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Abstract: The effect of SiO2 nanoparticles on the formation of PAA (poly acrylic acid) gel structure
was investigated with seeded emulsion polymerization method used to prepare SiO2/PAA nanopar-
ticles. The morphologies of the nanocomposite nanoparticles were studied by transmission electron
microscopy (TEM). Fourier-transform infrared (FTIR) spectroscopy results indicated that the PAA was
chemically bonded to the surface of the SiO2 nanoparticles. Additionally, the resulting morphology
of the nanocomposite nanoparticles confirmed the co-crosslinking role of the SiO2 nanoparticles
in the formation of the 3D structure and hydrogel of PAA. SiO2/PAA nanocomposite hydrogels
were synthesized by in situ solution polymerization with and without toluene. The morphology
studies by field emission scanning electron microscopy (FESEM) showed that when the toluene was
used as a pore forming agent in the polymerization process, a macroporous hydrogel structure was
achieved. The pH-sensitive swelling behaviors of the nanocomposite hydrogels showed that the
formation of pores in the gels structure was a dominant factor on the water absorption capacity. In
the current research the absorption capacity was changed from about 500 to 4000 g water/g dry
hydrogel. Finally, the macroporous nanocomposite hydrogel sample was tested as an amoxicillin
release system in buffer solutions with pHs of 3, 7.2, and 9 at 37 ◦C. The results showed that the
percentage cumulative release of amoxicillin from the hydrogels was higher in neutral and basic
mediums than in the acidic medium and the amoxicillin release rate was decreased with increasing
pH. Additionally, the release results were very similar to swelling results and hence amoxicillin
release was a swelling controlled-release system.

Keywords: poly(acrylic acid); macroporous hydrogel; nanocomposite; high swelling ratio; drug
delivery; amoxicillin

1. Introduction

Hydrogels are a significant group of polymeric materials that are widely used in
various fields of engineering and medicine such as sensors, lenses, supercapacitors, drug
carriers, edible jellies, cosmetics, sanitary napkins, heavy metal ions removers, etc. [1–3].
Hydrogels are water insoluble, crosslinked polymers with a three-dimensional structure
which can swell significantly in the water. Environmentally sensitive hydrogels as smart ma-
terials can respond to external stimuli including changes in light, temperature [4], pH [5,6],
etc. Hydrogels with basic groups such as amine or acidic groups such as carboxylic acid
are also called polyelectrolyte gels [7,8]. The most significant property of these gels is their
high swelling degree in the aqueous media. This high swelling ratio is caused by the ions
of the basic or acidic groups in the molecular structures of the polyelectrolyte gels. These
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anions or cations formed from basic or acid groups on the polymer chains create a repul-
sive force between them and so expansion of network and swelling of gels take place [9].
For example, poly acrylic acid [10,11], poly methacrylic acid [12,13], acrylamide/itaconic
acid copolymer [14], acrylamide/maleic acid copolymer [15], and poly vinyl amine [16].
Polyelectrolyte gels can intelligently change their volume in response to the environmental
conditions such as temperature, pH, and concentration of ions in the solution [17–19].
In this research, at first core shell nanocomposite nanoparticles were prepared by seeded
emulsion polymerization, and then macroporous SiO2/PAA nanocomposite hydrogels
were synthesized by in situ polymerization using acrylic acid as the monomer, methylene
bisacrylamide as the crosslinker, SiO2 as the nanoparticles, and co-crosslinker, toluene as
the pore forming agent, potassium persulphate (KPS) as the initiator, and distilled wa-
ter as the solution. The effects of SiO2 nanoparticles and toluene on the synthesis and
properties of the nanocomposite samples were investigated. It was decided to test the
macroporous nanocomposite hydrogel as an amoxicillin carrier in drug delivery system
due to the hydrogels excellent swelling properties.

2. Research Significance

Excellent properties of hydrogels such as softness, high water adsorption capacity,
flexibility, biocompatibility, and non-toxic and environmentally friendly nature have made
them very popular. Their high resemblance to living tissue provides many opportunities
in biomedical applications. Hydrogels are currently used in a variety of biomedical appli-
cations, including drug delivery systems, scaffolds for tissue engineering, contact lenses,
health products, and wound dressings. In recent decades, nanotechnology along with other
scientific fields has attracted much attention and expectations. In recent decades, nanotech-
nology, along with other scientific fields, has attracted much attention and expectation.
The combination of nanotechnology with other fields of science has attracted increasing
attention during the past decades. There have been numerous approaches to incorporate
nano-scale methods with conventional methods toward manufacturing improved materials.
For instance, nanocomposite hydrogels are the product of the combination between two
technologies, i.e., nanotechnology and biotechnology. The innovations behind the discov-
ery of nanocomposite hydrogels are new synthesis methods and use of different types of
fillers at the nanoscale for modification of conventional hydrogels. In recent years, polymer
nanocomposites have attracted a lot of attention due to their potential uses in many ar-
eas [20]. SiO2 nanoparticles have been extensively used in nanocomposite materials due to
their nanoscale size and high specific surface area [21]. SiO2 nanoparticles can improve var-
ious properties of polymeric nanocomposite such as mechanical property, thermal property,
rheological property, and chemical property with control of these properties base on their
compositions, dimensions, and structures of the core and shell [22–24]. Various techniques
such as in situ polymerization process, melt-compounding and mechanical-mixing have
been employed to synthesize polymer nanocomposites [25]. In situ polymerization can
provide a type of one step polymerization, uniform dispersion of SiO2 nanoparticles, and
enhancement of composites stability [26]. The controlled drug delivery systems deliver
drug in the body deliberately at preordained rates within a calculated period of time [27].
It is worthwhile if the drug is administered into the body and accurately matches the
physiological requirements. In drug release systems, the oral route is a significantly com-
fortable and suitable approach for the administration of drugs [28]. The pH sensitivity
plays an important role in oral drug delivery as a result of the different pH in the body
segments. It has been proven many times that hydrogels have the characteristics of pH
sensitivity [29,30].

3. Experimental Section
3.1. Materials

Acrylic acid (AA, Merck, Darmstadt, Germany, ≥99%) and N, N′-methylenebis (acry-
lamide) (MBA, Sigma-Aldrich, St. Louis, MO, USA, 99%), Potassium persulfate (KPS,
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Panreac Química, Spain, ≥98%), sodium dodecyl sulfate (SDS, Merck, Germany, ≥90%),
toluene (Sigma-Aldrich, St. Louis, MO, USA, 99.8%), silica (SiO2, Us Nano, Houston, TX,
USA, ≥99%) nanoparticles, and distilled water were used in current research.

3.2. Seeded Emulsion Polymerization of AA and SiO2 Nanoparticles

Seeded emulsion polymerization method was used to prepare SiO2/PAA core/shell
nanoparticles. First, SiO2 nanoparticles (100 mg) were dispersed in 80 mL distilled water
by ultrasonic waves and stabilized by SDS surfactant (25 mg). Then, AA monomer (1 cc,
1.05 g, 14.57 mM), MBA crosslinking agent (170 mg, 1.1 mM), and KPS (20 mg, 0.074 mM,
∼=0.5% of total monomer) radical polymerization initiator were added to the prepared SiO2
colloidal suspension and the reaction started in the presence of nitrogen gas at 65 ± 2 ◦C.
After 24 h, the reaction was stopped.

3.3. Prepration of Core-Shell Nanoparticles

Firstly, SiO2 nanoparticles (100 mg) were poured into 35 mL of distilled water and soni-
cated for 30 min to disperse the nanoparticles, and then SDS surfactant (25 m) was added to
it to stabilize the dispersed nanoparticles in the distilled water. In situ solution polymeriza-
tion technique was used to prepare SiO2/PAA nanocomposite hydrogels. (AA monomer
(5 cc, 5.25 g, 72.85 Mm) after removal of its inhibitors, (100 mg, 0.37 Mm ∼= 0.5% of total
monomers) of KPS as polymerization initiator and (500 mg, 3.24 mM) of MBA crosslinking
agent were added to the prepared SiO2 colloidal solution. Additionally, 15 mL toluene was
added to the polymerization system to create macro pores in the nanocomposite hydro-
gels’ structure. All experiments were made in the presence of nitrogen gas at 65 ± 2 ◦C.
After 30 min, the gel formation was observed by stopping the rotation of stir bar. This poly-
merization process was also repeated without silica nanoparticles and toluene.

3.4. Dynamic Swelling Studies

After washing with water to remove unreacted components and free oligomers or free
polymer chains from the hydrogel media, the powdered nanocomposite hydrogels were
added to water to study the water uptake. Samples remained in water for 24 h at room
temperature and reached equilibrium swelling. All swelled samples were dried in the oven
at 50 ± 2 ◦C. These dried hydrogels were immersed in the aqueous solutions with the
different pH values (pH 2.5 ± 0.5, 10 ± 0.5) at room temperature, and the dynamic swelling
experiments were conducted by measuring the water weight of samples. About 1 g of the
dried samples were immersed in the aqueous buffer solution. The samples were withdrawn
from the buffer solutions at various times, and then the wet weight was carefully measured
as a function of time. According to the following Equation (1), the percent swelling was
expressed as the percent weight ratio of the water held in the hydrogel to the dry sample at
any instant during swelling.

Swelling ratio (%) =
Wt −Wd

Wd
× 100 (1)

where Wt is the weight of the swollen sample at time t and Wd is the weight of the dry
sample at time 0.

3.5. Measurement of Water Retention

About 500 mg of macroporous nanocomposite hydrogel after reaching equilibrium
swelling was exposed to a temperature of 50 ◦C. The weight loss was calculated as function
of time. Equation (2) was used to determine the percentage of water retention of the
samples. For accuracy, the test was repeated three times.

Sample water retention (%) =
Wt −Wd
We −Wd

× 100 (2)
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where We is the initial weight of the equilibrium swollen macroporous nanocomposite hydrogel.

3.6. Loading of Amoxicillin into the Macroporous Nanocomposite Hydrogels

The loading of amoxicillin into the macroporous nanocomposite hydrogels was carried
out by the swelling equilibrium method; 10 mg of dry hydrogel sample were immersed into
50 mL of 200 µg/mL amoxicillin solutions. The total daily dose of amoxicillin is 1000 mg
for medication [31]. The samples were kept for 48 h in the amoxicillin solution under
moderate stirring at 37 ◦C, after which the hydrogel samples were removed, frozen, and
dried by the freeze drying method. The loaded drug amounts were determined by UV–vis
spectroscopy based on the decrease in the concentration of the initial amoxicillin loaded
solutions determined from the UV–vis calibration curve for amoxicillin at 276 nm. The
drug loading efficiency of the hydrogel was calculated from the following Equation (3):

Loading e f f iciency =
total amount o f amoxicillin− f ree amoxicillin

total amount o f amoxicillin
× 100 (3)

3.7. In Vitro Drug Release

In vitro release of amoxicillin was studied at 37 ◦C. At specific time intervals, 3 mL
of the sample solution containing released amoxicillin was taken. The absorbance of
the released drug was determined by UV–vis spectrometer at 276 nm. The drug release
experiments were observed in triplicate. The average drug release was calculated using the
following Equation (4).

Amoxicillin (%) =
released amoxicillin f rom macroporous hydrogel at each time o f total realiesd time

total amoxicillin in hydrogel
× 100 (4)

3.8. Instrumentations

The morphology of the resultant SiO2/PAA freeze-dried nanocomposite hydrogels
were determined by Daypetronic Company using scanning electron microscopy (FESEM-
Sigma VP, Zeiss, Germany) and the samples were coated with gold before FESEM char-
acterization. The FTIR spectra of SiO2/PAA nanocomposite nanoparticles were recorded
on Tensor 27 FTIR spectrometers (Bruker Optik GmbH, Ettlingen, Germany) using KBr
discs and under strictly constant conditions in the region of 400–4000 cm−1. Samples were
viewed using a Zeiss Leo 906 (Carl Zeiss Inc., Oberkochen, Germany) transmission electron
microscope (TEM). The nanoparticle sizes of the samples were measured by a particle
size analyzer using dynamic light scattering, DLS (Zetasizer Nano, Malvern Instruments
Ltd., Worcestershire, UK). Amoxicillin release was studied by UV–vis spectra, which were
obtained using a Perkin-Elmer Lambda 25 spectrophotometer.

4. Results and Discussion
4.1. Effect of Silica Nanoparticles on Formation of the Gel Structure

Experimental comparison of the structure and properties of two samples, synthesized
by polymerization in the presence of SiO2 nanoparticles and without it, indicated that
the silica nanoparticles could act as a co-crosslinking agent and help 3D structure and
network formation and, as a result, the hydrogel was formed. However, samples prepared
without the nanoparticles did not exhibit hydrogel properties, and only solution of PAA
was achieved.

4.2. SiO2/PAA Nanocomposite Nanoparticles with Core/Shell Morphology

TEM images of the synthesized nanoparticles by the seeded SiO2 emulsion polymer-
ization are shown in Figure 1. According to the TEM results, SiO2/PAA nanocomposite
nanoparticles were synthesized with core/shell morphology. As shown in Figure 1, the
average diameters of SiO2 nanoparticles and core/shell nanoparticles were about 30 and
96 nm, respectively. The formation of core/shell morphology could be attributed to the
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fact that the radicals are formed in water via breakdown of initiator at 65 ◦C to start
the polymerization of monomers. The polymerization could be performed on the seed
nanoparticles and in the water. The clusters, chains, and oligomers of MBA-crosslinked
PAA in the aqueous phase could be collided with the surfaces of the SiO2 nanoparticles,
leading to the reaction or nucleation and growth of a shell layer on the seeds. However,
the morphology of the core/shell nanoparticles indicated that there was a good interac-
tion between the silica nanoparticles and the poly(acrylic acid) chains. The formation of
core/shell morphology confirmed the co-crosslinking role of the silica nanoparticles in
the formation of the 3D structures and hydrogels. It should be noted that the amount of
monomers used in the samples in Figure 1 was very low compared to other samples, and
injection of more monomers into polymerization system would lead to an increase in shell
thickness. With increasing shell thickness, three-dimensional structure and the hydrogel
were achieved. Although the TEM results showed that the size of the nanoparticles was
about 96 nm, and no particle aggregation was observed. The DLS results showed that the
average nanoparticles size was 478 nm and thus was much larger than what was observed
in TEM. The difference in size of the nanoparticles determined by DLS and TEM may be
due to the swelling of the hydrophilic shells of nanocomposite nanoparticles in the water
or the very close distance of the nanoparticles in solution.
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4.3. Characterization of SiO2/PAA Nanocomposite Nanoparticles by FTIR Spectra

Chemical structure characterization of the PAA, SiO2 nanoparticles, and SiO2/PAA
nanocomposite was achieved by FTIR, as shown in Figure 2. In this figure, the weak peaks
at 3436 and 1637 cm−1 are due to the O–H group on the surface of SiO2, and the strong
peak observed at 1100 cm−1 in the SiO2 spectrum is due to the Si-O-Si bonds. Additionally,
the bands at 471 cm−1 and 814 cm−1 in SiO2 spectrum represent Si-O bending vibration
and stretching vibration, respectively. The characteristic absorption peaks of pure PAA
were observed at 3302 cm−1 for the OH hydroxyl groups and in the 1658 cm−1 for the C=O
carbonyl groups. The peaks at about 1100 cm−1 are attributed to –CO in –COOH of PAA.
From the spectrum of nanocomposite is obvious that characteristic absorbance peaks of
SiO2 and PAA were shifted, and their intensity changed. This suggests that the polymer
was chemically bonded to the surface of the SiO2 nanoparticles.
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Figure 2. FTIR spectra of PAA, SiO2 nanoparticles and SiO2/PAA nanocomposite.

4.4. Creation of Macro Pores in the Hydrogel Structure and Microstructure Morphology of the
SiO2/PAA Macroporous Hydrogels

Details of the macroporous nanocomposite hydrogel preparation are schematically
shown in Figure 3. As shown in this figure, the synthesis was done in the presence of
toluene that finally resulted in three-dimensional macro pores formation in the structure of
the hydrogel by removing it from the final product. The presence of macropores in hydrogel
structure resulted in improved swelling properties and caused absorption of very large
amounts of water. In general, the microstructure morphologies of polymeric hydrogels
are studied by FESEM. The FESEM micrographs of the air-dried samples synthesized
with and without toluene are shown in Figure 4. It can be seen that the morphologies
of the air-dried samples prepared with and without toluene were very different at the
same magnification, and no macro pores were observed in the sample synthesized without
toluene. However, the SiO2/PAA nanocomposite hydrogels synthesized in the presence of
toluene had interconnected macroporous network structure with macropores of diameter
up to tens of microns. The existence of macropores can be related to the vaporization and
removing of the toluene from the hydrogel structure rather than phase separation and gel
formation during the polymerization. In fact, the macroporous structure increased the
specific surface area, resulting in good interaction between matrix and improvement of
the water absorption and swelling properties of the hydrogel. The swelled macroporous
samples were also dried using a freeze-drying technique to retain the original pore structure
and then observed in the microscope. The FESEM micrograph of freeze-dried samples
are shown in Figure 5. These micrographs show the high porosity and three-dimensional
interconnected microstructures similar to other reported polymeric hydrogel structures.
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The inner interwoven structure and interconnectivity of the pores in the hydrogel could
be assigned to the crosslinking of polymeric chains. The observed high porosity in the
micrographs which arose from evaporation of the water absorbed by the hydrophilic
carboxyl groups of PAA during the freeze-drying process. According to the FESEM results,
synthesized macroporous nanocomposite hydrogel in the current research had fibrous
morphology, and the macropores were not observable in the microscope due to their large
size after swelling and freeze-drying. It is worth mentioning that in the morphology of this
sample, with more magnification, some thin layers were also observed, which might be due
to wall formation in interface of toluene and solution during the polymerization process.
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4.5. pH-Sensitive Swelling Behaviors of SiO2/PAA Nanocomposite Hydrogels

It is well established that the porosity of the hydrogel has a great effect on its water
absorbency and it is the most important factor for many applications [32]. Swelling of
polyelectrolyte gels such as PAA is the result of balance between the repulsive forces
of polymer chains caused by ionic groups and the constraints imposed by crosslinked
structure. When the pH of solution is raised above the dissociation constant (pKa), Polyacid
hydrogels swell sharply. The pKa value of the carboxylic acid ionic groups of PAA is about
4.5 [33]. The results of the swelling ratios for samples at pH 10 are shown in Figure 6,
and no significant swelling was observed at pH 2. At high pH value (pH > pKa) the
carboxylic groups (-COOH) of PAA chains changed into carboxylate ions (–COO−) due to
deprotonation. The carboxylate ions caused the electrostatic repulsion to increase, and thus
increased the osmotic pressure and swelling ratio. In fact, the electrostatic repulsion led
to more space being available for water adsorption in the hydrogel structure and caused
the network to expand [34]. At low pH (pH < pKa), the –COO− groups of the hydrogel
were protonated and reduced the main anion–anion (COO−–COO−) repulsive force, the
osmotic pressure became almost zero, being the reason why no swelling was observed at
pH 2. Thus, the samples synthesized in this research exhibited a pH-sensitive swelling
behavior. Figure 6 also illustrated the important effect of toluene as a pore forming agent
on the swelling percentage. It can be seen that the macropourous sample possessed a
much higher swelling ratio than the hydrogel prepared without toluene. From the FESEM
micrographs, it can be seen that when the toluene was used as a pore forming agent in the
polymerization system, a macroporous structure hydrogel was achieved. It is supposed that
these macropores are regions of water permeation and interaction sites. The macroporous
architectures of our nanocomposite hydrogels provide large specific surface area, resulting
in better water–hydrogel interaction, easier water absorption, and in larger equilibrated
swelling ratios. Therefore, the formation of pores in the gels structure is a dominant
factor that determines the swelling properties, and in our current research, the absorption
capacities were improved from about 500 to 4000 g water/g dry hydrogel.
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4.6. Water Retention of the Macropouros Nanocomposite Hydrogels

Figure 7 shows the water retention of the macroporous nanocomposite hydrogel as a
function of time for a temperature of 50 ◦C. The sample in this temperature experienced an
80% loss of water after 80 h, and it took about 160 h to release all the water content. After
80 h, the relative content of strongly absorbed water in the sample was raised and, hence,
the rate of dehydration became slow. The water retention behavior of a superabsorbent
can be related to the interaction of H-bonding and Van der Waals forces between the
solvent molecules and the superabsorbent [35]. The carboxylate and hydroxyl groups in
the PAA hydrogel were responsible for considerable interaction and, hence, enhanced the
water retention power. The reason for doing the water retention test at a high temperature
was that the water release from the composite structure and deswelling process at a high
temperature is caused by the weakening and breaking both H-bonding and Van der Waals
between molecules of water and hydrogel chains, so that the water was easily released.

4.7. Amoxicillin Release Studies

Figure 8 shows the release profiles of amoxicillin from the prepared macroporous
nanocomposite hydrogel as a carrier in buffer solutions with pHs of 3 (acid environment
similar to stomach), 7.2 (amoxicillin is mostly absorbed in the small intestine where the pH
is neutral), and 9 (basic environment) at 37 ◦C. The concentration of released amoxicillin
was calculated by a UV spectrophotometer at selected time intervals. As shown in Figure 8,
the macroporous nanocomposite hydrogel, as a smart material, has different swelling
behaviors at the different pH and have shown different releases of the amoxicillin molecules
through the hydrogel networks. The hydrogels networks shrank at low pH and resulted
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in the faster release of the amoxicillin through a squeezing action [36]. This feature has
been used for “on/off” drug delivery systems. The percentage cumulative release of
amoxicillin from the hydrogels was high in neutral and basic mediums compared with
acidic medium. Additionally, the change of pH affected the amoxicillin release rate and it
decreased with increasing pH. As shown in Figures 6 and 8, the release results were very
similar to swelling results and, hence, amoxicillin release can be considered a swelling
controlled-release system. The charge repulsion of chemical groups on the PAA chains
increase when the pH of the medium raise above the pK of the carboxyl groups of PAA,
and so hydrophilicity, and as a result the amoxicillin release has increased.
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5. Conclusions

To date, polymeric superabsorbent materials with such a high swelling ratio (more
than 3000 g g−1) have rarely been reported. Nanocomposite superabsorbents are the new
types of polymeric networks that swell markedly, but do not dissolve in aqueous media. The
ability of superabsorbents to absorb water arises from hydrophilic functional groups such
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as -NH2, -COOH, -OH, -CONH, -CONH-, and -SO3H attached to the polymeric backbone.
Due to its superior water absorption property, superabsorbent hydrogels are applied in
various industries, such as soil amendment, the construction industry, responsive materials,
and wastewater treatment. Especially in agriculture and forestry, superabsorbent hydrogels
can be employed as water-retaining agents to improve soil water retention. According to
the TEM results, SiO2/PAA nanocomposite nanoparticles with complete core/shell mor-
phology synthesized by seeded emulsion polymerization. The co-crosslinking role of the
silica nanoparticles in the formation of the 3D structures and the hydrogel was confirmed
by FTIR analysis. Macroporous SiO2/PAA nanocomposite hydrogels were synthesized
by using toluene in the in situ solution polymerization and the macroporous architectures
of nanocomposite hydrogel was characterized by FESEM images. The macroporosity of
the structure improved its water absorption capacities from about 500 to 4000 g water/g
dry hydrogel. Superabsorbent hydrogels are a new type of polymeric material with a
3D network structure that can absorb a lot of water. The macroporous morphology of
the nanocomposite hydrogels provided large specific surface areas, resulting in better
water–hydrogel interaction, easier water absorption, and larger equilibrated swelling ratio.
The water retention of macroporous nanocomposite sample was studied as a function of
time at 50 ◦C. The sample at 50 ◦C experienced an 80% loss of water after 80 h, and it
took about 160 h to release all the water content. The macroporous samples were tested
as an amoxicillin release system in buffer solutions with pHs 3, 7.2, and 9 at 37 ◦C. The
percentage cumulative release of amoxicillin from the hydrogels was higher in the basic
and neutral mediums than in the acidic medium. As the pH of the medium was increased
above the pK of the carboxyl groups of the polyanions, charge repulsion increased due to
the hydrophilicity increasing and, as a result, amoxicillin release was increased.
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