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Abstract: Aortic valve stenosis (AVS) is an increasingly prevalent disease in our aging population.
Although multiple risk factors for AVS have been elucidated, medical therapies capable of slowing
down disease progression remain unavailable. Molecular imaging technologies are opening up
avenues for the non-invasive assessment of disease progression, allowing the assessment of (early)
medical interventions. This review will focus on the role of positron emission tomography of the aortic
valve with 18F-fluorodeoxyglucose and 18F-sodium fluoride but will also shed light on novel tracers
which have potential in AVS, ranging from the healthy aortic valve to end-stage valvular disease.
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1. Relevance

Aortic valve stenosis (AVS) is the world’s most common valvular heart disease.
In 2019, a total of 9.4 million individuals suffered from AVS in the United States of

America, a 443% increase compared to the 1990 prevalence [1]. Roughly 3.4% of individuals
aged 75 and over suffer from AVS, and the total prevalence is expected to have tripled
once again by 2050, mainly due to the aging population, in which increasing numbers of
individuals are living with chronic cardiovascular diseases [2]. The age-dependent nature of
AVS was further emphasized in a study with 11,911 adults undergoing echocardiography in
Minnesota. This study concluded that the prevalence of moderate to severe AVS increased
from a mere 0.02–0.1% in patients aged 18 to 44 years to 2.8–4.6% in patients over the age
of 75 [3].

Currently, the only treatments for severe AVS are surgical or transcatheter aortic
valve replacement, which are costly procedures that are not suitable for all patients or
even feasible in all regions of the world. These procedures are also accompanied by
periprocedural morbidity and mortality, especially in an older population with significant
co-morbidities [4]. Therefore, the need for (preventative) medical interventions in aortic
valve stenosis is immense. Attempts have been made to find effective medical interventions
to prevent AVS, but so far, they have remained unsuccessful. Two statin trials failed to
reduce AVS disease progression; nonetheless, hopes are still vested in apolipoprotein-B-
containing lipoproteins providing the key for the prevention of aortic valve stenosis [5,6].
This is because the PCSK9 R46L loss-of-function mutations, which cause reduced exposure
to these lipoproteins, are associated with a reduced risk of aortic valve stenosis [7]. Data
from a murine study has also hinted that PCSK9 is a facilitator of calcification in valvular
interstitial cells [8]. However, PCSK9 inhibition therapy to reduce aortic valve stenosis
progression is still to be researched. So, although AVS is characterized by a slow disease
progress that can span decades, as of yet, no medical therapies are available to attenuate
disease progression [9]. This may partially be attributed to the fact that conventional
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imaging methodologies to assess AVS progression—echocardiography and computed
tomography—are incapable of detecting disease stages prior to the onset of calcification [10].
In this review, we will discuss advances in positron emission tomography of the aortic
valve with 18F-fluorodeoxyglucose (18F-FDG) and 18F-sodium fluoride (18F-NaF) and shed
light on novel molecular tracers that may be of use in the future to identify aortic valve
stenosis at an earlier, pre-calcified stage.

2. Pathophysiology

AVS can be caused by rheumatic disease and congenital malformations of the aortic
valve, such as unicuspid and (more commonly) bicuspid valves. However, in the majority
of cases it arises due to the calcification of a normal tri-leaflet valve.

For a long time, AVS was considered a degenerative disease, a condition wherein
years of mechanical stress were the primary cause of the progressive accumulation of
calcium deposits within the valve. However, AVS is now increasingly recognized as an
active disease process, which is driven by a multitude of inflammatory and pro-osteogenic
cascades, sharing many features with the pathophysiology of atherosclerosis. The current
belief is that this more complex active disease process can be split into two relatively distinct
disease phases: the initiation phase and the propagation phase [11].

2.1. Initiation Phase

The initiation phase is “initiated” by mechanical stressors, which induce damage to
the endothelial cell layer of the valve. The importance of these mechanical stressors in the
pathology of AVS is highlighted in patients with bicuspid valves. It was shown that in
patients who underwent aortic valve replacement for AVS and were over the age of 80, 20%
had bicuspid aortic valves, compared to over 50% of the younger patients between 60 and
80 years old [12].

The damage caused to the endothelial layer of the aortic valve allows for lipids such as
lipoprotein(a) and low-density lipoprotein (LDL) and immune cells such as macrophages,
T lymphocytes, and mast cells to enter the inner layers of the aortic valve, which comprises
valvular interstitial cells (VICs) [13]. Within these inner layers, the lipoproteins undergo
oxidative modification [14,15], which ignites an inflammatory reaction very similar to the
inflammatory response seen in atherosclerosis.

The VICs are directly activated by the cytotoxic oxidized LDL through toll-like recep-
tors 2 and 4 and, as a result, proliferate and undergo osteogenic transformation [16]. The
activated VICs will remodel the extracellular matrix through the production of unorga-
nized collagen, cathepsins, and metalloproteinases [17,18]. After osteogenic transformation,
these osteoblast-like cells will also produce and deposit calcified vesicles, causing further
thickening and stiffening of the aortic valve.

2.2. Propagation Phase

The formation of calcium deposits subsequently leads to the onset of the propagation
phase, in which calcium begets calcium by inflicting further damage to the valve. During
the propagation phase, disease progression is accelerated; once severe calcifications have
developed, AVS progression may even be completely independent from initiating risk
factors [19].

To adequately assess the effect of medical therapies, imaging tools capable of assessing
disease progression in different AVS stages are required.

3. Risk Factors for AVS

The known risk factors for AVS generally overlap with those for atherosclerosis and
include increasing age, male sex, smoking, hypercholesterolaemia, hypertension, elevated
lipoprotein(a), diabetes mellitus, kidney failure, and aberrant aortic valve morphology [20].
In contrast, LDL-cholesterol lowering with statins was shown in two separate double-blind
placebo-controlled trials to be unable to attenuate disease progression in patients with
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established AVS [5,6]. This may be due to the difference between initiating and propagating
factors in AVS, stressing the importance of imaging modalities that are able to assess not
only the propagation but also the initiation of AVS.

4. Conventional Imaging Modalities

Classic clinical manifestations of AVS, such as heart failure, syncope, and angina,
typically do not occur prior to the development of severe AVS. As a result, AVS is often an
incidental finding due to the presence of a systolic murmur or is detected by echocardiog-
raphy performed for other indications [10].

Echocardiography is currently the main method for evaluating the severity of AVS. To
this end, it uses three parameters: the aortic valve area, the mean pressure gradient across
the aortic valve, and the peak velocity of forward flow across the diseased valve. Severe
AVS is defined by an aortic valve area < 1 cm2, a mean pressure gradient of >40 mmHg,
and a peak velocity of >4 m/s. In a straight-forward, ideal scenario, these three parameters
are concordant. Unfortunately, despite precise methodology, between 20% and 30% of
echocardiography procedures still yield discordant results, wherein, for example, the aortic
valve area is <1 cm2 but the mean pressure gradient is <40 mmHg. These discordant results
create uncertainties regarding outcomes and incidence.

In the case of discordant echocardiography parameters, computed tomography (CT)
imaging may be performed to assess disease severity [21]. Calcium scoring using CT
has been shown to be highly correlated with the haemodynamic severity observed via
echocardiography [22]. The latest version of the ESC/EACTS guidelines on valvular heart
disease states that in the case of discordant grading through echocardiography, calcium
scoring should be conducted using CT [23]. A recent meta-analysis showed that the aortic
valve calcium score (AVCS), determined by CT, demonstrated moderate sensitivity and
specificity (82% and 78%, respectively) for diagnosing severe AVS. The AVCS was also
shown to be associated with higher rates of all-cause mortality [24]. Echocardiography and
CT imaging have become established imaging techniques for assessing the severity of AVS.
However, an important limitation of these imaging modalities is that aortic valve disease
typically remains undetectable until significant calcifications have developed. Therefore,
these imaging techniques are unable to assess the effect of treatment in earlier stages of
aortic valve disease.

5. Molecular Imaging of AVS

5.1. 18F-Fluorodeoxyglucose (18F-FDG)
18F-FDG is the most commonly used PET tracer. 18F-FDG is structurally very similar to

glucose, and therefore cells that metabolize glucose will also absorb 18F-FDG using glucose
transporters 1 and 3. A cytosolic enzyme, hexokinase, then phosphorylates 18F-FDG as
it would glucose. However, 18F-FDG is not capable of entering the glycolysis pathway
and therefore accumulates within the cell [25]. Therefore, 18F-FDG uptake detected by
PET/CTs is a representation of the metabolic activity within tissue. 18F-FDG is primarily
taken up in metabolically active tissue such as the brain, the myocardium, and cancer
cells; the latter being the most common clinical indication for performing 18F-FDG imaging.
18F-FDG uptake is also increased in inflamed tissue and is therefore used as a diagnostic
tool in patients with a fever of unknown origin. Furthermore, in patients with suspected
infective endocarditis and with prosthetic heart valves, 18F-FDG has incremental diagnostic
value [26].

The incidental observation that patients with atherosclerosis often demonstrated high
uptake in the aorta and carotid arteries led to studies using 18F-FDG to assess arterial wall
inflammation. Rudd et al. were the first to study whether 18F-FDG uptake in a symp-
tomatic carotid plaque differed compared to a contralateral asymptomatic lesion [27]. Sixty
patients with a recent stroke, transient ischemic attack, or retinal embolism were included.
This study showed that 18F-FDG uptake was greater in the ipsilateral carotid plaques in
patients with an early recurrent stroke. Additionally, the accumulation of 18F-FDG on
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the autoradiograph was mainly co-localized with macrophage-rich areas of the plaque.
Later studies demonstrated that 18F-FDG uptake in carotid arteries improves cardiovas-
cular risk prediction on top of the Framingham score [28]. The high reproducibility of
assessing carotid 18F-FDG uptake led to PET imaging being used as a surrogate outcome
in several randomized trials [29]. For instance, cholesterol lowering by a 12-week intensi-
fication of statin therapy led to a significant reduction in carotid 18F-FDG uptake, in line
with the beneficial effect of statins on cardiovascular outcomes in randomized trials [30].
Marincheva-Savcheva et al. extended these observations to AVS, given the similarities
between the two disease processes [31]. Eighty-four patients who had undergone PET/CTs
for the evaluation of a neoplastic process and had an echocardiographically confirmed diag-
nosis of AVS were retrospectively identified. Compared to the control group, patients with
AVS had significantly higher uptakes of 18F-FDG as expressed by the target-to-background
ratio (TBR). It was postulated that this increased uptake of 18F-FDG represents the inflam-
matory activity within the aortic valve, since other cells located within the aortic valve
are not very likely to show an increase in glucose metabolism. Interestingly, patients with
severe AVS had comparable 18F-FDG uptake to control subjects. This could be evidence of
another overlap between the pathophysiology of AVS and atherosclerosis, since studies
have shown that in calcified plaques, macrophage content is reduced when compared to
early plaques [32,33]. A subsequent prospective imaging study by the same group showed
that in a population of 1410 patients, a higher 18F-FDG PET/CT signal at baseline without
established aortic stenosis was associated with an increased likelihood of future valvular
calcification [34]. Dweck and colleagues observed a further increase in valvular 18F-FDG
uptake in patients with severe AVS compared to patients with mild to moderate AVS, albeit
a modest one [35]. As the largest relative increase in valvular 18F-FDG is demonstrated
between healthy control subjects and those with moderate AVS, 18F-FDG imaging may be
particularly suitable for assessing the effect of treatment in the early disease stages of AVS
(especially in combination with 18F-sodium fluoride, to be discussed below).

However, in contrast to arterial wall inflammation, the reversibility of valvular 18F-
FDG uptake has not been previously assessed. Accordingly, trials investigating the effect
of lipid-lowering therapy using either statins, PCSK9 inhibitors, or apo(a) antisense on
valvular 18F-FDG uptake in patients at increased risk of AVS are warranted.

5.2. 18F-sodium fluoride (18F-NaF)
18F-NaF has been used clinically as a bone tracer for over half a century, for example, as

a diagnostic instrument in Paget’s disease [36]. In the past decade, its use has been extended
to include the assessment of vascular and valvular calcifications [37–41]. The mechanism
of action of 18F-NaF is dependent on hydroxyapatite [42]. 18F-NaF binds to hydroxyapatite
crystals, exchanges its 18F-fluoride ion with the hydroxyl groups on hydroxyapatite, and
forms fluoroapatite, which is thereafter incorporated within the bone-matrix or calcified
tissue. 18F-NaF uptake therefore reflects osteoblastic activity, a key feature of AVS. PET/CTs
using 18F-NaF can be of greater value than echocardiography and CT, since these imaging
techniques merely provide information on already established calcification, whilst 18F-NaF
PET/CTs can offer information about the ongoing calcification activity.

Dweck et al. were the first to evaluate 18F-NaF as a marker of calcification activity
in AVS [35]. They have shown that baseline valvular 18F-NaF uptake is highly correlated
with the progression of the aortic valve calcium score assessed via CT after 1 year (r = 0.75),
whereas 18F-FDG uptake is not. Additionally, valvular 18F-NaF correlated with alkaline
phosphatase and osteocalcin immunohistochemistry, lending further support to 18F-NaF as
a marker of calcification activity. In the same study, they compared 18F-NaF with 18F-FDG
uptake in different stages of AVS and showed that valvular 18F-NaF uptake increased more
pronouncedly with increasing disease severity than 18F-FDG. These observations led to
18F-NaF being used to assess whether newly identified risk factors for AVS are associated
with valvular 18F-NaF uptake as a marker of calcification activity, and thus of progressive
disease. Zheng et al. performed a post hoc analysis of two longitudinal imaging studies
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(Scottish Aortic Stenosis and Lipid Lowering Trial, Impact on Regression (SALTIRE) and
Ring of Fire, with PET available for 81 patients from the Ring of Fire study), showing that
participants in the upper Lp(a) tertile (>35 mg/dL) had increased valvular 18F-NaF uptake,
which corresponded with accelerated AVS progression as measured by echocardiography
and CT, ultimately leading to more valvular replacement [43]. Deprès et al. later found
similarly increased 18F-NaF uptake in patients with elevated Lp(a) who were free from
aortic valve disease [44]. In contrast, in a case-control study by our group, in which we
matched individuals with elevated Lp(a) (>50 mg/dL) to those with low Lp(a), we observed
no elevated 18F-NaF uptake in patients with high Lp(a) after careful matching for AVS
disease severity [45]. All of the included subjects had at least mild to moderate AVS. A
limitation of this study was that patients in the low Lp(a) group had significantly higher
blood pressure and low-density-lipoprotein cholesterol levels, which may have contributed
to similar 18F-NaF uptake in both groups. To date, there has been one randomized clinical
trial employing PET imaging of the aortic valve, with several more currently ongoing. The
Study Investigating the Effect of Drugs Used to Treat Osteoporosis on the Progression
of Calcific Aortic Stenosis (SALTIRE II) investigated whether denosumab or alendronic
acid affect 18F-NaF uptake and/or the progression of CT- and echocardiography-assessed
AVS severity [46]. Unfortunately, neither denosumab nor alendronic acid affected 18F-
NaF uptake or the progression measured by CT or echocardiography. Ongoing trials
are investigating the effect of PCSK9 (NCT03051360) and vitamin K2 (NCT02917525) in
AVS patients.

6. Future Tracers
18F-FDG and 18F-NaF have so far yielded the most promising results, as discussed

above. However, other tracers are available that have potential in AVS and warrant
more research.

6.1. 68Ga-Dotatate
68Ga-Dotatate is a PET marker which binds specifically to somatostatin receptor type

2 (SSTR2) [47]. It has been used for over a decade to diagnose rare neuroendocrine tumors,
since this neoplasm commonly has a high expression of SSTR2 [48]. SSTR2 has also been
shown to be highly expressed on classical (M1-activated) macrophages, which are abundant
in plaques predicting an unfavorable phenotype, making 68Ga-Dotatate a suitable marker
for vascular wall inflammation [49]. Incidental findings on diagnostic scans for patients
suspected of having neuroendocrine tumors showed significant 68Ga-Dotatate uptake
within aortic plaques, which prompted research using this tracer as a marker for vascular
wall inflammation. Tarkin et al. published results from the autoradiography of eight
plaques that confirmed high levels of specific Dotatate ligand binding to SSTR2 [49]. They
also observed strong SSTR2 and CD68 mRNA correlation, which in turn also strongly
correlated with 68Ga-Dotatate uptake, further validating 68Ga-Dotatate as a macrophage-
specific marker. In addition, the authors observed a strong co-localization of SSTR2 and
CD68, as assessed with immune histology.

Recent studies have therefore repurposed 68Ga-Dotatate PET/CT to identify vascular
wall inflammation in the carotids, coronaries, and aorta and have demonstrated its superior-
ity to the traditionally used 18F-FDG tracer. This is mainly due to the fact that 68Ga-Dotatate
is not affected by glucose levels and does not suffer from the same physiological myocardial
uptake as 18F-FDG, which leads to spillover that may render over 50% of coronary 18F-FDG
scans uninterpretable. Assessing 18F-FDG in the aortic valve is not hindered as drastically
by myocardial spillover as in the coronaries; however, the specificity of 68Ga-Dotatate and
the fact that it is not influenced by glucose levels are still significant advantages.

To our knowledge, no studies have investigated 68Ga-Dotatate as a tracer for AVS.
However, its overlapping pathophysiology with atherosclerosis, the results we have seen
using a different marker of inflammation (18F-FDG), and the benefits of 68Ga-Dotatate
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when compared to 18F-FDG in regard to specificity and usability make us believe that this
tracer deserves more consideration in the field of AVS.

6.2. 18F-GP1
18F-GP1 is a novel tracer that has shown promising results, particularly in bioprosthetic

valves. 18F-GP1 binds to the glycoprotein IIb/IIIa receptor, which is expressed on activated
platelets [50]. It has been shown to detect both arterial and venous thrombi in vivo.

One study that examined 53 bioprosthetic aortic valves and 22 native tri-leaflet aortic
valves demonstrated the uptake of 18F-GP1 in all of the bioprosthetic valves but in none
of the native valves [51]. This increased uptake of 18F-GP1 was associated independently
with the age of the bioprosthetic valve and with hypo attenuated leaflet thickening. Three
participants had obstructive valve thrombosis, and after anticoagulation therapy reductions
in 18F-GP1 uptake were observed, demonstrating the potential of 18F-GP1 as a clinical tool.

7. Limitations

The molecular imaging of the aortic valve using PET has several limitations that
deserve to be addressed. First, a fundamental limit of PET is its spatial and temporal
resolution, which hampers its use for assessing tracer uptake in small and moving structures
such as the aortic valve [52]. Although the temporal resolution of myocardial PET imaging
can be significantly improved by using an ECG trigger during the image acquisition, the
spatial resolution is still far behind that obtained with other imaging techniques such as CT
or MRI.

Second, although the reversibility of 18F-FDG uptake has previously been shown in the
carotid arteries, no such studies exist for the aortic valve, as the high myocardial background
uptake of 18F-FDG limits its utility in assessing coronary and valvular uptake [50]. For
18F-NaF, no reversibility has previously been demonstrated in the aortic valve or the arterial
wall, in line with the absence of medical interventions capable of attenuating calcification.
Lastly, it is important to note that whilst 18F-NaF uptake is strongly correlated with the
progression of calcium, it does not predict subsequent calcification independent of the
amount of baseline calcium present.

8. Conclusions

The molecular imaging of the aortic valve with PET is a promising method for assess-
ing novel treatment strategies that may attenuate AVS progression. However, significant
limitations remain. Although 18F-NaF uptake in the valve correlates particularly well
with disease progression, it has not been shown to improve the prediction of progres-
sive calcification over only baseline calcium scores, and reversibility has yet to be shown.
Whereas reversibility in arterial wall inflammation has been demonstrated for 18F-FDG,
this characteristic has yet to be validated in the aortic valve.
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