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Abstract

A number of evolutionary hypotheses can be tested by comparing selective pressures among sets of branches in a
phylogenetic tree. When the question of interest is to identify specific sites within genes that may be evolving differently,
a common approach is to perform separate analyses on subsets of sequences and compare parameter estimates in a post
hoc fashion. This approach is statistically suboptimal and not always applicable. Here, we develop a simple extension of a
popular fixed effects likelihood method in the context of codon-based evolutionary phylogenetic maximum likelihood
testing, Contrast-FEL. It is suitable for identifying individual alignment sites where any among the K � 2 sets of branches
in a phylogenetic tree have detectably different x ratios, indicative of different selective regimes. Using extensive
simulations, we show that Contrast-FEL delivers good power, exceeding 90% for sufficiently large differences, while
maintaining tight control over false positive rates, when the model is correctly specified. We conclude by applying
Contrast-FEL to data from five previously published studies spanning a diverse range of organisms and focusing on
different evolutionary questions.
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Introduction
When the same gene is subjected to different selective envi-
ronments, population processes, or exogenous adaptive
forces in different sets of species or other taxonomic units
(e.g., viral or bacterial isolates or cancer lineages), especially if it
leads to functional adaptation or differentiation, we expect to
find distinct molecular signatures of selection among these
sets. At the nucleotide or protein level, this difference can
manifest as variation in evolutionary rates across groups of
species, for example, in the rbcL gene of monocots where
species with shorter generation times showed higher evolu-
tionary rates (Gaut et al. 1992), or both across sites and
lineages, leading to heterotachy—a process that is widespread
in protein evolution and has been studied extensively (Lopez
et al. 2002; Whelan et al. 2011). At the codon level, a com-
monly adopted modeling framework is to allow the strength
of selection, represented by the ratio of nonsynonymous (b)
and synonymous (a) substitution rates, x :¼ b=a, to vary
across branches or both branches and sites. The primary focus
of methodological development has been to estimate x and
compare it with the neutral expectation x :¼ 1 (e.g., see
Delport et al. [2008] or Arenas [2015] for a review). Here,
we focus instead on the methods for comparing x across
sets of branches; these methods are relatively few and far-
between (cf. table 1). We further assume that the branches

are partitioned into groups using additional sources of infor-
mation, and not inferred as a part of the evolutionary analysis.
Yang (1998) developed a likelihood-ratio test (LRT) to com-
pare gene-average selective pressures among different sets of
branches in the tree. By design, Yang’s method relies on
pooling data across sites and branches and lacks resolution
to identify individual sites subject to selective differentials. A
more recent model allowing clade-level effects in a site-
mixture framework can infer fractions of sites experiencing
a clade-level shift but not individual sites that differ between
branches (Baker et al. 2016). Another approach allows x to
vary across sites and branches as a random effect, with the
group-level effect to distinguish the sets of branches
(Wertheim et al. 2015). This method can answer more refined
questions (e.g., is selection on one set of branches relaxed or
intensified relative to the other set?), but it still lacks the site-
level resolution. Several approaches have been specifically
designed to detect evidence of directional selection toward
a preferred subset of residues at specific sites and/or branches
in a phylogenetic tree. Parto and Lartillot (2017) developed
random effects mutation-selection models that allow selec-
tive profiles of amino acids to vary across sites and branches
and can be fitted in a Bayesian phylogenetic framework; they
can identify specific sites and specific residues subject to di-
rectional selection. Tamuri et al. (2012) implemented a
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conceptually similar model in a fixed effects model and fitted
it using maximum likelihood approaches to identify which
residues are preferred at specific sites. Murrell et al. (2012)
augmented standard codon models to reward/penalize sub-
stitutions toward specific residues along predefined sets of
branches at specific sites (using fixed effects) and applied it to
the evolution of drug resistance (DR) in HIV. RifeMagalis et al.
(2020) applied a version of Contrast-FEL to determine which
HIV-1 envelope sites might be evolving differentially between
three anatomical compartments in a single host. Recent work
by Jones et al. (2020) develops a model where changes in
selective pressures can be correlated with changes in pheno-
types along clades or branches, fits a random effects model to
determine whether a fraction of sites support such correlated
evolution, and uses an empirical Bayes approach to recover
individual sites where this may occur. Numerous methods
have also been developed to contrast evolutionary patterns
among continuous traits (e.g., Beaulieu et al. 2012), but they
operate on conceptually different data (continuous charac-
ters) and are therefore not properly comparable.

Here, we fully develop and validate a fixed effects site-level
model (Contrast-FEL) and an LRT to formally test the hypoth-
esis of differences in x ratios between two or more groups of
branches using an LRT. None of the existing methods, with
the possible exception of Parto and Lartillot (2017) (a
Bayesian approach designed to answer somewhat broader
questions, whereas Contrast-FEL is a frequentist approach),
can directly test for differences in x between groups of
branches at a specific site, providing the rationale for a new
method in this application domain. The method Jones et al.
(2020) has some advantages, for example, accounting in un-
certainty in branch assignments, allowing for multinucleotide
substitutions, and heterotachy, but lacks a direct test for
differences at specific sites, instead relying on an empirical
Bayes procedure, and does not account for site-to-site syn-
onymous rate variation (Wisotsky et al. 2020); a direct com-
parison with this method is not straightforward. We evaluate
Contrast-FEL using comprehensive simulations, and, having
established reasonable statistical behavior even under a mis-
specified model simulation scenario, apply it to five disparate
empirical data sets previously analyzed for differential selec-
tion among branch sets. Contrast-FEL is able to identify many
of the same key differences found by previous analyses, while
often revealing additional sites and level of inferential detail.

Results

Establishing Method Performance
False Positives
The rejection rate on null data with two branch sets,
that is, on all sites where the evolutionary rates among
branch sets were equal, in aggregate, was slightly lower
than nominal rates (diagonal line, the test statistic per-
forms exactly as expected under the null model; fig. 1A).
We restricted the calculations only to variable sites be-
cause Contrast-FEL returns null results on invariant sites
by definition (all maximum likelihood estimates for rate
parameters are 0 at such sites) and because including
invariant sites would only lower observed rejection rates.
Contrast-FEL may become anticonservative (rejection
rates above nominal) for very high divergence rates
(fig. 1A and E, see below). The rate of false positives
on null sites was largely independent of the values of
synonymous and nonsynonymous rates, the levels of
mean sequence divergence (within reason) in branch
sets, and data set size (fig. 1B–D). The test is more con-
servative for low rates and smaller sets of branches, as
expected. Permutation P-values and false discovery rate
(FDR) q-values delivered more conservative detection
rates than standard LRT P-values but mirrored the
trends of the latter (fig. 1C–D). This is expected because
permutation P-values are only computed conditioned on
the significant LRT, so they can only be more conserva-
tive, and q-values incorporate a multiple testing correc-
tion. When a site is very saturated, that is, the product of
the maximal rate estimate (a or b) and the alignment-
wide tree length in expected substitutions per site
exceeds 100, the test becomes anticonservative; the q–
q plot for the sites with log 10 divergence rate between
2.5 and 3.5 is shown in figure 1A as those are the satu-
rated sites with a detection rate permutation P � 0.05 as
per figure 1E. Our implementation reports the total
branch length for each tested site, and saturated sites
can be screened out using this metric. Such sites are rare
in simulated data and should be even more rare in em-
pirical alignments (we did not detect any in the empir-
ical data).

Only 1 in 100 simulated data sets showed false positive
rates (FPRs) of 8% or greater (10% or greater for 1 in 1,000),

Table 1. Methods for Comparing Selection among Different Sets of Branches.

Method Application Statistical Framework

Yang (1998) Gene-wide differences in average x ML, LRT
Baker et al. (2016) Gene-wide differences in distributions of x Random effects ML, LRT
Wertheim et al. (2015) Gene-wide differences in distributions of x Random effects ML, LRT
Tamuri et al. (2012) Site level amino acid preferences Fixed effects ML
Murrell et al. (2012) Site level directional selection Fixed effects ML, LRT
Parto and Lartillot (2017) Site and branch-level amino acid preferences Bayesian MCMC mixture

x variation at site/branch level
Jones et al. (2020) Gene-level phenotype—selection correlation at a

fraction of sites
Random effects ML, ancestral state sam-

pling, LRT, empirical Bayes
Contrast-FEL Site-level differences in x between sets of branches Fixed effects ML, LRT

NOTE.—ML, maximum likelihood; LRT, likelihood-ratio test; MCMC, Markov Chain Monte Carlo.
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implying that one rarely encounters a simulated data set
where the FPR is notably above the typical level.

Precision and Recall
The ability of Contrast-FEL to identify sites that experience
differential selective pressures is influenced by the effective
sample size, which depends in turn on the number of
branches in the group and the extent of sequence divergence,
and the effect size, that is, the magnitude of differences in
nonsynonymous substitution rates, b. For simulations with
two sets of branches, restricted to detectable sites (i.e., sites
that were not invariable), power to detect differences aggre-
gated over simulation scenarios is summarized in table 2.
Over all detectable sites, the power using the FDR of 20% is

0.319. Restricted to the sites where the difference in b rates
between groups was at least 1 (“Large effect”), the power rises
to 0.603, and further restricting to only those sites where both
the test and the background branch sets had at least three
expected substitutions per site (“Large sample size”), increases
the power to 0.860 see 3. Similar trends occur for testing using
LRT P-values, or permutation-based P-values. Perfectly ladder-
like trees on average yield somewhat higher power than either
perfectly balanced or random/biological trees.

The power of the Contrast-FEL adheres to the expected
patterns; it increases with the sample size and the effect size.
For example, greater levels of divergence at a site (up to a
point) corresponded to notable gains in the power of the test
(fig. 2A), as did greater numbers of substitutions occurring in
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FIG. 1. Contrast-FEL performance on null data (error control). The plots are based on 1,090,929 variable sites simulated with equal nonsynonymous
rates on two branch sets (see text for simulation details). (A) Q–Q plots of LRT P-values for all sites (blue line) and for 3,684 saturated sites ( log 10 of
the divergence level between 2.5 and 3.5, orange line). (B) Detection rate as a function simulated synonymous and nonsynonymous substitution
rates ( log 10 scale). (C) Detection rate as a function of the number of branches in the test set (binned in increments of 5). Blue line: proportion of
sites with LRT P< 0.05, red line: proportion of sites with permutation P< 0.05, gray line: proportion of sites with q< 0.20. Blue area plot shows for
the proportion of sites with LRT P< 0.01 (lower) and LRT P< 0.1 (upper). Orange circles reflect the number of sites contributing to each bin. (D)
Detection rate as a function of the total branch length of the test set of branches (binned in increments of 0.5); same notation as in (C) otherwise.
(E) Detection rate as a function of the log 10 of the divergence level at the site (binned in increments of 0.25); same notation as in (C) otherwise.
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Table 2. Power of Contrast-FEL for Detecting Differences in Selection.

Simulation N p £ 0:05 q £ 0:2 Permutation p £ 0:05

Overall 139,753 0.418 0.319 0.361
Large effect 30,923 0.727 0.603 0.665
Large effect/sample size 14,265 0.902 0.860 0.867
Perfectly balanced trees 39,671 0.411 0.316 0.354
Perfectly ladder-like trees 27,439 0.479 0.378 0.417
Random/biological trees 72,643 0.399 0.298 0.343
Four-class simulations

Overall (omnibus) 18,141 0.355 0.276 0.379
Overall (any test) 18,141 0.415 N/A N/A
Large effect (omnibus) 8,684 0.516 0.411 0.542
Large effect (any test) 8,684 0.587 N/A N/A

NOTE.—N, total number of differentially selected sites in the set. Large effect is defined as having the absolute difference in simulated b rates of at least 1. Large sample size is
defined as having at least three substitutions occurring along both test and reference branch sets.

A B

C D

FIG. 2. Contrast-FEL performance data with rate differences (power). The plots are based on 139,753 variable sites simulated with unequal
nonsynonymous rates on two branch sets (see text for simulation details). (A) Detection rate as a function of the log 10 of the divergence level at
the site. Blue line: proportion of sites with LRT P< 0.05, red line: proportion of sites with permutation P< 0.05, gray line: proportion of sites with
q< 0.20. Blue area plot shows for the proportion of sites with LRT P< 0.01 (lower) and LRT P< 0.1 (upper). Orange circles reflect the number of
sites contributing to each bin. (B) Detection rate as a function of the number of inferred substitutions in the test set; same notation as in (A)
otherwise. (C) Detection rate as a function of the simulated nonsynonymous rates in test and background branch sets and (D) the numbers of
branches in the test and reference set.
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the test set of branches, with power rising from �26:4%
(p � 0:05) for two substitutions to 50.7% for eight substi-
tutions (fig. 2B). Best power is achieved when the difference
between substitution rates on the two sets of branches is
large (fig. 2C), exceeding 80% for sufficiently disparate rates,
and dropping to < 10% for rates that are very similar. Power
numbers are high when the size of either of the sets is not too
small (fig. 2D).

Next, we focus on the data simulated with the rela-
tively small (31 sequences) biological tree of vertebrate
rhodopsins from Yokoyama et al. (2008) and three differ-
ent test branch sets: small clade, large clade, and branches
grouped by phenotype (absorption wavelength), shown
in figure 3. For sufficiently stringent FDR (q-values) cut-
offs, high (90%) precision (positive predictive value
[PPV]) can be achieved for all three cases, although the

FIG. 3. Contrast-FEL performance on vertebrate rhodopsin simulations. Precision–recall curves for the three sets of simulations, all based on the
vertebrate rhodopsin tree from Yokoyama et al. (2008), with different choices for the “test” branch set (precision¼ true positives/all test positives,
recall¼ true positives/positive training cases). Dotted lines show corresponding base rates for “no-skill” classifiers in each case (i.e., classify all sites
as differentially selected). Circles on the individual curves show (left-to-right) precision–recall values for q ¼ 0:1; q ¼ 0:2; q ¼ 0:5. There were a
total of 37,565 variable sites for the “small” case, 15,010 sites for the “large” case, and 37,401 sites for the “blue” case.
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cutoffs need to be more stringent for the small clade
scenario. High precision is achieved at the cost of fairly
low recall (20� 25%), and the small clade scenario has
the worst performance among the three scenarios
considered.

Four Branch Classes
Contrast-FEL remained conservative on null data when
we applied it to alignments simulated with four branch
classes (fig. 4A), for all types of tests: FWER (family-wise
error rates) corrected pairwise differences, omnibus test
(any rates are different), and when considering simula-
tions where only some (but not all) of the groups had
equal rates. As was the case with simpler two-class sim-
ulations, Type I error for severely saturated sites was
somewhat elevated. Power to detect differences among
any pair of branch groups, either via the pairwise or the

omnibus test was strongly influenced by the effect size,
ranging from near 0 for rates that were close in magni-
tude to over 80% for sites where the largest substitution
rate was sufficiently high (>1), and sufficiently different
(e.g., 5�) larger than the smallest rate (fig. 4B). Power of
the method is strongly influenced by the effect size, that
is, the magnitude of differences between b rates (fig. 4C),
and the information content or saturation of the site,
measured as a function of expected substitutions per site
(fig. 4D). Introducing multiple branch classes increases
the number of tests performed at each site, and because
of the site-level multiple test correction, dilutes the
power compared with the two-class case (table 2).
Calling a site differentially evolving if any of the tests
returns a significant corrected P-value realizes a 5–6%
power boost compared with relying only on the omnibus
test.

A

B

C

D

FIG. 4. Contrast-FEL performance data with rate differences using four branch sets. (A) Q–Q plots of either omnibus test P-values (blue) or FWER
(orange), which are based on rejections of any of the true nulls among 151,838 sites simulated where all branches had the same nonsynonymous
rate. Green line shows the Q–Q plot of the FWERs on 1,944 saturated sites ( log 10 of the divergence level above 2.5). Red line shows the FWER for
the 3702 data sets where some, but not of the nulls were true (i.e., some branch sets shared rates, whereas others did not). (B) Detection rate as a
function of the log 10 of the lowest and highest nonsynonymous rates (rates lower than 0.01 are shown as 0.01) computed on 18,141 sites where at
least two rates were different. (C) Detection rate as a function of the effect size, measured as the maximum difference between nonsynonymous
rates among branch classes. Blue line: proportion of sites with LRT P< 0.05 (the omnibus test), red line: proportion of sites with permutation
P< 0.05, gray line: proportion of sites with q< 0.20. Blue area plot shows for the proportion of sites with LRT P< 0.01 (lower) and LRT P< 0.1
(upper). Orange circles reflect the number of sites contributing to each bin. (D) Detection rate as a function of the log 10 of the divergence level at
the site.
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If a differentially evolving site was identified as such by the
omnibus test at p � 0:05 (FWER corrected), in 99.6% of
cases it was also identified by one or more of the individual
pairwise tests, implying that in most cases (at least for our
simulation), it is possible to pinpoint specific pairs of branch
sets that are responsible. For the remaining 0.4% of sites, the
omnibus test was significant, but none of the individual tests
was. Alternatively, among the sites that were identified by at
least one of the pairwise tests, 85.2% of them are also iden-
tified by the omnibus test; for the remainder of the sites, the
omnibus test is not significant. Among those sites, 89.6% had
a single pairwise significant test (median omnibus corrected
P¼ 0.103, interquartile range ½0:072� 0:159�), 9.5% had two
pairwise significant tests (0:066½0:056� 0:081�), and 0.9%
had three pairwise significant tests (0:058½0:053� 0:071�).

To boost power in low information settings (small branch
sets or low divergence), it may be advisable to run only the
omnibus test, that is, forego pairwise tests and the attendant
FWER correction.

Comparison with Post Hoc Tests
A reasonable heuristic approach for identifying sites that
evolve differently between branch sets, B1 and B2 is to run
an existing test which can determine whether the site evolved
nonneutrally along either sets, and call the site differentially
selected if there is evidence of positive selection on one group
but not another. Approaches like this have been commonly
used in literature, for example, Kapralov et al. (2012). One can
also call a site differentially evolving if nonneutrality tests of B1

and B2 return discordant results. For example, B1 is negatively
selected, but B2 is neutral, or B2 is positively selected and B1 is
negatively selected. Contrast-FEL is, of course, a direct test of
rate differences, so it could additionally identify, for instance,
sites where B1 and B2 are both negatively/positively selected,
but not at the same level. To illustrate the benefit of Contrast-

FEL compared with the Post hoc approach (which also
requires at least two separate computational analyses, one
for each branch set, so may be less computationally efficient),
we performed post hoc analyses based on independent FEL
tests (one for each branch set) on a subset of 185,070 sites
from 425 alignments.

Using the LRT P-value cutoff of 5%, over all variable sites,
Contrast-FEL achieves FPR of 3.4%, power of 37.2%, PPV of
62.0%, and negative predictive value (NPV) of 91.1%. The
“discordant results” post hoc FEL approach by comparison
has FPR of 53.0%, power of 63.6%, PPV of 15.2%, and NPV of
89.6%; the dramatic increase in the rate of false positives for
the post hoc method is mostly (93.7%) due to cases, where a
site that was simulated under the null is misclassified because
one of the branch sets is determined to be nonneutral by FEL
and the other—neutral. All of the sites that were identified by
Contrast-FEL but not by the post hoc heuristic were those
where FEL (correctly) determined that both branch sets were
conserved, but the degrees of conservation, measured by the
bi=a < 1 ratio, were different. Empirical data sets analyzed
in the following section provide concrete examples of such
sites which are labeled CC meaning they are conserved on the
treatment set and conserved on the naive set (for more in-
formation, see table 3 or 4).

The heuristic in which sites are called differentially evolving
where only one of the sets was under positive selection (the
method commonly used in literature) has FPR of 3.3%, much
reduced power of 17.1%, NPV of 94.6%, and PPV of 25.9%.

Exploring the Effect of Model Misspecification
To see whether the performance of Contrast-FEL suffers
when data are generated under models that make different
parametric distributions, we fitted Contrast-FEL to data gen-
erated under a branch-site model (Wisotsky et al. 2020),
where x rates vary from site to site and branch to branch,

Table 3. Sites Evolving Differentially between the Treated and the Naive Sets in the HIV-1 RT Data Set, at p � 0:05.

b (substitutions) Standard FEL P-Value
Codon a Treated Naive P-Value q-Value Treated Naive FEL Pattern

44 1.31 0.00 (9) 1.13 (8) 0.0286 0.799 0.003(2) 0.885(2) CN
65 1.16 2.12 (11) 0.00 (3) 0.0156* 0.655 0.226(1) 0.075(2) NN
67 1.24 1.39 (20) 0.00 (3) 0.0207* 0.694 0.792(1) 0.024(2) NC
70 1.31 1.56 (17) 0.00 (5) 0.0374* 0.963 0.737(1) 0.051(2) NN
75 0.86 1.80 (15) 0.00 (4) 0.0161* 0.600 0.130(1) 0.087(2) NN
100a 1.56 3.26 (29) 0.00 (13) 0.0150 0.836 0.094(1) 0.075(2) NN
103a 1.47 36.51 (104) 0.00 (7) 0.0000* 0.000 0.000(1) 0.073(2) PN
151a 0.93 2.67 (10) 0.00 (8) 0.0150* 0.719 0.023(1) 0.124(2) PN
181a 3.32 4.41 (21) 0.00 (7) 0.0010* 0.083 0.442(1) 0.004(2) NC
184a 0.00 8.29 (58) 0.34 (1) 0.0000* 0.000 0.023(1) 0.110(2) PN
188a 0.18 2.99 (14) 0.00 (0) 0.0061 0.411 0.000(1) 0.491(2) PN
190a 1.52 3.41 (33) 0.00 (10) 0.0004* 0.041 0.031(1) 0.011(2) PC
215a 0.44 1.50 (12) 0.00 (13) 0.0255* 0.775 0.021(1) 0.199(2) PN
228a 1.53 1.30 (21) 0.00 (9) 0.0436 0.974 0.753(2) 0.019(2) NC
302 0.62 0.00 (1) 8.05 (3) 0.0420* 1.000 0.458(2) 0.054(1) NN

NOTE.—a, maximum likelihood estimate (MLE) of the site-specific synonymous rate; b, nonsynonymous rate.
*Permutation P-value is � 0:05; substitutions are counted along branches in the corresponding set using joint maximum likelihood inference of ancestral states under the site-
level alternative model, codons in italics are known to be involved in drug resistance (Rhee et al. 2003).
aCodon identified as directionally evolving in table 2 of Murrell et al. (2012). FEL P-values are computed by separately testing for nonneutral evolution on the corresponding set
of branches, with theþ or - sign indicating the nature of selection (positive or negative). FEL pattern encodes the inferred pattern of evolution for treated/naive branches: P,
positively selected (at p � 0:05); C, conserved; N, neutral; for example, PC means “positively selected” on the treated set, and “conserved” on the naive set.
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but using a random effect, that is, set of branches fixed a priori
are not expected to show detectably different patterns of site-
level x. This model allows independent unrestricted rate var-
iation between branches and sites and is computationally
faster and less parameter-rich than covarion-type models
that allow complex correlation structures between rates
(see discussion in Murrell et al. [2015]). Using the simulation
scenario (CV3o6, see http://data.hyphy.org/web/busteds/),
and the branch partition shown in supplementary figure S1,
Supplementary Material online, we obtained a slightly ele-
vated rate of 0.07 false positives with LRT at nominal
P¼ 0.05, suggesting that the LRT is misattributing some
“random” rate variation to fixed branch partitions.
However, the permutation P-value test, which we designed
as a nonparametric guard to correct for some model misspe-
cification, maintains a nominal rate of 0.045 for P¼ 0.05 (see
supplementary fig. S2, Supplementary Material online).
Similarly, no elevated false positives are seen with multiple-
test corrected q-values. Because of the limited scope of these
simulations, we cannot draw general conclusions about ro-
bustness to model misspecification.

Empirical Data
DR in HIV-1 Reverse Transcriptase
We applied Contrast-FEL to an alignment of 476 HIV-1 re-
verse transcriptase (RT) sequences with 335 codons isolated
from 288 HIV-1 infected individuals, previously analyzed in
Murrell et al. (2012). There were two sequences sampled from
each individual: one prior to treatment with RT inhibitors and
one following treatment. We partitioned the branches in the
tree into three groups: pretreatment terminal branches (na-
ive), posttreatment terminal branches (treated), and the rest
of the branches (nuisance group, supplementary fig. S1,
Supplementary Material online, HIV-1 RT). Because we expect
that the primary difference between the selective regimes on
naive versus treated branches is due to the action of the
antiretroviral drugs, most of the sites that have detectable
differences in selective pressures should be implicated in con-
ferring DR. Using nominal P-value cutoff of 0.05, Contrast-FEL
identifies 15 sites that evolve differentially, between which 12
are known DR sites, achieving PPV of 0.8. Of the three non-DR
sites that are found, codons 44 and 302 are actually more
conserved (lower b) in the treated group, which is a different
mode of selective pressure than positive selection exerted by
antiretroviral drugs. They are also not supported by the per-
mutation test, which could indicate that these sites are picked
up due to sampling variation. Among the 12 DR sites iden-
tified by LRT P-values, ten are also supported by the permu-
tation test—an indicator of robustness to branch sampling
artifacts. The most conservative approach, based on FDR
corrected q-values of 0.20 or lower, identifies four codons:
103, 181, 184, and 190, all of which are on the list of canonical
escape mutations with very strong phenotypic effects (Rhee
et al. 2003). All of these sites have many inferred mutations in
the treated group, and large differences between inferred b
rates, which places them in the large effect/large sample size
category. As a comparison with one common practice to
screen for differential selection today, we also used fixed

effects likelihood (FEL; Kosakovsky Pond and Frost 2005) to
test each branch set for evidence of deviations from neutrality
(either positive or negative selection). For site 190, subject to
differential selection with a large effect size, FEL reveals that
the treated branches experience positive selection (FEL
p � 0:05), and naive branches—negative selection.
However, no other sites show such a clean pattern. For sites
103, 151, 184, and 215, test branches are subject to positive
selection (FEL p � 0:05), whereas naive branches evolve
neutrally. For sites 67, 181, and 228, naive branches are subject
to negative selection (FEL p � 0:05), whereas test branches
evolve neutrally. For the remainder of the sites, neither branch
class evolves in a way that is detectably different from neu-
trality according to FEL. This comparison highlights that com-
paring the results of two independent tests applied to subsets
of the data to detect evolutionary differences is statistically
suboptimal.

The performance of Contrast-FEL (a generalist method) in
identifying sites of phenotypic relevance compares favorably
with the performance of a purpose-built Model of Episodic
Directional Selection (MEDS) method (Murrell et al. 2012),
designed to find directional evolution along selected
branches. MEDS identified 17 sites of which 10 were known
DR sites (PPV of 58.9%, see table 2 in Murrell et al. (2012), and
both methods agreed on nine sites. Of course, unlike MEDS,
Contrast-FEL is not able to identify specific residues that may
be the targets of selection at specific sites.

Selection on HIV-1 Envelope Conditioned on the Route of

Transmission
We reanalyzed an alignment of 131 partial HIV-1 envelope
(no variable loops) sequences with 806 codons from Tully
et al. (2016); these sequences were isolated from acute/early
infections and represent “founder” viruses. These sequences
were labeled by whether or not the infected individual was
infected via a heterosexual (HSX) exposure, or men who have
sex with men (MSM) exposure; interior branches were labeled
as HSX or MSM if all of their descendants had the same label,
and were left unlabeled (nuisance set) otherwise. Tully et al.
(2016) found gene-wide differences in selection among
branch groups (a larger proportion of sites, but subject to
weaker positive selection, on HSX branches compared with
MSM branches), using the RELAX test (Wertheim et al. 2015),
but lacked the framework to pinpoint specific residues that
evolved differentially. Contrast-FEL identified 32 differentially
selected sites (P-value) of which three passed the FDR correc-
tion (table 4). One of these sites, 626, is conserved in both
branch sets, but at a stronger level (lower b) in the MSM set,
whereas another (786) is positively selected in both, but at a
stronger level on HSX branches.

Cell Shape in Epidermal Leaf Trichomes
Mazie and Baum (2016) investigated which codons in a de-
velopmentally important gene (BRT) in Brassicaceae (58
sequences, 318 codons) may be associated with the evolution
of a different trichome cell shape in the genus Physaria. Using
gene-level mean differences in x between subsets of
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branches, they identified that the average strength of selec-
tion is different in Physaria compared with the rest of the
taxa. They then used a revised restricted branch-site (Zhang
et al. 2005) method to detect ten codons that were subject to
positive selection in the Physaria clade and four codons were
“distinctive” (majority amino acid was different in Physaria),
but not positively selected. Contrast-FEL identified 29 differ-
entially selected codons at p � 0:05 (18 at q � :20), in-
cluding all ten positive codons from Mazie and Baum (2016)
and one out of four “distinctive” codons (table 5). Given the
general conservative nature of Contrast-FEL, it is reasonable
to assume that it is more powerful (rather than prone to
making more Type I errors) than the original test which
was limited to a 50% subset of branches and used much
more stringent parametric assumptions on rate distributions,
including shared negative selection regimes on background
branches, and a single x to account for the positive selection
rate class.

Evolution of Rubisco in C3 versus C4 Photosynthetic Pathway

Plants
Several studies comparing evolutionary selective pressures on
the rbcL gene in C3 and C4 plants have identified several sites
that appear to be under positive selection in either C3 or C4

plants (Kapralov and Filatov 2007; Kapralov et al. 2012), as
well as several others that have different targets for directional
evolution based on the pathway (Parto and Lartillot 2018). In
this alignment of 179 sequences and 447 codons, Contrast-
FEL identified 15 sites that evolve differentially between C3
and C4 plants (LRT p � 0:05), of which six had been previ-
ously identified as being subject to differential directional se-
lection by a mutation-selection model, and five additional
sites were identified by this model (cf. table 6). An interesting
example in this data set is site 309 which was found as pos-
itively selected previously, but is classified as conserved in
both C3 and C4 plants by FEL; this appears to be a result of
the high synonymous rate inferred at the site, which is a
hallmark false positive for standard selection analyses that
ignore site-to-site synonymous rate variation (Kosakovsky
Pond and Muse 2005; Wisotsky et al. 2020). However, a
weaker extent of conservation in C4 plants is inferred by
Contrast-FEL at this site.

Selection on Cytochrome B of Haemosporidians Infecting

Different Hosts
Pacheco et al. (2018) performed an in-depth evolution-
ary analysis of three mitochondrial genes from 102
Haemosporidian parasite species partitioned into four

Table 4. Sites Evolving Differentially between the HSX and the MSM Sets in the HIV-1 Env Data Set from Tully et al. (2016).

Codon a
b (substitutions)

HSX MSM P-Value q-Value
Standard FEL P-Value

HSX MSM FEL Pattern

49 0.56 0.12 (2) 0.69 (12) 0.0365* 1.000 0.151(2) 0.742(1) NN
50 0.30 0.61 (6) 0.00 (2) 0.0009* 0.177 0.331(1) 0.015(2) NC
53 0.88 0.00 (2) 0.32 (9) 0.0391 1.000 0.002(2) 0.088(2) CN
142 4.13 5.09 (34) 2.86 (37) 0.0497 1.000 0.373(1) 0.338(2) NN
158 0.62 2.24 (9) 0.84 (10) 0.0168 0.905 0.010(1) 0.582(1) PN
197 1.88 2.93 (20) 1.17 (23) 0.0053* 0.616 0.361(1) 0.287(2) NN
233 0.20 0.25 (3) 0.00 (1) 0.0337* 1.000 0.836(1) 0.046(2) NC
264 0.33 1.91 (11) 0.65 (9) 0.0107 0.859 0.005(1) 0.427(1) PN
275 2.45 4.16 (28) 1.71 (28) 0.0031 0.498 0.128(1) 0.344(2) NN
303 1.63 6.98 (34) 3.55 (39) 0.0093* 0.837 0.000(1) 0.082(1) PN
336 3.80 1.09 (11) 2.47 (35) 0.0254 1.000 0.009(2) 0.297(2) CN
344 0.40 1.25 (8) 0.31 (7) 0.0074* 0.742 0.042(1) 0.682(2) PN
408 0.52 0.70 (4) 1.80 (22) 0.0436 1.000 0.663(1) 0.007(1) NP
442 0.00 0.31 (1) 0.00 (0) 0.0362* 1.000 0.031(1) 1.000(2) PN
530 0.69 0.29 (2) 0.00 (3) 0.0359* 1.000 0.305(2) 0.002(2) NC
572 1.55 4.01 (29) 2.27 (33) 0.0469 1.000 0.046(1) 0.456(1) PN
574 1.10 0.52 (6) 0.10 (5) 0.0389 1.000 0.230(2) 0.002(2) NC
598 0.59 1.13 (9) 0.28 (7) 0.0410 1.000 0.235(1) 0.255(2) NN
626 12.77 4.14 (37) 1.40 (41) 0.0003* 0.120 0.001(2) 0.000(2) CC
672 2.46 3.15 (25) 1.46 (37) 0.0139* 0.799 0.433(1) 0.079(2) NN
683 1.88 2.05 (15) 0.85 (17) 0.0404* 1.000 0.786(1) 0.039(2) NC
685 0.00 1.16 (9) 0.12 (2) 0.0008* 0.213 0.001(1) 0.259(1) PN
690 1.24 0.28 (5) 1.33 (18) 0.0176* 0.837 0.050(2) 0.983(1) CN
702 0.00 1.13 (8) 0.28 (4) 0.0174* 0.877 0.002(1) 0.101(1) PN
703 1.31 1.27 (7) 0.13 (11) 0.0119* 0.739 0.958(2) 0.003(2) NC
720 0.49 1.47 (11) 0.44 (13) 0.0107 0.785 0.026(1) 0.860(2) PN
722 0.00 0.13 (1) 0.78 (9) 0.0325 1.000 0.288(1) 0.007(1) NP
734 0.50 2.23 (14) 0.75 (10) 0.0111 0.749 0.005(1) 0.536(1) PN
773 0.25 0.00 (0) 0.31 (7) 0.0406 1.000 0.093(2) 0.778(1) NN
781 0.51 0.50 (5) 0.00 (2) 0.0031* 0.416 0.975(2) 0.005(2) NC
786 1.40 6.67 (24) 3.33 (38) 0.0274 1.000 0.000(1) 0.009(1) PP
804 0.25 0.00 (0) 1.53 (15) 0.0000* 0.031 0.119(2) 0.002(1) NP

NOTE.—Other notation the same as in table 3.
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groups based on the hosts. The analysis concluded that
the genes were subject to mostly purifying selection,
with different gene-level strengths of selection estab-
lished using RELAX. For example, in the cytochrome B
gene (376 codons) which we reanalyze here, selection in
the plasmodium infecting avian hosts clade was intensi-
fied relative to the plasmodium infecting primate/rodent
hosts. Because this analysis contained more than two
branch groups, Contrast-FEL conducted seven tests per
site—the omnibus test and six pairwise group compar-
isons (table 7). Overall, 28 sites showed evidence of dif-
ferential selection with at least one test (FWER
corrected), and five tests passed FDR correction for the
omnibus test. For clarity, we did not consider FEL anal-
yses on individual branch sets and only focused on
Contrast-FEL inference. Twenty-two of 28 sites were
detected by the omnibus and between one and three
pairwise tests, whereas six sites were reported only by
one of the pairwise tests, highlighting the additional res-
olution offered by these more focused tests. Patterns of
differences at individual sites varied widely, with every
possible pair being significantly different at least once.
The simplest case (e.g., 160 and 179) is a significant dis-
cordance between two groups of branches. Another re-
peated pattern is when one group of branches stands
apart from all others (e.g., 89 and 102).

Discussion
To narrow down the genetic basis of adaptation, many stud-
ies contrast evolution between different subsets of branches
in a phylogenetic tree, selected to represent different phe-
notypes, environments, or fitness regimes. As we sequence
more organisms and obtain better annotations of function
and phenotypic differences, such contrast analyses are likely
to become more common. However, with a few exceptions,
methods that researchers have adopted to find differentially
evolving sites were not designed to explicitly test for such
differences. The Contrast-FEL approach, presented here,
addressed this methodological shortcoming, and establishes
a formal statistical framework for testing for differences in
evolutionary rates among two or more sets of branches at
individual sites. Unlike approaches which infer something
about each branch set separately (e.g., is branch set X under
positive selection at site S?) and compare these inferences in
a post hoc fashion (site S is selected on branch set X but not
on set Y), Contrast-FEL enables direct rigorous testing for
differences in nonsynonymous evolutionary rates at individ-
ual alignment sites in predefined nonoverlapping sets of
branches and is computationally feasible for all but the larg-
est comparative analyses. Contrast-FEL has good operating
characteristics on data simulated under a broad range of
scenarios and finds large numbers of differentially evolving

Table 5. Sites Evolving Differentially between Physaria and Other Taxa in the BLT Gene from Mazie and Baum (2016).

Codon a
b (substitutions)

Physaria Other P-Value q-Value
Standard FEL P-Value

Physaria Other FEL Pattern

4 0.00 80.00 (2) 0.76 0.0320 0.392 0.018(1) 0.220(1) PN
43 0.69 4.27 (1) 0.00 0.0110* 0.194 0.251(1) 0.043(2) NC
60 0.00 57.88 (1) 0.82 0.0265 0.421 0.020(1) 0.140(1) PN
107 0.93 1.70 (3) 0.16 0.0123* 0.206 0.511(1) 0.108(2) NN
122 0.21 0.00 (0) 1.40 0.0308* 0.426 0.476(2) 0.094(1) NN
126 1.62 0.89 (2) 0.08 0.0467 0.550 0.563(2) 0.017(2) NC
153a 0.24 4.17 (6) 0.23 0.0001* 0.006 0.001(1) 0.960(2) PN
156 0.66 2.91 (7) 0.67 0.0283* 0.409 0.051(1) 0.986(1) NN
163 0.35 1.31 (2) 0.12 0.0473 0.538 0.276(1) 0.476(2) NN
164 0.32 2.04 (3) 0.25 0.0267 0.404 0.088(1) 0.847(2) NN
167a 0.37 6.54 (10) 0.70 0.0000* 0.003 0.001(1) 0.549(1) PN
169 5.04 0.74 (4) 0.07 0.0476 0.522 0.016(2) 0.000(2) CC
171a 2.03 4.00 (4) 0.00 0.0000* 0.003 0.320(1) 0.000(2) NC
173a 0.47 4.12 (6) 0.36 0.0011* 0.044 0.026(1) 0.820(2) PN
174a 0.00 11.60 (8) 0.31 0.0000* 0.000 0.000(1) 0.346(1) PN
175a 0.85 3.67 (7) 0.00 0.0000* 0.002 0.046(1) 0.006(2) PC
176 0.56 1.22 (1) 0.00 0.0057* 0.130 0.450(1) 0.025(2) NC
178 1.29 1.93 (3) 0.12 0.0085 0.160 0.636(1) 0.026(2) NC
179 0.77 1.85 (2) 0.00 0.0008* 0.038 0.306(1) 0.008(2) NC
180a 0.17 2.22 (3) 0.00 0.0001* 0.006 0.008(1) 0.161(2) PN
187 0.46 0.91 (2) 0.00 0.0066* 0.141 0.503(1) 0.023(2) NC
188 1.31 1.03 (3) 0.00 0.0075* 0.149 0.790(2) 0.001(2) NC
190a 0.00 1.47 (4) 0.07 0.0015* 0.053 0.020(1) 0.562(1) PN
191a 0.45 2.49 (4) 0.13 0.0025* 0.080 0.046(1) 0.302(2) PN
198 0.66 2.17 (2) 0.00 0.0026* 0.076 0.210(1) 0.023(2) NC
255a 2.06 1.47 (3) 0.07 0.0047* 0.124 0.636(2) 0.000(2) NC
262 1.43 1.27 (3) 0.17 0.0320* 0.407 0.872(2) 0.009(2) NC
270 2.32 0.87 (3) 0.00 0.0047* 0.115 0.248(2) 0.000(2) NC
278b 1.64 0.86 (1) 0.00 0.0320* 0.424 0.567(2) 0.001(2) NC

NOTE.—Other notation the same as in table 3.
aCodon identified as positively selected in Physaria (table 3 of Mazie and Baum [2016]).
bCodon identified as “distinctive” in Physaria (table 4 of Mazie and Baum [2016]).
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sites in empirical data sets. When prior results are available,
we find that in addition to recovering many sites with
known effect on phenotype (e.g., HIV-1 DR), or sites found
with alternative methods (rbcL, BRT), Contrast-FEL reports
subtler differences, such as sites that are subject to differing

degrees of conservation, or not subject to detectable posi-
tive or negative selection in either subset. Therefore,
Contrast-FEL may enable more precise and powerful com-
parative analyses, and it is also the first method of this class
that is able to compare selective pressures among more than

Table 6. Sites Evolving Differentially between C3 and Other Taxa in the rbcL Gene.

Codon a
b (substitutions)

C3 C4 P-Value q-Value
Standard FEL P-Value

C3 C4 FEL Pattern

23 0.00 0.87 (4) 0.00 (0) 0.0494 1.000 0.083(1) 1.000(2) NN
86a 1.02 1.22 (7) 0.00 (1) 0.0164* 1.000 0.794(1) 0.039(2) NC
249 0.98 0.99 (6) 0.00 (0) 0.0375* 1.000 0.995(1) 0.062(2) NN
251 0.00 0.95 (5) 0.00 (0) 0.0169 1.000 0.342(1) 1.000(2) NN
262a,b 0.48 4.15 (15) 1.15 (3) 0.0292* 1.000 0.005(1) 0.460(1) PN
281a,c 0.00 0.44 (2) 3.90 (10) 0.0008* 0.372 0.216(1) 0.001(1) NP
295 2.46 0.00 (1) 0.62 (4) 0.0482* 1.000 0.000(2) 0.084(2) CN
309a,c 76.21 0.00 (0) 0.95 (5) 0.0047* 0.700 0.000(2) 0.013(2) CC
315 1.43 0.00 (2) 0.72 (3) 0.0479* 1.000 0.008(2) 0.452(2) CN
332 0.00 0.00 (1) 0.85 (2) 0.0472* 1.000 1.000(2) 0.101(1) NN
354a 0.49 1.32 (6) 0.00 (1) 0.0160* 1.000 0.309(1) 0.187(2) NN
367 0.96 1.21 (6) 0.00 (1) 0.0285 1.000 0.780(1) 0.074(2) NN
439a,b 1.04 2.26 (10) 0.31 (4) 0.0143* 1.000 0.136(1) 0.216(2) NN
443a,b 0.00 2.29 (9) 0.00 (0) 0.0018* 0.412 0.005(1) 1.000(2) PN
456 3.15 0.00 (0) 0.72 (8) 0.0481* 1.000 0.000(2) 0.051(2) CN

NOTE.—Other notation the same as in table 3.
aCodon reported as differentially evolving by mutation-selection directional DS3 model in Parto and Lartillot (2018).
bCodon identified as positively selected in C3 plants (cC4 plants) previously (table 1 of Parto and Lartillot [2018]).

Table 7. Sites Evolving Differentially among the Four Branch Groups in the Cytochrome B Mitochondrial Gene of Haemosporidians from Pacheco
et al. (2018), According to the Omnibus Test or At Least One Pairwise Test at LRT Corrected P-value of � 0:05.

Codon a
b (substitutions)
Haemoproteidae Avian Hosts Mammalian Hosts Leucocytozoon Other P-Value q-Value

Significant
Pairwise Tests

56 3.81 0.00 (2) 0.00 (2) 0.00 (3) 0.75 (4) 0.00 0.0465* 0.795 AL, ML
89 0.94 0.00 (1) 0.00 (3) 0.00 (4) 1.33 (5) 0.00 0.0001* 0.017 HL, AL, ML
102 1.66 0.00 (2) 0.00 (2) 0.23 (5) 1.83 (6) 0.42 0.0014* 0.103 HL, AL, ML
150 0.79 0.00 (1) 0.00 (2) 1.27 (9) 0.00 (2) 0.56 0.0075* 0.403 AM, ML
158 0.42 0.00 (0) 0.00 (0) 0.00 (2) 1.30 (5) 0.00 0.0207* 0.518 AL, ML
160 1.25 0.94 (6) 0.00 (1) 0.08 (8) 0.43 (2) 0.75 0.0422 0.755 HA
179 0.89 0.48 (2) 0.00 (0) 0.25 (6) 1.46 (6) 1.10 0.0171* 0.495 AL
182 1.43 0.00 (0) 0.00 (0) 0.00 (0) 2.23 (9) 0.42 0.0001* 0.013 HL, AL, ML
183 1.80 0.00 (0) 0.00 (3) 0.08 (2) 1.20 (4) 0.54 0.0058* 0.361 HL, AL, ML
186 0.00 0.22 (1) 0.00 (0) 0.17 (2) 0.65 (3) 0.16 0.3127* 1.000 AL
193 1.53 0.00 (0) 0.00 (5) 0.00 (1) 1.07 (5) 0.00 0.0147* 0.462 AL, ML
194 1.05 0.00 (0) 0.00 (0) 0.00 (1) 0.49 (4) 0.19 0.1347* 1.000 ML
222 0.64 0.00 (0) 0.00 (0) 0.00 (0) 0.70 (4) 0.00 0.0246* 0.514 AL, ML
223 1.45 0.48 (3) 0.00 (0) 0.00 (1) 0.70 (6) 0.00 0.0200* 0.538 AL, ML
248 0.48 0.00 (0) 0.10 (1) 1.01 (9) 0.22 (1) 0.64 0.0573* 0.937 AM
253 1.67 0.00 (4) 0.00 (4) 0.00 (6) 0.95 (4) 0.40 0.0132* 0.452 AL, ML
256 1.92 0.00 (6) 0.00 (3) 0.73 (8) 0.00 (0) 0.64 0.0386* 0.725 AM
283 0.38 0.00 (1) 0.16 (1) 0.00 (0) 1.36 (6) 0.64 0.0241* 0.534 ML
285 1.17 0.22 (1) 0.00 (1) 0.39 (5) 1.44 (6) 1.01 0.0852* 1.000 AL
289 3.28 0.00 (0) 0.00 (1) 0.00 (0) 1.31 (3) 0.00 0.0012* 0.110 HL, AL, ML
309 1.05 0.83 (2) 0.36 (6) 1.11 (9) 4.24 (8) 0.61 0.0822* 1.000 AL
310 1.96 0.22 (1) 0.00 (1) 0.00 (2) 0.83 (4) 0.00 0.0119* 0.499 AL, ML
331 0.15 0.00 (0) 0.00 (0) 0.00 (0) 7.31 (9) 0.00 0.0000* 0.012 HL, AL, ML
338 0.00 0.00 (0) 0.00 (0) 0.00 (0) 0.98 (3) 0.00 0.0115 0.541 AL, ML
341 0.43 0.49 (3) 0.28 (2) 0.00 (2) 0.83 (6) 0.45 0.1118* 1.000 ML
343 0.25 0.97 (3) 0.14 (1) 0.00 (1) 1.23 (4) 1.05 0.0224* 0.527 HM, ML
351 1.75 0.00 (2) 0.00 (3) 0.91 (8) 0.88 (4) 0.25 0.0367* 0.727 AM
366 0.52 1.43 (5) 0.20 (3) 0.00 (1) 0.61 (6) 0.67 0.0123* 0.463 HM, ML

NOTE.—Individual pair tests in the last column and codes as follows. HA, Haemoproteidae versus Avian Hosts (one site); HM, Haemoproteidae versus Mammalian Hosts (two
sites); HL, Haemoproteidae versus Leucocytozoon (six sites) AM, Avian Hosts versus Mammalian Hosts (four sites); AL, Avian Hosts versus Leucocytozoon (eighteen sites); ML,
Mammalian Hosts versus Leucocytozoon (twenty sites). Other notation the same as in table 3.
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two groups of branches. The general framework of site-level
rate comparison using LRTs presented here can be readily
extended to compare other types of evolutionary parame-
ters, for example, rates that are informed by amino acid
properties (Delport et al. 2010), rates of instantaneous sub-
stitutions that involve multiple nucleotides (Venkat et al.
2018), or rates that influence positional synonymous sub-
stitutions (Rubinstein et al. 2011)

As with any statistical inference method, it is important to
appreciate when it will work well and when it will not. Since
Contrast-FEL tests for significant differences in x rates, a pos-
itive result means that the sites are subject to different selec-
tion intensities, for example, purifying versus neutral or
positive diversifying, and not that they evolve toward differ-
ent target residues (directional selection). It will work best on
sufficiently large alignments with multiple substitutions in
each of the branch sets, whereas, on small or genetically sim-
ilar data sets, power will be low for all but the most dramatic
differences. Our simulations provide guidelines for perfor-
mance, and, if desired, power simulations for a specific data
set can be used to determine what effect size can be realis-
tically detected. As it is reasonable to assume that in most
alignments most sites do not evolve differentially (or at least
not dramatically so) along subsets of branches, care must be
taken to control for false discovery. Our empirical data anal-
yses on alignments with prior site-level results do not indicate
a dramatically inflated rate of false positives (the lists of sites
overlap substantially with those identified previously). On the
other hand, being too conservative will lead to loss of power,
because for site-level inference it does not grow with the
length of the alignment (Scheffler et al. 2014).

Our simulations can be used as guideline for what power
can be expected from a specific data set based on its size
(number of branches, size of partitions) and information con-
tent (number of substitutions, divergence). For smaller data
sets, only sites with strong effects (large differences in rates)
are likely to be found (fig. 3). It is worth noting that by default
Contrast-FEL will always perform the omnibus and report
FWER corrected P-values, permutation P-values, and FDR
corrected q-values. The main choice a user faces in terms of
what tests are performed is if permutation P-values are com-
puted. Depending on the desired tradeoffs between precision
and recall, the user may choose to use site-level P-values
(highest power, lowest precision), permutation P-values (in-
termediate power and precision, some degree of robustness
to model misspecification), or q-values (lowest recall, highest
precision).

Statistical models of evolution, including those presented
here, are gross approximations of highly complex biological
reality. Thus, they are likely to be misspecified for biological
data. A positive/negative Contrast-FEL result should not be
interpreted as dispositive evidence of the effect of branch
partition (phenotypes, environments, etc.) affects selective
regimes. It should instead be viewed as a hypothesis genera-
tion tool: Detected sites may present an attractive target for
subsequent characterization using experiments or other
approaches that do not solely rely on comparative data anal-
ysis (MacCallum and Hill 2006). Our simulations are extensive,

but they only establish that the tests perform as expected
when the data are generated under the assumed models in a
broad range of settings (a necessary step). There are numer-
ous violations which might negatively influence the test: back-
ground heterotachy (Jones et al. 2020), multinucleotide
substitutions (Venkat et al. 2018), or the general tendency
of some models to “absorb” unmodeled variation into esti-
mable parameters (Jones et al. 2018). How branches are par-
titioned into groups will differ based on the nature of the
question being asked: Sometimes it could be obvious
(treated/untreated terminal branches) and sometimes highly
ambiguous (discrete or discretized phenotype whose values
of not observed for ancestral lineages). Misspecification of
branch sets could lead to degraded test performance, al-
though one approach offered by Contrast-FEL is to assign
branches with uncertain labeling to the “ignore” group.
Sensitivity to model violations is a general statistical inference
issue, and establishing some degree of robustness in complex
settings like phylogenetic codon models where analytical
results are not available is usually accomplished by simula-
tions, which are often limited in scope due to the computa-
tional expense and the imagination of the individuals
designing model violations. We considered one possible mis-
specification due to heterotachy and found that the LRT
based test was slightly anticonservative, but the permutation
P-value test restored nominal behavior, suggesting that per-
mutation P-values may be less sensitive to some model vio-
lations, although they do incur a noticeable additional
computational expense.

Materials and Methods

Statistical Models and Parameter Inference
Our model adapts the FEL method (Kosakovsky Pond and
Frost 2005), which has previously been used to find sites that
evolve under different selective pressures in different align-
ments of the same gene (Kosakovsky Pond et al. 2006).
Consider an alignment of N coding nucleotide sequences
with S codons, and a given tree topology T with B � N
branches. Branches in the tree are partitioned into disjoint
nonempty sets, Bi; i ¼ 1; 2; . . . ; K � 2, and this partition is
fixed a priori. If K> 2, one of the branch groups can be
designated as background and not explicitly tested.

Sequence evolution is modeled using the standard class of
Muse–Gaut class of codon models (Muse and Gaut 1994),
MG-REV-CF3� 4. The rate matrix used to model codon se-
quence evolution follows the standard codon-substitution
model structure:

qijða; b; h;PÞ ¼

ahijpj; dði; jÞ ¼ 1; AAðiÞ ¼ AAðjÞ;

bihijpj; dði; jÞ ¼ 1; AAðiÞ 6¼ AAðjÞ;

0; dði; jÞ > 1;

�
P

l 6¼i qil; i ¼ j:

8>>>>><
>>>>>:

Here, dði; jÞ counts the number of nucleotide differences
between codons i and j; AA(x) is the amino acid encoded by
codon x; h represents the underlying nucleotide substitution
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rate parameters (assumed to follow the general time-
reversible form); P are the equilibrium codon frequencies,
obtained using the CF3� 4 corrected empirical estimator
(Kosakovsky Pond et al. 2010) with nine parameters; devel-
oped to correct estimation biases that arise when nucleotide
frequencies are used to estimate codon frequencies without
correcting for the absence of stop codons.

The key parameters of the model are: a—the site-specific
synonymous substitution rate, and bi—the site-specific non-
synonymous substitution rate for branch group i, and all
others are nuisance parameters (table 8). We fit the model
to a coding sequence alignment using the following
procedure.

Step 1: Obtain initial nuisance parameter estimates:

infer B branch length parameters tb, and five nucle-

otide substitution rates hAC; hAT; hCG; hCT; hGT us-

ing the general time reversible nucleotide model.

Step 2: Infer initial codon tree scaling and group-

level x: fit the MG-REV-CF3� 4 model to the en-

tire alignment with each branch group having its

own x parameter, using C� nucleotideðtbÞ for

branch lengths (C is the estimated tree scaler; this

simple approximation has been used successfully

by us [Kosakovsky Pond and Frost 2005] and others

[Yang 2000] in the past), and h estimates from the

previous step.

Step 3: Refine nuisance parameters and group-level

x: remove constraints from branch lengths and h
then perform a maximum likelihood fit under the

MG-REV-CF3� 4 model.

Step 4: For each site (independently), infer param-

eters of interest. Fix nuisance parameters at esti-

mates from the previous step. Estimate a as tree-

wide, site-specific branch-length scaler, and esti-

mate bi for each group class. The site-model fitted

here becomes the universal alternative hypothesis

(most general model) for all site-level tests. The

empirical validity of such estimation procedures

has been discussed in Scheffler et al. (2014). As a

computational shortcut, invariable sites are

skipped, because maximum likelihood parameter

estimates are 0 at such sites.

Hypothesis Testing
Depending on the value of K and whether or not the back-
ground set is present, different testing procedures will be
carried out at each site. All tests are LRTs, using the assumed
asymptotic distribution of v2

d to test significance. The degrees
of freedom parameter, d, varies from test to test.

(1) K ¼ 2. The single null hypothesis, b1 ¼ b2, is tested
against the universal alternative with d ¼ 1.

(2) K > 2, no background. An omnibus test using the null
b1 ¼ b2 ¼ � � � bK , versus the universal alternative, with
d ¼ K � 1. In addition, all pairs of groups are tested for
equality of rates using the null bi ¼ bj for 1 � i < j �
K with d ¼ 1, resulting in KðK � 1Þ=2 tests.

(3) K > 2, with background. Without loss of generality, as-
sume that the background is designated as group K. An
omnibus test compares the null b1 ¼ b2 ¼ � � � bK � 1,
against the universal alternative, with d ¼ K � 2. In ad-
dition, if K> 3, all pairs of groups are tested for equality of
rates using the null bi ¼ bj for 1 � i < j � K � 1
with d ¼ 1, resulting in ðK � 1ÞðK � 2Þ=2 tests.

When multiple hypotheses are tested at each site, the
corresponding P-values are corrected to maintain nominal
FWER using the Holm–Bonferroni (Holm 1979) procedure.

Permutation Tests
As an option, it is possible to perform branch set permutation
tests at each site where some of the LRTs from the previous
section are significant at a given level (e.g., p � 0:05) to
assess whether or not the differences detected across groups
are due to “outlier” effects. To do so, we randomly shuffle
branch assignments to sets (maintaining the number and size
of the sets) and perform the complete LRT procedure de-
scribed above for each permuted branch set, up to 20 times. If
we find the LRT as high or higher as observed on the original
partition for any of the tests, at iteration j, we report permu-
tation P-value of 1=j (and stop the process); otherwise, we
report a permutation P-value of 0.05.

Table 8. Parameters Relevant to Contrast-FEL.

Parameter Definition Type

a Site-specific synonymous substitution rate Key
bi Site-specific nonsynonymous substitution rate for branch group i Key
x Ratio of nonsynonymous substitution rate to the synonymous substitution rate Key
B Number of branches in the tree Given
tb Branch length parameters, number estimated 5 B Nuisance
h Nucleotide substitution rates Nuisance
K Number of branch sets User defined
C Estimated tree scaling constant Nuisance
N Number of coding nucleotide sequences Given
S Number of codons within a sequence Given

NOTE.—Parameter type is based on whether it is a key estimated parameter, a nuisance estimated parameter, a user-defined parameter, or a property of the input data set.
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Final Reports
For each site that is not invariable, Contrast-FEL outputs
Holm–Bonferroni corrected P-values for each of the con-
ducted tests, (if selected) the overall permutation P-
value, and q-values (FDRs) computed from the omnibus
test P-values using the Benjamini and Hochberg (1995)
procedure.

Simulated Data
To evaluate Contrast-FEL statistical and predictive per-
formance, we simulated 3,706 data sets with varying
numbers of sequences, gene-size variable lengths, and
other settings designed to cover a range of relevant pa-
rameter values. In total, there were 1,594,400 codon sites
across all alignments.

• Tree topologies. Two tree topology schemes were used for
the simulated. First, we simulated data along a single,
empirical tree topology with reported branch lengths
from Yokoyama et al. (2008) containing N ¼ 31 taxa,
chosen to represent a somewhat typical use case for these
types of studies. Second, we also simulated data from
multiple random, balanced (maximally symmetric) and
ladder-like (maximally asymmetric) topologies with N
from 8 to 256 sequences (drawn uniformly using Latin
hypercube sampling [LHC], see below). This was used in
simulation analyses illustrated in figure 2D where the
number of branches in the test/reference set needed to
be variable.

• Branch lengths. For each parametrically generated to-
pology, we drew the mean branch length uniformly
from 0.001 to 0.25 using LHC, and then generated
branch lengths from the exponential distribution
with this mean.

• Alignment length. Integer alignment length was drawn
(uniformly) from the 100 to 800 range using LHC.

• Branch sets. We used several simulations where the
branches from the Yokoyama et al. (2008) tree were
partitioned into two groups by hand. For parametrically
simulated topologies, we selected the fraction of branches
to belong to the “test” set from 0.01 to 0.8 using LHC, and
the rest of the branches were in the “reference” set. We
also simulated 458 data sets where branches were parti-
tioned into four groups.

• Fraction of sites with different selective regimes. The pro-
portion of sites in an alignment evolving under the null
hypothesis (b1 ¼ b2 ¼ � � � bN) was drawn for each data
set from the beta distribution with parameters
p ¼ 7; q ¼ 1. There were also 300 strict null simulations,
that is, simulations where all sites were evolving under the
null hypothesis.

• Site-to-site rate variation. Synonymous rates were ei-
ther constant across sites or varied according to the
gamma distribution with parameters
a ¼ b � maxð0:1; hÞ, where h was a draw from the
normal distribution Nð1; 0:5Þ. Nonsynonymous rates
were drawn from the gamma distribution with param-
eters a ¼ maxð0:1;Nð0:5; 0:25ÞÞ; b ¼ 1.

Latin hypercube sampling was performed over the set of
four parameters: number of leaves, mean branch length, align-
ment length, and fraction of branches in the “test” set. To
generate S LHC samples of parameter values, each parameter
range is divided into S equiprobable intervals, and a joint
sample of multiple parameters is chosen to ensure that every
single interval for any parameter is sampled exactly once. LHC
allows one to sample a broad range of parameter values with
a relatively small number of samples.

Implementation
The maximum likelihood estimation procedure consists of
the following steps and is implemented in HyPhy v2.5.2 or
later (Kosakovsky Pond et al. 2020). Steps 1–3 benefit from
multicore processors via likelihood function parallelization,
and step 4 can be distributed to multiple worker nodes via
MPI, improving performance. Documentation on how to use
and interpret the analyses and prepare data and trees for
submission to Contrast-FEL is available and at hyphy.org. A
version of Contrast-FEL will be maintained on the
Datamonkey web service (datamonkey.org; Weaver et al.
2018).

Sequence Alignments
Empirical alignments and phylogenetic trees used for analysis
here can be downloaded from data.hyphy.org/web/contrast-
FEL/in NEXUS format. Simulated data sets and simulation
parameters can be downloaded from the same URL.
Additional information is included in the README.md file.

Computational Performance
Following the initial model fits, site-level tests are embarrass-
ingly parallel, and can take full advantage of distributed com-
puting resources (MPI clusters), and scale linearly in the
number of unique site patterns. For example, on a
MacBookPro 2019, 2.3 GHz Core i9 (I9-9880H), running OS
X 10.15, with HyPhy version 2.5.15 and MPI with 12 processes
(one per virtual core), the run times for the empirical data sets
rounded up to the nearest minute were: 8 min for the epi-
dermal leaf trichomes (58 sequences, 318 codons), 29 min for
Rubisco (C3 vs. C4, 179 sequences, 447 codons), 66 min for
HIV-1 envelope (131 sequences, 806 codons), and 72 min for
HIV-1 RT (476 sequences, 335 codons).

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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