples was associated with
the concentrations of E. coli (Model A and B), whereas no Salmonella was detected from estuarine
waters (Model C and D). The concentrations of V. parahaemolyticus were an insignificant parameter in
all statistical models. For quantitative analysis of heavy metals, the levels of Mn were a significant
predictor of the concentrations of E. coli in pooled oyster meat in model A (MPN/g) and Model B
(logMPN/g). On the other hand, the concentrations of Cd and Pb were associated with the concentration
of E. coli of estuarine water in Model C (MPN/100 mL) and Model D (logMPN/100 mL).

In Tables 1 and 2, the significant variables with p-value < 0.05 from the univariate analyses of
Models A, B, C, and D were included to perform multivariate analyses to predict the concentrations
of E. coli in oyster meat and estuarine water. The dispersion of data can be calculated based on a log
likelihood function test. The mixed-effects regression models of the concentrations of E. coli were
transformed into logMPN/g of pooled oyster meat in Model B, and logMPN/100 mL of estuarine water
in Model D. In the equation of a regression line, logMPN (y) was equal to a + bx, where y is outcome
or dependent variable, a is the y-intercept, b is the slope, and x is predictor or independent variable.
The concentrations of E. coli (MPN) = e(a+bx) were shown in regression equations of pooled oyster meat
(Model A) and estuarine water (Model C) under the mixed-effects negative binomial regression models.
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The mixed-effects regression models between no log- and log-transformed data of concentrations
of E. coli were compared in pooled oyster samples (Models A and B) and estuarine water samples
(Models C and D), which are presented in Tables 3 and 4, respectively. Prior 7-day average precipitation,
average ambient air temperature, and the presence of Salmonella in the pooled oyster meat were
significant variables included in Model A (no log-transformed data) and Model B (log-transformed
data) to predict the concentrations of E. coli in pooled oyster meat samples under mixed-effects
regression models (Table 3).

Table 2. Univariate analysis of the concentrations of E. coli for factors associated with bacterial and
chemical contamination of pooled oysters and estuarine waters.

Parameter
Pooled Oyster (p-Value 1) Estuarine Water (p-Value 1)

Model A 2 Model B 3 Model C 2 Model D 3

Concentrations of bacteria 4

TC concentration <0.0001 <0.0001 <0.0001 <0.0001
FC concentration <0.0001 <0.0001 <0.0001 <0.0001
VP concentration 0.224 0.116 0.012 0.650

The present of Salmonella
No (reference) - - - -

Yes <0.0001 <0.0001 * *
The present of Shigella

No (reference) - - - -
Yes <0.0001 0.006 <0.0001 <0.0001

Heavy metal (ppm)
Mn 0.020 0.002 0.729 0.343
Cd 0.393 0.718 <0.0001 <0.0001
Pb <0.0001 0.382 <0.0001 <0.0001

1 p-values were adjusted for potential intra-group correlation within sampling locations; 2 No-log data of E. coli;
3 LogMPN of E. coli; 4 Units of bacterial concentration is MPN/g of oyster (Model A), logMPN/g of oyster (Model B),
MPN/100 mL of water (Model C) and logMPN/100 mL of water (Model D); * No positive Salmonella observed in
estuarine water samples; TC: Total coliforms; and FC: Fecal coliforms.

Table 3. Mixed-effects regression models between no log- and log-transformed data of the concentrations
of E. coli collected from pooled oyster from March 2016 and February 2017.

Factor Coefficient 95% CI 1 p-Value 1

Model A: No log-transformation
Intercept 16.11 7.38 to 24.83 <0.0001

Precipitation prior 7 days (mm) 2.29 × 10−2 1.36 × 10−3 to 3.22 × 10−4 <0.0001
Temperature (◦C) −0.28 −0.54 to −0.02 0.036

Salmonella present in sample
No 0.0 - -
Yes 0.62 0.01 to 1.23 0.046

Model B: Log-transformation
Intercept 7.36 5.04 to 9.67 <0.0001

Precipitation prior 7 days (mm) 1.56 × 10−2 8.72 × 10−3 to 2.26 × 10−2 <0.0001
Temperature (◦C) −0.16 −0.23 to −0.09 <0.0001

Salmonella present in sample
No 0.0 - -
Yes 0.42 0.07 to 0.78 0.019

1 The 95% confidence interval (CI) and p-values were adjusted for potential intra-group correlation within oyster
sampling locations.

Similar results were observed in the mixed-effects regression models of estuarine water. Seven-day
average precipitation and ambient air temperature were included in the final models (p < 0.05) of
Model C (no log-transformed data) and Model D (log-transformed data) to predict the concentrations
of E. coli in 100 mL of estuarine water (Table 4). No positive Salmonella was detected in estuarine water



Int. J. Environ. Res. Public Health 2019, 16, 1971 7 of 14

samples, so this variable was dropped from Models C and D. Other variables were also excluded from
the final models due to non-significant variables (p > 0.05).

In the final regression models, a log scale of the original dataset, which was log of mean (Model
A: MPN/g of oyster meat and Model C: MPN/100 mL of estuarine water) was compared with mean
of log (Model B: logMPN/g of oyster meat and Model D: logMPN/100 mL of estuarine water) as a
function of average ambient air temperature and 7-day precipitation of pooled oyster meat (Figure 1)
and estuarine water (Figure 2).

Table 4. Mixed-effects regression models between log- and log-transformed data of the concentration
of E. coli collected from estuarine water samples from March 2016 to February 2017.

Factor Coefficient 95% CI 1 p-Value 1

Model C: No-log transformation
Intercept 6.40 3.30 to 9.49 <0.0001

Concentration of FC (MPN/100 mL) 8.75 × 10−4 5.88 × 10−4 to 1.16 × 10−3 <0.0001
Precipitation prior 7 days (mm) 2.81 × 10−2 2.28 × 10−2 to 3.33 × 10−2 0.030

Temperature (◦C) −0.11 −0.20 to −0.01 <0.0001
Model D: Log transformation

Intercept 2.95 0.89 to 5.01 0.005
Concentration of FC (logMPN/100 mL) 2.43 × 10−4 1.47 × 10−4 to 3.40 × 10−4 <0.0001

Precipitation prior 7 days (mm) 1.99 × 10−2 1.45 × 10−2 to 2.53 × 10−2 <0.0001
Temperature (◦C) −0.07 −0.13 to −2.63 × 10−2 0.041

1 The 95% confidence interval (CI) and p-values were adjusted for potential intra-group correlation within sampling
locations; and FC, Fecal coliform.
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Figure 1. Predicted average population of E. coli/g of pooled oyster meat as a function of (a) ambient
air temperature and (b) 7-day average precipitation between no log-transformed (Model A) and
log-transformed (Model B) data.
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Figure 2. Predicted average population of E. coli/g of estuarine water as a function of (a) ambient
air temperature and (b) 7-day average precipitation between no log-transformed (Model C) and
log-transformed (Model D).

In summary, average concentrations of E. coli in oyster and estuarine water samples were
compared in different ranges of temperature (25–40 ◦C) and volume of precipitation (0–100 mm)
(Table 5). The analysis of average concentrations of E. coli from no-log transformation data shows
higher concentrations than the log-transformed data. For example, in oyster samples, the different
concentrations of E. coli in a log scale range from 0.50 to 0.88 in ambient air temperature, and from 0.28
to 1.19 in levels of precipitation. In addition, the log concentrations of E. coli in estuarine water samples
is observed to range from 0.73 to 1.04 in ambient air temperature, and from 0.06 to 0.88 in levels of
precipitation. Hence, the log of mean (Models A and B) predicts higher concentrations of E. coli than
the mean of log (Models B and D). The log of mean provided proper estimation of the concentrations
of E. coli due to the lower residue observed in the log of mean than the mean of log.
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Table 5. Summary of average concentrations of E. coli/g of oyster meat and E. coli/100 mL of estuarine
water samples in different ranges of temperature (◦C) and 7-day precipitation averages (mm) from
March 2016 to February 2017.

Sample Parameter Number of
Sample (%)

Mean of Log
(MPN/g or

MPN/100 mL)

Log of Mean
(MPN/g or

MPN/100 mL)

Log
Difference 1

Pooled oyster

Temperature
25.0–29.9 36 (25.0%) 3.82 3.32 0.50
30.0–34.9 90 (62.5%) 3.65 2.80 0.85
35.0–39.9 18 (12.5%) 2.86 1.98 0.88

Total 144 (100%) 3.66 2.83 0.83

Estuarine water

Temperature
25.0–29.9 20 (20.8%) 2.63 1.59 1.04
30.0–34.9 68 (70.8%) 2.25 1.52 0.73
35.0–39.9 8 (8.30%) 1.32 0.64 0.68

Total 96 (100%) 2.34 1.46 0.88

Pooled oyster

Precipitation
0–19.9 72 (50.0%) 3.54 2.35 1.19

20.0–39.9 24 (16.7%) 3.62 2.99 0.63
40.0–59.9 36 (25.0%) 3.76 3.41 0.35
60.0–79.9 12 (8.3%) 3.93 3.65 0.28

Total 144 (100%) 3.66 2.83 0.83

Estuarine water

Precipitation
0–19.9 48 (50.0%) 1.38 0.88 0.50

20.0–39.9 16 (16.7%) 1.84 1.64 0.20
40.0–59.9 24 (25.0%) 2.84 2.24 0.60
60.0–79.9 8 (8.3%) 2.37 2.31 0.06

Total 96 (100%) 2.34 1.46 0.88
1 The log difference between mean of log (logMPN/g of oyster meat and logMPN/100 of estuarine water) and log of
mean concentration (MPN/g of oyster meat and MPN/100 mL of estuarine water) of E. coli.

4. Discussion

The ability to predict concentrations of E. coli in pooled oyster meat and estuarine water samples
by using average daily and 7-days of environmental parameters, microbiological contamination and
the levels of heavy metals was investigated in this study. These variables were summarized, and then
univariate analyses were performed, as summarized in Tables 1 and 2. Seven-day average precipitation
and ambient air temperature were significant parameters (p < 0.05) in the final regression models
used to predict the concentrations of E. coli in oysters and estuarine waters. In mixed-effect regression
models, the significant parameters from no log- and log-transformed data of the concentrations of E.
coli are displayed in Models A, B, C, and D (Tables 3 and 4). Other non-significant variables (p > 0.05)
such as maximum wind gust, current wind speed, the concentrations of V. parahaemolyticus, and the
levels of heavy metal were dropped from the final regression models. The lack of significance among
these variables is possibly due to lack of variability of the data presented during sample collection. For
example, one-day current wind values ranged between 0 and 1.5 (SD ± 0.4) m/s, which was typically
constant over the 12-month period of the study. Additionally, average 7-day current wind speed had a
mean of 1.0 m/s with SD 0.4 m/s, values which were also consistent over time. This finding was similar
to the consistency of the concentrations of Mn, Pb and Cd observed in all samples from oyster meat
and estuarine water. Hence, these consistent variables were dropped from the final regression model
due to their homogeneity. Thus, fluctuating environmental parameters are the only ones found to be of
significance in predicting concentrations of E. coli contamination in oysters and estuarine waters.

In our final regression models, 7-day averages for precipitation and daily ambient air temperature
were significant predictors for estimating the concentrations of E. coli in pooled oyster meat observed in
Models A and B, and estuarine water samples observed in Models C and D. The levels of precipitation
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were also positively associated with the concentrations of E. coli, while a negative relationship was
observed between ambient air temperature and the concentrations of E. coli in pooled oyster meat and
estuarine water samples. These findings are supported by the study from Scopel et al. which found
that, on average, the accumulation of E. coli in seawater increased up to 2 log colony forming unit (CFU)
with the observed highest concentration at 4500 CFU/100 mL after precipitation at a beach [25]. A
positive correlation between the impact of precipitation and concentrations of E. coli was also observed
among blue mussels [26]. This study suggests that precipitation can introduce microbial contaminants
to coastal areas and other locations of oyster cultivation. One possible explanation would be run off

water from nearby communities and discharges from municipal water may wash fecal contamination
into oyster cultivating areas. During periods of higher precipitation, there is a greater likelihood of
detecting E. coli in both oyster meat and estuarine water. This finding is supported by many studies,
which is reinforced by the fact that waterborne disease outbreaks have been increasingly reported
during periods of rainfall, where heavy rain-washed microbial contaminants into areas of oyster
cultivation [27,28].

Considering the temperature parameters, a negative relationship was observed in this study
between ambient air temperature and the concentrations of E. coli. Other published papers support
the suggestion that the rate of inactivation of E. coli is positively associated with temperature [29]; in
addition, tendency towards high bacterial accumulation in clams was observed when the temperature
increased [30]. The optimal temperature of maximal clearance of Ostrea edulis oysters falls in a
temperature range between 12 ◦C and 19 ◦C (Šolić et al., 1999). This study found that temperature and
precipitation are key factors that influence the survival of E. coli in oyster meat and estuarine water.

Models of log-transformed data have been regularly used for predicting of bacterial inactivation
and persistence in the environment, as well as food commodities [31,32]. In this study, the concentrations
of E. coli were normalized by using log transformation, and then regressed by significant variables, as
presented in Model B of pooled oyster meat (logMPN/g of oyster) and Model D of estuarine water
(logMPM/100 mL of estuarine water). The value of log concentrations of E. coli in models B and D was
lower than no-log transformation of E. coli in models A and C when the log-transformed data was
calculated back to raw or original data (Figures 1 and 2). Our study elaborated that log transformed
data of bacterial concentration underestimates predicted values of E. coli contamination of oyster meat
and estuarine water samples. This finding on the normalized data could introduce a bias for bacterial
estimation according to Jensen’s inequality theorem [33]. Jensen’s equality is explained by an equation
in which the log of mean is greater than or equal to mean of log. Moreover, our results showed that the
no-log transformation data provides more accurate estimation on the concentrations of E. coli in both
pooled oyster meat and estuarine water samples.

Subsequently, mixed-effects negative binomial regression models were performed to predict
the concentrations of E. coli in Model A of oyster and Model C of estuarine water. The negative
binomial regression model is suitable for overly dispersed count data, and this method has been
widely used in microbiological studies, such as pre-harvest contamination of indicator and pathogenic
bacteria in mixed produce, and the impact of farm management and environmental factors on the
level of indicator bacteria in spinach [34–36]. Furthermore, more advanced studies on diversity of
microbial ecological interaction networks on metagenomic data and microbiome count data have
also used negative binomial regression to generate proper statistical models [37–39]. However, many
microbiological studies use log transformation to exhibit the distribution of bacteria in various food
commodities due to the fact that it is easy to perform when diversity of bacteria is observed.

The log-transformed data provided lower estimates of concentrations of E. coli after being
transformed to raw data, compared to no log-transformation. For example, with average ambient
air temperature of 28 ◦C and 7-day average levels of precipitation at 19.11 mm, the mean of log was
3.59 (Model B) and the observed log of mean was 4.05 (Model A). The log difference between a log of
mean and a mean of log concentration of E. coli was 0.46 log (4.05 − 3.59 = 0.46), which is presented in
Figure 1. More specifically, each additional degree Celsius of ambient air temperature is associated
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with a 31% (10−0.16 = 0.69) decrease in the concentration of E. coli when transformed to raw data in
model B. A higher rate of reduction in the concentration of E. coli is observed in model B, as compared
with model A. For example, each additional degree Celsius of air temperature in model A is related to
a 24% (e−0.28 = 0.76) reduction in the concentration of E. coli (Table 3).

A similar result was seen with the 7-day average level of precipitation, with each additional
millimeter of average precipitation in Model B associated with a 4% (10−0.0156 = 0.96) decrease in the
concentration of E. coli. Each additional millimeter of 7-day average precipitation in Model A, by
contrast, is associated with a 2% (e−0.0229 = 0.98) reduction in E. coli in pooled oyster meat (Table 3).
Even though the difference between the concentrations of E. coli in Models A and B was not great, both
models differ substantially in their predictions, as shown in Figure 1. Interestingly, despite the fact that
these bacteria are considered to be pathogens, few bacterial cells lead to serious complications with
regard to human health.

In Models C and D, the concentrations of fecal coliforms, average ambient air temperature and
7-day precipitation were significant parameters for predicting the concentrations of E. coli in estuarine
water samples. In Model D, each additional degree (Celsius) of ambient air temperature is associated
with a 15% (10−0.07 = 0.85) reduction in the concentration of E. coli when transformed to raw, or original,
data. In Model C, a 10% (e−0.11 = 0.90) decrease in the concentration of E. coli is associated with this
same increase in temperature (Table 4). Similarly, focusing on the level of precipitation, each additional
of millimeter of 7-day average precipitation is associated with a 4% (10−0.0199 = 0.96) decrease in the
concentrations of E. coli in Model D, whereas a 3% (e−0.0281 = 0.97) reduction in the concentrations of
E. coli is observed in the Model C (Table 4). Fecal coliforms are a significant variable for estimating
the concentration of E. coli in estuarine water, although the rate of reduction in the concentration of
E. coli was similar in Model C (e0.000875 = 1.0) and Model D (10−0.000243 = 1.0). Even though these
significant variables are not greatly different between models C and D, the intercept coefficients showed
largely dissimilar values, as displayed in Table 4. Using the averages of all significant variables, the
log concentrations of E. coli were at approximately 1.74 and 1.47 logMPN/100 mL of estuarine water
in Models C and D, respectively. This result indicates that log-transformed data provides a lower
prediction of E. coli populations compared with no-log transformed data.

Concentrations of indicator bacteria have varying ranges, depending on geographical location,
environmental parameters, and the presence of pathogenic bacteria. For example, the concentrations of
total and fecal coliforms in oyster meat harvested in Korea were detected from 65.6 to 127.1 MPN/100 g
of total coliforms and 23.7 to 26.7 MPN/100 g of fecal coliforms, respectively [40]. The finding was
supported by a study from Mok et al. that showed similar concentrations of fecal coliforms as in Korea.
The concentrations of E. coli can be used to estimate the pathogenic bacterial contamination of shellfish.
The low levels of E. coli load in shellfish indicates that Salmonella contamination may be absent from
these shellfish [41]. The presence of indicator bacteria of bivalves suggests that the environment is
polluted, and aquatic animals and their products are possibly contaminated.

The limitations of this study include the limited ranges of the observed parameters such as
temperature (between 25 ◦C and 40 ◦C) and the level of precipitation (which did not exceed 100 mm).
Thus, the prediction of the concentrations of E. coli should be estimated and interpreted within the
provided ranges observed in this study. This finding cannot generalize about outside ranges to predict
the concentration of E. coli. This study suggests that monitoring of environmental factors associated
with the concentrations of E. coli in oysters and estuarine waters should be performed regularly to
decrease the risk of undetected seafood contamination. Furthermore, use of no-log transformation will
provide better estimates and less bias than log transformed data.

5. Conclusions

Fresh oysters and estuarine water can become contaminated with non-pathogenic and pathogenic
bacteria of public health significance. Environmental factors used to predict the concentrations of such
bacteria should provide a useful tool for detecting non-pathogenic bacteria, and possibly identifying
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pathogenic bacterial contamination before oysters are harvested. Certain environmental parameters
such as precipitation and ambient air temperature were found to be significantly associated with the
concentrations of E. coli in oyster meat and estuarine water samples. To conclude, no-log transformed
data should be utilized, rather than log-transformed data, to predict the concentrations of E. coli in
order to achieve the most precise estimation. This piece of information can also be applied to other
quantitative microbiological studies to enhance precision and reduce the bias of the studies.
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