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Abstract: Artificial intelligence (AI) techniques are starting to be used in IVF, in particular for selecting which embryos to transfer to the
woman. AI has the potential to process complex data sets, to be better at identifying subtle but important patterns, and to be more objec-
tive than humans when evaluating embryos. However, a current review of the literature shows much work is still needed before AI can be
ethically implemented for this purpose. No randomized controlled trials (RCTs) have been published, and the efficacy studies which exist
demonstrate that algorithms can broadly differentiate well between ‘good-’ and ‘poor-’ quality embryos but not necessarily between em-
bryos of similar quality, which is the actual clinical need. Almost universally, the AI models were opaque (‘black-box’) in that at least some
part of the process was uninterpretable. This gives rise to a number of epistemic and ethical concerns, including problems with trust, the
possibility of using algorithms that generalize poorly to different populations, adverse economic implications for IVF clinics, potential mis-
representation of patient values, broader societal implications, a responsibility gap in the case of poor selection choices and introduction of
a more paternalistic decision-making process. Use of interpretable models, which are constrained so that a human can easily understand
and explain them, could overcome these concerns. The contribution of AI to IVF is potentially significant, but we recommend that AI mod-
els used in this field should be interpretable, and rigorously evaluated with RCTs before implementation. We also recommend long-term
follow-up of children born after AI for embryo selection, regulatory oversight for implementation, and public availability of data and code
to enable research teams to independently reproduce and validate existing models.
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Introduction
Competitive embryo selection is unique to IVF. Traditional embryo se-
lection is based on several snapshot observations of an embryo under
a microscope, at specific time points during culture. Considering the
dynamic nature of embryo development, the static nature of the infor-
mation collected in this method limits the accuracy of embryo selec-
tion (Gardner et al., 2015). Examples of techniques developed to

select embryos more likely to implant include: extended embryo cul-
ture (Gardner et al., 2000); time-lapse imaging of the embryo in cul-
ture over a number of days (Liu et al., 2016); metabolomic profiling of
spent culture media (Zmuidinaite et al., 2021); and pre-implantation
genetic testing (Kemper et al., 2020). Each of these techniques poten-
tially give rise to many thousands of data points.

Furthermore, the evaluation of embryo quality by the embryologist
is limited by considerable inter-operator variability, due to the current
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mix of objective and subjective measures in assessment, and human
factors, such as being influenced by confounders (Liu et al., 2019).

Embryo freezing techniques have improved dramatically such that if
all the embryos are transferred, albeit one at a time, embryo selection
would not affect pregnancy or live birth rates per egg collection, as ulti-
mately all embryos will be given the chance to implant. However, not
all couples persist with treatment even in the presence of remaining
frozen embryos (Centers for Disease Control and Prevention, US
Department of Health and Human Services, 2018; HFEA 2020). For
some couples, therefore, maximizing their chance of a live birth at an
earlier transfer could raise their overall chances of having a baby.

The rapid development of artificial intelligence (AI) in recent years
has made possible the ability to objectively process and interpret vast
quantities of data, both visual and tabular, to potentially improve em-
bryo selection. Whilst we acknowledge that current methods of em-
bryo selection have limitations and risks, we are concerned that these
might be exacerbated by AI, and there may be new ones faced.

For a further exploration of the issues raised in this opinion paper,
but aimed at a computer science and ethics audience, we refer the
reader to a paper presented by the same authors at the AI, Ethics and
Society 2021 conference (Afnan et al., 2021).

Advantages of using AI for
embryo selection
Given the known desired outcome of a healthy live birth, AI and ma-
chine learning (ML) in particular, is ideally placed to compute and
make sense of complex data, to look for subtle patterns unobserved
by embryologists (Fernandez et al., 2020). AI can standardize and au-
tomate many of the processes, reducing inter-observer variability and
providing a more objective embryo assessment (Rosenwaks, 2020).

ML gives rise to models that can automatically learn and adapt as
they are exposed to more data (whether images or other data). This
is particularly useful when there is access to lots of data, but we do
not immediately know how to leverage it to make better predictions,
or when we cannot manually process it all to generate meaningful
knowledge. Computer vision (CV) allows large amounts of image data
to be automatically analyzed by algorithms, and rapid recent advances
offer promise to improve embryo selection.

The most popular ML models for CV are uninterpretable (‘black-
box’) models. These are either too complicated for any human to un-
derstand, or they are proprietary—in which case, comprehension of
such a model is not possible for outsiders (Rudin, 2019). In contrast,
an interpretable ML model is a predictive model that is constrained so
that a human can better understand its reasoning process (Rudin,
2019; Rudin et al., 2021). As we will show in this work, interpretability
has important epistemic and ethical implications.

Current use of AI in embryo
selection
We searched MEDLINE, Embase and Google Scholar up to and in-
cluding February 2021 for full-text studies evaluating AI to select em-
bryos using the strategy included in the Supplementary Data. We

checked the citations of papers we identified in the search for any
publications we might have missed.

Studies evaluating AI for embryo selection make impressive accuracy
claims for their ML models (Khosravi et al., 2019; Tran et al., 2019). One
commonly reported performance measure is the receiver operating char-
acteristic (ROC) curve which shows how a test’s sensitivity and specificity
correlate at different thresholds. The AUC indicates the test’s perfor-
mance. An AUC >0.9 usually indicates outstanding performance, and
the ML models from the studies cited above surpass this benchmark.

Studies that evaluate the efficacy of AI models for embryo selection
do so for two types of outcomes: first, outcomes meaningful to the pa-
tient, such as a live birth or a fetal heartbeat (FH) positive pregnancy;
or, second, agreement with the existing standard, which in this case
would be assessment by embryologists. One of the challenges of using
live birth as the meaningful outcome (ground truth) is that a potentially
viable embryo can result in either a live birth, or no live birth, depending
on other, non-embryo factors, such as the health of the mother.

Tran et al.’s (2019) study belongs to the first category. They evalu-
ated a model called IVY, which rates how likely an embryo is to lead
to an FH pregnancy on a confidence scale of 0 (definitely will not im-
plant) to 1 (definitely will implant). Their ROC curve’s AUC was 0.93.
However, as Kan-Tor et al. (2020) point out, the majority of the em-
bryos on which the algorithm had been trained and tested were of
such poor quality that they would have been discarded in any event,
thereby artificially inflating the AUC. As Kan-Tor et al. explain, the clin-
ical need is to identify the embryo with the highest chance of success
among a set of embryos that appear to be potentially viable, and not
from embryos which embryologists readily discard.

Khosravi et al.’s (2019) study, on the other hand, belongs to the sec-
ond category. They categorized embryos into three groups—good-, fair-
and poor-quality embryos according to a consensus of multiple embryol-
ogists. They then evaluated their AI algorithm’s ability to identify the
good- and the poor-quality embryos (but not the fair-quality embryos);
for this task, the algorithm achieved 96.94% accuracy. This was better
than the performance of individual embryologists. However, broad cate-
gorizations into ‘good’ or ‘poor’ quality are of limited benefit when trying
to find the best embryo in a group of similar-quality embryos.

The earlier analyses of the Khosravi et al. (2019) and Tran et al.
(2019) studies demonstrate the importance of understanding exactly
how researchers test their algorithms before drawing conclusions from
headline statistics. These studies are important steps to investigate effi-
cacy (the ability to produce a specified outcome in experimental circum-
stances), to develop the tool and establish proof of principle. However,
they are only a prelude to testing in the clinic. When Curchoe et al.
(2020) reviewed how the results of AI studies in reproductive medicine
relate to real-life clinical practice, they highlighted four pitfalls that are
common throughout the literature: small sample sizes, imbalanced data-
sets, non-generalizable settings and limited performance metrics.

We also point out that many studies in this field use neural networks
that are not interpretable, and not designed to be interpretable, despite
the existence of literature on interpretable neural networks that reports
achieving comparable accuracy to black-box neural networks (e.g., Chen
et al., 2019). Other approaches use interpretable features (whether they
are labeled manually by doctors or labeled by neural networks whose
output can be manually verified) but combine them in uninterpretable
ways, such as using principal component analysis pre-processing (which
forces a dependence on all variables) followed by an ML method such
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.
as a neural network or random forest (Milewski et al., 2017; Chavez-
Badiola et al., 2020). The work of Leahy et al. (2020) is more interpret-
able because the model is decomposable into separate neural network
models that each extract different information (e.g., measurements of an
embryo) that can be directly checked by an embryologist. Raef et al.
(2020) and Morales et al. (2008) created interpretable hand-calculated
features and applied a variety of classical ML algorithms to them.
However, the majority of studies feature uninterpretable (or ‘black-box’)
AI algorithms which have a number of pitfalls.

Epistemic problems of
black-box AI models

Black-box models create information
asymmetries
The use of black-box models creates an information asymmetry be-
tween the company selling the tool and the clinicians having to make
daily decisions as to which embryo to transfer. Such models would
force the embryologist to abrogate decision-making to programs they
do not understand. It is not possible to fully evaluate whether to trust
these complex models without an understanding of their reasoning
processes. For example, black-box models have been introduced in ra-
diology, a quintessential example of CV applied to medical imaging,
and which have been tested sufficiently to gain US Food and Drug
Administration approval for clinical practice. Unfortunately, these have
not done well, and no-one knows why (Voter et al., 2021), raising
concerns about their generalizability (O’Connor, 2021).

Confounders are rampant
One of the reasons why black-box systems do not generalize despite
succeeding in clinical trials, and therefore receiving regulatory approval,
is confounding. If we do not understand what a black-box model is do-
ing, it is entirely possible that its predictions are based on confounders
that should not be used as predictors, such as age. Confounders are
often difficult to detect and cause models not to generalize. When
coupled with a poor choice for evaluation metric, the confounding
might not be noticed (O’Connor, 2021; Voter et al., 2021).

Perpetuated bias
ML-assisted embryo selection is an ongoing process whereby the ma-
chine learns and adapts its algorithms from the previous generation of
data. Should a bias occur at any point, then not only would that bias
be perpetuated, but it would also be magnified in future generations as
the machine will learn from biased data. It may be argued that such
bias may occur as a result of embryologist embryo selection.
However, ML models could systematize and embed the bias in the se-
lection process to a greater extent than embryologists.

Real-time error-checking is harder with
black-box models
The two problems discussed above (information asymmetry and the
possibility of confounders) lead to a third problem: the difficulty of
error-checking the model in real-time as it makes predictions in the

clinic. We would want the clinician to be able to determine whether
the model is reasoning in a way that is obviously wrong and catch new
problems immediately should they arise.

The economics of ‘buying into’ a brittle
model does not favor clinicians or patients
A potential consequence of the problems of information asymmetry
and confounders listed above would be that black-box model perfor-
mance may be brittle to changes from the system it was trained on,
and thus would likely be limited to the ecosystem in which it has been
shown to work. This means that a clinic using this model may need to
buy into that ecosystem, ovarian stimulation regimens, use of incuba-
tors and culture medium amongst other potential variables. This gives
AI companies a great deal of economic power over clinics, potentially
increasing treatment costs. This could be mitigated by models that are
robust across domains. Interpretable AI is easier to make robust be-
cause it is known how it works.

Overall troubleshooting is difficult for
black-box models
If the model were more interpretable, it might be easier to trouble-
shoot broad problems (beyond serious issues that might be noticed in
real-time usage). This includes ethical concerns, such as sex, disability
or racial bias (which we will discuss), as well as epistemic issues with
accuracy or subtle confounding.

Black-box models are difficult to ‘explain’
There is a growing body of work on ‘explaining’ black-box models.
However, such explanations are problematic for reasons outlined by
Rudin (2019). For instance, explanations for black-box models are of-
ten not faithful (e.g., claiming that race is used in a model when in-
stead, a factor correlated with race was used), explanations for visual
images tend to be incomplete (highlighting parts of the image without
explaining how these parts of the image are used to make a predic-
tion), and different explanation methods can produce completely dif-
ferent explanations. Interpretable models are different because they
are self-explanatory. Explaining a black-box model lends unwarranted
authority to it (Rudin and Radin, 2019), which might deter develop-
ment of an inherently interpretable model with the same accuracy.

Ethical concerns with black-box
AI models

Compromised shared decision-making
Over the past few decades, clinical practice has shifted from a pater-
nalistic model to a model of shared decision-making aimed at promot-
ing patient autonomy (Charles et al., 1997). Opaque AI models
compromise shared decision-making due to the inability of the clinician
and patient to understand the model’s decision (Bjerring and Busch,
2020), for example, information as to why a particular embryo is se-
lected or is not selected (such as, the number and symmetry of the
cells, or if the cells are fragmented, and therefore what the chances of
implantation are, and why implantation may fail).

Interpretable AI for embryo selection 3



..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..
There are counterarguments to this concern, which should also be

considered (Mishra et al., In press). It will be important to fully explain
what is known about how the AI model comes to a ‘decision’ (nature
and size of dataset, reasons for confidence in prediction, possible alter-
native lines of justification, etc.), and further examine how interactions
between clinicians and patients may change (see below). Existing meas-
ures of shared decision-making and decision quality, such as the
Decision Conflict Scale (Garvelink et al., 2019), the OPTION Scale
(Elwyn et al., 2003) and the SURE Test (Légaré et al., 2010) (among
other patient-reported measures) can be used.

It is important, however, to contextualize this concern. Firstly, cur-
rent expert judgment is not very accurate at predicting a live birth.
Secondly, autonomy requires understanding information relevant and
meaningful to one’s values. Knowing the basis of a prediction (cleavage
rate, symmetry, etc.) is not relevant: what is relevant are the risks,
side-effects and benefits, and the confidence attached to these
assessments.

However, black-box AI has the potential to significantly undermine
shared decision-making in a way that interpretable AI does not.
Although they are marketed and approved as decision aids to the clini-
cian, where the decision finally rests with the clinicians, black-box AI
will in practice have the potential to introduce a new form of paternal-
ism: ‘machine paternalism.’ It is known that people tend to be compla-
cent about use of automation (Parasuraman and Manzey, 2010) and
accepting AI in a role when they are familiar with AI in that role or
when they believe it performs well (Kramer et al., 2018). In practice, it
is hard to see how clinicians will challenge the deliverances of black-
box AI. Indeed, doing so without good reason might open them up to
legal liability. So, in practice, black-box AI risks instrumentalizing clini-
cians and replacing human decision-making.

Misrepresentation of patient values
AI may misrepresent patient values. For example, there are reported
differences between early morphokinetic profiles of male and female
embryos (Tarı́n et al., 2014; Bronet et al., 2015; Wang et al., 2018;
Huang et al., 2019) (and other traits might be similarly differentially
represented at this early stage). Models for embryo selection run the
risk of systematically selecting for these traits if they are perceived by
the model to be correlated with implantation success. For example, if
a patient prefers that sex be randomly selected, this model may run
counter to those values. If such models are opaque, this systematic fa-
voring of particular traits may not be detected and so cannot be cor-
rected for in a way that it could be with interpretable models.

Again, it is important not to overstate this concern. There have
been calls for systems to be ‘value flexible’ (McDougall, 2019). The
patient’s own values could be inserted into AI algorithms (e.g., prefer-
ence for sex and other non-disease characteristics) and AI might bring
to the surface the importance of these values in decision-making. Of
course, valuing and selecting non-disease traits (such as sex or intelli-
gence) raises the debate around designer babies, but some have ar-
gued that such selection is permissible (Agar, 2004) or even a moral
obligation when it relates to the well-being of a future child (Savulescu,
2001; Savulescu and Kahane, 2009, 2016).

Health and well-being of future children
Such potential biasing of AI-selection might also have impacts on the
health or well-being of future children. For example, it is possible that
some disadvantageous trait (such as increased risk of cancer or mental
disorder) correlates with a higher chance of implantation. This also
underscores the importance of clinical trials not merely measuring im-
plantation or even healthy live birth but long-term well-being of the
child created by IVF through long-term (decades) follow-up.

Reproduction is also unique because selection determines who will
come into existence. This creates the so-called ‘non-identity problem’
which has spawned decades of unresolved philosophical debate,
sparked by Parfit (1984). Imagine Embryo A has a higher chance of im-
plantation but unknowingly a higher chance of cancer later in life than
embryo B. AI selects A. A is born but gets cancer at the age of
30 years. Was A harmed by the decision to select A rather than B?
No, a different person (B) would have been otherwise selected.
Provided that the disadvantageous trait or genes do not make A’s life
so bad as to have been not worth living, then A cannot be harmed by
selection. On this ground, greater risks can be taken in embryo selec-
tion than with interventions on a specific embryo (such as gene editing
of A) which do risk harm to a specific individual (Savulescu et al.,
2006). Nonetheless, some have argued that parents (and clinicians) still
have a moral obligation to select the embryo with the best chance of
the best life (Savulescu, 2001; Savulescu and Kahane, 2009, 2016).

Societal impacts of AI for embryo selection
Successful AI models might be deployed at scale, and if such models
systematically favor certain traits represented in early morphokinetic
profiles, this might impact society. For example, bias to one sex could
lead to a skewed population ratio. Similarly, if AI-assisted IVF works
better for some races than others, this could have serious societal
implications. The scale of these ramifications will likely correlate with
rates of IVF use in the future. Since black-box models do not aim to
identify specific aspects of an embryo with specific traits, it might make
these issues more difficult to detect until it may be too late and there
are societal-level impacts. Interpretable AI may allow earlier detection
of systematic favoring of certain traits (for instance, if the AI model is
known to leverage factors that differ among ethnic groups, e.g., the re-
lation of age to fertility).

Black-box models pose a responsibility gap
The final ethical issue concerns a potential erosion of ethical and legal
accountability through the use of opaque AI models. If it is determined
that clinicians cannot be held responsible for injuries sustained by the
patient due to a reliance on opaque AI models, the responsibility
would need to be borne by another agent. In the absence of institu-
tionalized accountability mechanisms that hold other agents, like model
developers, responsible, this creates a ‘responsibility gap’.

The most straightforward case in which accountability is required
would be repeated implantation failure or low success rates due to
suboptimal embryo selection processes, and/or injury being sustained
by the patient as a result of AI (either to the mother through surgical
complications or the child when he/she is born—wrongful life or
birth). If AI models used for embryo selection reason in uninterpret-
able ways, it is unclear how a court might evaluate the doctor’s

4 Afnan et al.
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.
decision-making, and subsequently, it would be unclear how responsi-
bility for injury would be adjudicated (Price II et al., 2019;
Schönberger, 2019).

Legal and regulatory requirements
There is a legal requirement in the European Union’s General Data
Protection Regulation (GDPR) to provide the patient with ‘meaningful
information about the logic involved’ in automated decisions
(Blackmer, 2018). While there is legal debate about interpretation of
these regulations (Selbst and Powles, 2017; Wachter et al., 2018),
there are increasing calls for automated decisions to be interpretable
and explainable to the data subject (Ordish et al., 2020).

The problem of randomized controlled
trials of black-box AI algorithms
Within the context of randomized controlled trials (RCTs) of black-
box models, it should be noted that they may have accountability
implications for poor outcomes in research settings. If an RCT of a
black-box fails and the model causes harm to the treatment group, it
becomes difficult to ascertain through existing accountability mecha-
nisms who ought to be held responsible.

However, to date, no AI studies for embryo selection using an RCT
have been published, though one is registered as a non-inferiority trial
(Australian New Zealand Clinical Trials Registry, 2020). It is therefore
premature to implement AI-assisted embryo selection in the clinical
setting. The lack of RCTs appears to be typical of much of AI in medi-
cine (Nagendran et al., 2020). The problem of lack of evidence before
implementation is exacerbated by the IVF industry, which is notorious
for aggressively marketing unproven clinical and laboratory ‘add-ons’
(Wilkinson et al., 2019; Afnan et al., 2020). Furthermore, the introduc-
tion of any new tool for embryo selection, without proper assessment
and follow-up, raises important ethical issues, as it will determine who
will come into existence, and would influence future demographics
should the tool be biased toward, say, one sex or ethnicity. The prob-
lem is further compounded because clinicians who do not have an ad-
equate understanding of AI will find it difficult to critically navigate the
literature, which contains unfamiliar concepts and terminology.

Notwithstanding our concerns about black-box AI models, should
such a model be shown (in an RCT) to achieve higher live birth rates
than with interpretable models, there is then a good reason to employ
them. However, in the absence of such evidence, or if the outcomes
are comparable, interpretable ML models are clearly preferable as
they are safer than black-box models.

Interpretable ML as the way
forward in embryo selection
While we acknowledge that black-box algorithms may be easier and
quicker to generate than interpretable algorithms, we strongly advo-
cate for using interpretable ML models to assist embryo selection, as
they are safer. As long as one can design the interpretability metric
carefully to match the domain, interpretable models tend not to lose
accuracy relative to their black-box counterparts (Chen et al., 2019;

Rudin, 2019). Interpretable AI may be superior to black-box models in
the following ways:

• Confounders are often difficult to detect in evaluation, and they re-

duce the ability of an algorithm to generalize to populations outside

the evaluation population. A clinician may notice them immediately

if the model were interpretable.
• An altogether erroneous reasoning process might be easily

detected before the tool makes poor selection choices. For in-

stance, after a change in camera setting, an algorithm might sud-

denly start thinking that the shape of a current embryo looks like

an embryo from the training set with a completely different shape.

A clinician could potentially catch that problem immediately if they

knew the reasoning process of the model.
• Interpretable models would be more robust to deployment across

different settings, with different equipment and culture media, if

clinicians could modulate their interpretation of an algorithm’s rec-

ommendation under different conditions. AI has the classic problem

of ‘domain adaptation’. Once the algorithm shifts to another set-

ting, factors that were helpful previously may not be reliable in the

new setting. We cannot assume the AI method is using the infor-

mation we think it is using, or that we would like it to use. For in-

stance, there are cases in which AI for predicting hospital

outcomes looked at the type of X-ray equipment rather than the

medical content of the X-ray because the type of equipment actu-

ally provided information (sicker patients got portable X-ray images

taken more often). Confounding can be very powerful. Interpretable

AI is one way to discover such issues. This would make clinics less

economically beholden to companies who sell this equipment.
• Physicians and interpretable ML models can create a ‘centaur’ that

leverages both the information in a database (through ML) and a

human’s system-level way of thinking about problems.
• An interpretable ML model could enhance the shared clinician

decision-making process of doctors and patients, instead of replac-

ing it.
• Responsibility for decision-making clearly remains with the clinician.

Embryologists monitor embryo morphology on the day of transfer,

and morphokinetics during the culture period, and of course ulti-

mately the outcome of pregnancy rates and live births. Should a

problem be found, the embryologist will be able to interrogate an

interpretable model to troubleshoot the cause of the discrepant

findings and make a clinical judgment of not only what the problem

is, but how to correct it. With a black-box model, this is not pos-

sible. Interpretable models, in which the embryologist’s expertise

and the ML algorithm are both informative should, in the long run,

save time and be more accurate.
• Correlating patient values (chance of disability, sex, single versus

double embryo transfer and chance of implantation) with outcomes

can be more easily accommodated by interpretable models.

Recommendations

Interpretable AI
Developers should aim to build interpretable ML models where bi-
ologically meaningful parameters guide embryo assessment,

Interpretable AI for embryo selection 5
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reducing the risk of hidden biases in algorithms causing unintended
harms to society, permitting better troubleshooting, and better en-
abling clinicians to counsel their patients on the thinking underlying
their treatment.

Randomized controlled trials
Before clinical adoption, the benefits and risks of implementing AI for
embryo selection must be studied using the gold-standard for evaluat-
ing safety and effectiveness: the RCT.

Regulatory oversight of interpretable AI
Current regulatory approaches attempt to capture medical AI models
as a type of medical device; they should further require either that AI
model developers not produce black-box models if interpretable mod-
els are shown to have similar performance, or that any black-box
model must come with the next-best interpretable model considered
and trialed. A ‘hard’ regulatory stance that promotes interpretable
models would be safer.

Access to code and data
Data and code used to create ML models should be made publicly ac-
cessible. This would enable reproducible research and the advance-
ment of an exciting and important academic field. A high-quality public
model would provide a performance baseline for other models. As far
as we know, there is not currently a high-quality publicly available data-
set for studying embryo selection or implantation. We hope that pro-
fessional societies and the scientific community make such datasets
available, as has occurred in other areas of medicine, such as breast
cancer screening, in which large-scale datasets have been made pub-
licly available, funded by the US National Institutes of Health (Buda
et al., 2021).

Respect for patient privacy and autonomy
Procedures should be put in place for securing patient privacy when
data is shared, such as data anonymization. Currently, the clinician
explains the basis on which embryos are selected to the patient, using
decision aids like the Gardner scale, which uses biologically meaningful
parameters. Ideally, all patients should be told the benefits (e.g., the
chance of pregnancy), as well as the limitations (for example being un-
able to guarantee a healthy baby) and the unknowns (e.g., possible ob-
stetric risks), and how a model arrives at a recommendation (e.g., the
number, symmetry, and regularity of the cells). Where possible, pa-
tient values should be incorporated. Explaining how a model arrives at
a recommendation and incorporating patient values would be difficult
if we use black-box models.

Careful and long-term follow-up of babies
born after AI-assisted embryo selection
Researchers, professional societies and regulators in a number of
countries have recognized the importance of monitoring the health
and safety of children born after the introduction of new technologies
in assisted reproduction. This applies to the introduction of all novel
interventions, such as ICSI and preimplantation genetic testing, and
also to AI. While this may be a burden to families, it is necessary

following clinical trials, which must inevitably be limited in size, until the
technology can be confidently said to be safe and effective.

We summarize our recommendations in Table I.

Conclusion
We do not aim to demonize AI. Quite the opposite, we enthusiasti-
cally acknowledge that it has the potential to radically enhance IVF. AI
in IVF has the potential to help couples have children earlier in their
treatment and at a lower cost. The point is that AI algorithms are por-
trayed as applications which are so clever that they can detect order
from background noise that is too subtle for the human to detect. On
the flip side is the risk that the algorithm will find order when none
exists or is there by association. These are two sides of the same
coin. Researchers, companies and clinics must ensure that the technol-
ogy they promote or adopt brings real, measurable benefits to patients
and, most importantly, does not expose them to unreasonable risks.
We have highlighted limitations of current ML models, we drew spe-
cific attention to the ethical concerns associated with AI in IVF, and
suggested changes to design and evaluation. We have argued that
there should be interpretable ML models that clinicians can under-
stand, troubleshoot and explain to their patients, rigorously evaluated
with RCTs. Black-box AI risks a new machine paternalism.

Supplementary data
Supplementary data are available at Human Reproduction Open online.

Data availability
No new data were generated or analyzed in support of this research.

Authors’ roles
All authors contributed equally to this paper.

Table I Summary box of recommendations for use of AI
in embryo selection.

• Use of replicable, interpretable ML tools and data
• Well designed and conducted RCTs
• Post implementation surveillance
• Regulatory oversight requiring interpretable AI whenever possible
• Funding for public institutions to transparently develop and evaluate

ML models, and open access to code used in models
• Procedures for maintaining security of patient/embryo data while per-

mitting ethical data sharing
• Fully informed consent to use AI
• Inclusion of patient values into AI programs where possible
• Training for clinicians to understand AI models and explain them to

patients

AI, artificial intelligence; ML, machine learning; RCT, randomized controlled trial.
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Tarı́n JJ, Garcı́a-Pérez MA, Hermenegildo C, Cano A. Changes in sex
ratio from fertilization to birth in assisted-reproductive-treatment
cycles. Reprod Biol Endocrinol 2014;12:56.

Tran D, Cooke S, Illingworth PJ, Gardner DK. Deep learning as a
predictive tool for fetal heart pregnancy following time-lapse incu-
bation and blastocyst transfer. Hum Reprod 2019;34:1011–1018.

Voter AF, Meram E, Garrett JW, Yu J-PJ. Diagnostic accuracy and
failure mode analysis of a deep learning algorithm for the detection
of intracranial hemorrhage. J Am Coll Radiol 2021;18:1143–1152.

Wachter S, Mittelstadt B, Russell C. Counterfactual explanations
without opening the black box: automated decisions and the
GDPR. New Media Soc 2018;20:973–989.

Wang A, Kort J, Behr B, Westphal LM. Euploidy in relation to blasto-
cyst sex and morphology. J Assist Reprod Genet 2018;35:
1565–1572.

Wilkinson J, Malpas P, Hammarberg K, Mahoney Tsigdinos P, Lensen
S, Jackson E, Harper J, Mol BW. Do à la carte menus serve infertil-
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