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Objective: Predict the onset of presumed serious infection, defined as a positive blood

culture drawn and new antibiotic course of at least 4 days (PSI∗), among pediatric patients

with Central Venous Lines (CVLs).

Design: Retrospective cohort study.

Setting: Single academic children’s hospital.

Patients: All hospital encounters from January 2013 to December 2018, excluding the

ones without a CVL or with a length-of-stay shorter than 24 h.

Measurements and Main Results: Clinical features including demographics,

laboratory results, vital signs, characteristics of the CVLs and medications used were

extracted retrospectively from electronic medical records. Data were aggregated across

all hospitals within a single pediatric health system and used to train a deep learning

model to predict the occurrence of PSI∗ during the next 48 h of hospitalization. The

proposed model prediction was compared to prediction of PSI∗ by a marker of illness

severity (PELOD-2). The baseline prevalence of line infections was 0.34% over all

segmented 48-h time windows. Events were identified among cases using onset time.

All data from admission till the onset was used for cases and among controls we used all

data from admission till discharge. The benchmarks were aggregated over all 48 h time

windows [N=748,380 associated with 27,137 patient encounters]. The model achieved

an area under the receiver operating characteristic curve of 0.993 (95% CI = [0.990,

0.996]), the enriched positive predictive value (PPV) was 23 times greater than the base

prevalence. Conversely, prediction by PELOD-2 achieved a lower PPV of 1.5% [0.9%,

2.1%] which was 5 times the baseline prevalence.

Conclusion: A deep learning model that employs common clinical features in the

electronic health record can help predict the onset of CLABSI in hospitalized children

with central venous line 48 hours prior to the time of specimen collection.
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INTRODUCTION

Central line-associated bloodstream infections (CLABSIs) are
a major cause of healthcare-associated infections among
hospitalized children and contribute to increased morbidity,
length of hospital stay, and cost (1, 2). The U.S. Centers
for Disease Control and Prevention (CDC) estimates that
approximately 80,000 new CLABSIs occur in the United States
every year, and data show a 12–25% increased risk of mortality
in hospitalized patients who develop a CLABSI (3, 4). Early
identification of the onset of infections such as CLABSI or sepsis
can prevent adverse outcomes, reduce costs, and improve the
quality of care (5, 6).

While specific definitions for entities such as CLABSI and
sepsis exist in pediatrics, they often have inadequate sensitivity
for clinically important infections and may be difficult to
generalize across electronic medical record (EMR) platforms
(7, 8). Presumed serious infection (PSI), which is used in both
adult and pediatric sepsis surveillance systems, is defined as a
blood culture being obtained (regardless of the result) followed
by new antimicrobial agents started within 2 days of the blood
culture (i.e., agents that were not being administered prior to the
blood culture) that are administered for at least 4 consecutive
days or until time of death or transfer to another hospital (9–11).
This PSI definition captures suspicion for infection (as identified
by obtaining a blood culture) along with sufficient antimicrobial
use to distinguish empirical treatment of a suspected infection
from definitive treatment. Successful prediction of PSI, or sepsis
in general, among hospitalized children or the adult population
could expedite recognition and initiation of therapy (5).

Machine learning models have the potential to predict the
onset of infection prior to clinical suspicion, allowing clinicians
to take preventive measures and reduce mortality and morbidity
(12–15). However, one of the main challenges in employing
machine learning models in the clinical domain is that many
events worthy of prediction are uncommon, also known as the
extremely class-imbalanced dataset problem (16). For example,
in the pediatric cardiac intensive care unit (ICU), Alten et
al. found that hospital acquired infection occurred in 2.4% of
CICU encounters at a rate of 3.3/1000 CICU days (17). To
date, studies to predict CLABSI onset have mainly investigated
known clinical risk factors associated with the infection and
developed discriminative models based on non-temporal data
(18, 19). While these approaches may be able to predict if a
CLABSI will occur during an entire hospital visit or not, their
performance likely decreases when considering the next 48–72 h
of a patient’s care. Real-time predictions that estimate the risk
of an adverse event in a defined time window are more useful
clinically, but they are more challenging to develop because the
prevalence of the event in a defined time window is lower than
its prevalence across an entire hospital stay (20, 21). Currently
a CLABSI prediction tool does not exist and instead providers
use either subjective information or derived metrics such as
severity of illness scores. In pediatrics, a commonly used severity
of illness score is the PEdiatric Logistic Organ Dysfunction
(PELOD) score. PELOD has been used to predict death and need
or duration of intensive care unit resources (22).

Most traditional machine learning algorithms assume a
balanced distribution of negative and positive samples in the
data (i.e., a prevalence close to 50%). Deep learning models
have the potential to overcome these limitations as they are
more capable of finding patterns in extremely class-imbalanced
high-dimensional data. However, deep learning models are
commonly thought of as impossible to understand, overly
complex, and not pragmatic. These models’ lack of explainability
may reduce their implementation effectiveness even with good
predictive performance.

In this study, we aimed to develop a pragmatic deep learning
framework that can adequately predict the onset of presumed
bloodstream infection in children with a central line during the
next 48 h of their hospitalization. At each point of prediction,
the model provides insights to its decision-making process by
outputting the effect of the most influential features on the
predicted outcome.

MATERIALS AND METHODS

Study Design
A retrospective cohort study was conducted which included
all hospitalized patients with a central venous line (CVL) at a
single tertiary care pediatric health system. The inclusion criteria
for patients were (1) admission to one of three freestanding
children’s hospitals between January 1st, 2013 and December
31st, 2018, (2) having a documented CVL at some point during
the hospitalization (e.g., present and not yet removed at the
time of admission or placed during the hospitalization), and (3)
having length-of-stay longer than 24 h. As described earlier, our
goal is not to identify causes of presumed bloodstream infection
associated with CVL, but rather predict the infection among
patients with CVL. The predictive model was developed as it
would be applied in clinical practice; therefore, we included
both patients whose line was placed within the local health
system or before admission. If CVL was placed within the
local health system, information about line placement, such as
sterile technique, was included. For patients whose line was
not placed within the local health system, those data were not
available to the model, just as they would not be available in the
EHR when making a prediction in real clinical practice. This
study was conducted according to Emory University protocol
number 19-012.

Outcome Definition
We defined our primary outcome as a presumed serious infection
(PSI) along with a laboratory confirmed bloodstream infection
defined as a positive blood culture (9, 10). We reviewed
this definition through informal interviews with 2 pediatric
infectious disease specialists, 1 pediatric critical care physician,
1 neonatologist, and 1 pediatric hematology/oncology specialist
to validate its appropriateness and clinical utility. From this
point, we referred to PSI with positive blood culture as PSI∗ for
clarity reasons.
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Feature Extraction
The extracted features from the EHR were demographics,
laboratory results, vital signs, prior diagnoses, microbiology
results, medications, respiratory support, CVL information, and
CVL care documentation. We focused on features anticipated
to be routinely recorded in the EHR across centers. The full list
of extracted features and the preprocessing steps are available in
Appendix A.

As initial deep learning techniques are often exploratory, it is
true that many variables would on the surface seem unrelated.
While biopathophysiologic links can indeed be created related
to escalating PEEP (e.g., worsening microvascular/endothelial
injury in the pulmonary vasculature potentially related to
cytokine storm/inflammation as a response to a brewing infection
or pulmonary edema from endovascular injury and leak and fluid
delivery) – the beauty of a deep learning model approach is it
reduces clinician bias that a variable (or set of variables) is or is
not related to the outcome of interest. As the literature shows –
manymodels have been able to identify constellations of variables
that would go otherwise unheeded as heralds to a patient event
(11, 19).

Window-Wise Study Design
The onset of PSI∗ is defined as a positive blood culture time after a
CVL was inserted, succeeded by a new antibiotic administration
for at least four days. Hospitalized patients in the cohort could
have a CVL at the time of admission or received at least one
during hospitalization time. We restricted our analysis to blood
cultures with specimen collection timestamps while the patient
had a CVL during hospitalization. A patientmay become infected
multiple times during a single hospitalization. However, for the
purposes of this analysis, we censored hospitalizations after the
first PSI∗ event for a patient if present.

To predict the onset of PSI∗ in a real-time setting, we used
a window-wise study design (Figure 1). We started monitoring
a patient from admission or first line insertion time, whichever
was earlier. We then aimed to predict whether a patient
would have a PS∗ in the next window of 48 h; this prediction

window was selected to give health providers enough time to
intervene to potentially prevent a PSI∗, for example by removing
high risk CVLs or other interventions. Every 8 h, the model
would incorporate new information obtained and make another
prediction for the subsequent 48 h. The 8 h sliding window was
selected to reflect the cadence of shift changes and rounds,
particularly in the ICUs at our institution. Even if the windows
do not correspond specifically to shift changes and rounds,
we nonetheless felt that more frequent updates would yield
more relevant information for clinicians. All 48 h windows that
included a PSI∗ time were labeled as positive and the rest
were negative.

The patient encounters were split into training (80%) and
testing (20%). The train-test split procedure is used to estimate
the performance of machine learning algorithms when they are
used to make predictions on data not used to train the model.
We followed the commonly used 80-20 split in order to provide
enough examples for the models to learn. Additionally, 10% of
the training set was used as the validation set to optimize the
model’s settings and tune the model’s hyperparameters. After
preprocessing the data and removing collinearity, there were
135 features to feed into the prediction model. The list of
135 features and the details on preprocessing are described in
Appendix A. The PSI∗ prevalence in the window-wise study
was 0.34%, meaning that approximately 1/300 of the 48 h time
windows contained the onset of a PSI∗.

Models
Real-time prediction of PSI∗ is an extremely class-imbalanced
problem (see below). To tackle this challenge, we started with a
Long Short-Term Memory (LSTM) model (23, 24), a recurrent
neural network model capable of dealing with long sequences
of data that has performed well for adult sepsis prediction (25).
To improve the performance of this model on an extremely
class-imbalanced dataset, we hypothesized that:

Hypothesis 1: Penalizing false positives and false negatives
in the optimization function (focal loss) will improve model
performance. In extremely class-imbalanced modeling, the

FIGURE 1 | The window-wise study design. If a patient had a documented CVL that was not documented as removed at the time of admission, the start point of the

analysis would be the admission time. Otherwise, the start point would be the first line insertion time. The prediction window was 48 h with an 8 h sliding window until

the end of the patient’s hospitalization or removal of the last CVL. When the onset of CLABSI occurred within a 48 h prediction window, that window was considered

positive (red), while the rest (blue) were labeled as negative. The prediction was performed at the start of each arrow.
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FIGURE 2 | Inclusion flowchart. The final number of patient visits that we used in training and testing the machine learning models were 27,137.

model is biased towards the majority class which in our case is
not having an onset of PSI∗. In machine learningmodels, a loss
function value is a measure of how far off a model’s prediction
is from the actual outcome value, and the algorithms are
optimized to minimize this value. Focal loss reduces the loss
of well-classified examples, emphasizing the false positives and
negatives (26). We hypothesized that a focal loss function
would improve performance relative to traditional methods
for dealing with imbalanced data such as under-sampling the
majority class.
Hypothesis 2: Incorporating an attention mechanism will
improve model performance. An attention mechanism in deep
learning assigns attention weights to source data at each
time point, allowing the model to focus only on information
relevant to the next prediction (27).

To evaluate these hypotheses, we developed and evaluated the
following machine learning models: (1) a simple Bidirectional
LSTM with binary cross-entropy, (2) a simple Bidirectional
LSTM that was trained with an under-sampled majority class to
make the labels more balanced, (3) a Bidirectional LSTM with
Focal loss, and (4) a Bidirectional LSTM with Focal loss and an
attention mechanism. More details on the proposed model are
presented in Appendix B.

Performance Metrics
For each model, we calculated the Area Under the Receiver
Operating Characteristics Curve (AUROC), sensitivity,
specificity and accuracy.We also calculated metrics that are more
informative in extremely class-imbalanced data classification
models such as Area Under Precision-Recall Curve (AUPRC),
positive predictive value (PPV), negative predictive value (NPV)

and F-1 score. The 95% confidence interval estimation for each
metric was calculated using bootstrapping.

Model Explainability
Decision making process of a deep learning model is often
assumed to be overly complex. However, there are several
ways to illuminate the decisions a model makes. It is also
achievable to understand which features are the most salient in
a model’s prediction.

We estimated feature importance for each prediction by
employing Shaply Additive exPlanations (SHAP) values, a
method for explaining predictive models based on game theory
(28). SHAP values presents the contribution of each feature to
the model’s decision-making process and their effect size on
the predicted outcome. These SHAP values can be summarized
across the cohort or calculated for an individual model prediction
to inform clinicians of the features influencing a specific
prediction, providing model transparency and observability to
the end user (29).

Clinical Benchmark
To make the model relevant, we compared performance against
an existing model used for prediction of illness in hospitalized
children. In the absence of a discrete prediction model used
for prediction of line or bloodstream infections, we used the
PEdiatric Logistic Organ Dysfunction 2 (PELOD-2) score. The
PELOD-2 score has been validated for prediction of morbidity
and mortality in hospitalized children. We calculated PELOD-2
at every prediction point, then considered different cut-off values
to identify the PSI∗ positive windows (28). Applying the same
threshold values on the testing set, we predicted the PSI∗ positive
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windows by the use of the corresponding PELOD-2 values for
each prediction window.

Pediatric Risk of Mortality III (PRISM-III) has also been
validated for mortality prediction in hospitalized children (30).
Calculating PRISM-III score enables the physicians to identify
which patients require more urgent care and interventions. We
investigated the differences in PRISM-III components across
PSI∗ and non-PSI∗ time windows.

This manuscript was prepared using the guidelines provided
by Leisman et al. (31) for reporting of prediction models.

RESULTS

In total, 97,424 patient encounters associated with 15,704 patients
were extracted from the EHR. Of these, 70,287 encounters
were excluded due to length-of-stay less than 24 h (most likely
representing appointments for patients with existing CVLs). A
total of 2,749 neonates (age less than 28 days), 4,076 infants (age
between 28 days and one year), 5,580 toddlers and preschoolers
(age between one and five years), 6,500 children (age between
five and 12 years), and 8,232 adolescents (older than 12
years) met eligibility criteria. Figure 2 presents the associated
CONSORT diagram.

Table 1 presents the cohort characteristics. There was a
statistically significant difference between the median age,
weight, and height with PSI∗ patients younger and smaller.
Length of stay was significantly longer in patients with
PSI∗African American race and Medicaid insurance were
significantly more common in patients with PSI∗. There was no
statistically significant difference in gender between PSI∗ and
non- PSI∗ groups. Moreover, statistical tests were performed
to investigate if there were statistically significant differences
between the components of PELOD-2 (Appendix C) and
PRISM-III (Appendix D) between PSI∗ and non-PSI∗ groups
across time windows.

The results of the four predictive models are presented in
Table 2. Our proposed model, the Bidirectional LSTMwith Focal
loss and attention mechanism, outperformed the rest of the
models with AUROC of 99.3% [99.0%, 99.6%] and AUPRC of
13.9% [10.6%, 18.0%]. The ROC and Precision-Recall curves of
all trainedmodels are presented in Figure 3. Fixing the sensitivity
of all models to 85% to select a threshold, our proposed model’s
specificity was 99.4% [99.2%, 99.5%], F-1 was 9.9% [7.1%, 13.8%]
and PPV was 7.7% [5.7%, 10.3%] which is 23 times the baseline
PSI∗ prevalence (0.34%). All performance metrics except for
sensitivity and NPV were statistically different from the other
models’ metrics (p < 0.001). Moreover, the model generated
0.049 [0.044, 0.054] false alarms per patient per day. In other
words, there should be 34 positive PSI∗ per 10,000 48 h time
windows (prevalence of 0.34%). The results of the proposed
model indicated that per 10,000 predictions which lead to X
number of positive predictions, 7.7% of X will be the number of
PSI∗ windows that were correctly predicted as positive. Besides,
99.9% of non-PSI∗ windows were correctly predicted as negative
ones. Moreover, 85% of true PSI∗ were predicted correctly

while 15% of the true PSI∗ time windows were predicted as
negative ones.

Explainability
For the final model, we calculated SHAP values of each feature
at every prediction point. Figure 4 presents the most important
features for a specific timestamp in which the model predicted
positive PSI∗. For this patient, temperature had the highest effect
size on the predicted outcome, followed by rinse agent, which was
used to remove germs from the mouth, and platelet count.

Comparison to PELOD-2
The performance of PELOD-2 in window-wise prediction of
PSI∗ is presented in Table 3. The cut-off points that yield higher
performance metrics are listed. On the testing set, the best PPV
was achieved at a cut-off point of PELOD-2 = 8 (1.5% [0.9%,
2.1%]) which was almost 5 times the baseline prevalence. At this
cut-off value, the sensitivity was 3.2% [1.8%, 4.5%], specificity
was 99.2% [99.2%, 99.3%], F-1 was 2% [1.2%, 2.9%]. Comparing
to the proposed model, there were lower values achieved for
PPV (6.2% drop), sensitivity (69.7% drop), F-1 (7.9% drop)
but specificity of PELOD-2 model was almost similar to the
proposed model.

DISCUSSION

Many important clinical events where accurate predictions could
improve outcomes such as sepsis, deterioration, or cardiac arrest
are rare, especially in pediatrics (32–34). The prevalence of these
conditions would be even lower if estimated over 48 h time
intervals during hospitalization instead of only counting the final
outcome over an entire hospital stay. The techniques described
in this study would likely translate to prediction of other clinical
events with extreme class imbalance.

We developed a novel algorithm to predict a presumed
serious infection in a hospitalized pediatric patient within 2
hospital days. Besides having a decent predictive performance,
our proposed model employed SHAP values which explained the
effect of the salient features on the risk of a PSI∗ event. Moreover,
the SHAP values present the most influential features specific to
a patient in a given time; therefore, these values can dynamically
change through time as the condition of a patient changes. SHAP
values give insight to the model’s decision-making process by
providing transparency and observability to the end-user of the
features most important to model prediction. Insight into the
model’s focus for a specific prediction allows the end user to
calibrate trust in the prediction.

Predictive models intended for use in clinical environments
must recognize the complex adaptive systems in which they
will be implemented (29, 35). The sensitivity and PPV of the
model can inform the appropriate time in workflow where the
model would be most useful. Our model demonstrates strong
enrichment (i.e., the PPV is 23 times higher than the baseline
prevalence of PSI∗) while maintaining good sensitivity, but the
PPV is nonetheless quite low – only 1 of every 13 predictions
developed a PSI∗ in the subsequent 48 h. This apparent low PPV
is in large part due to the window-wise design which lowers the
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TABLE 1 | Cohort characteristics.

With PSI* Without PSI* p-value

Age (years)

(Median [25th, 75th])

3.6a [0.2, 12.6] 6.1 [1, 13.4] <0.001

Weight (Kg)

(Median [25th, 75th])

14.3a [3.8, 40.9] 20 [8.5, 45.3] <0.001

Height (cm)

(Median [25th, 75th])

93a [52, 149] 112 [69, 152] <0.001

Length of Stay (LOS) in Days

(Median [25th, 75th])

36a [23, 69] 5 [3, 13] <0.001

Gender

Male (%) 44.8 45.5 0.737

Race

Asian (%)

Caucasian (%)

African American (%)

American Indian or Alaska Native (%)

Native Hawaiian or Pacific Islander (%)

Other (%)

4.1

46.7a

43.8a

0.4

0.2

4.7

3.9

54.3

35.9

0.2

0.2

5.5

0.796

< 0.001

< 0.001

0.292

0.992

0.465

Insurance status

Commercial (%)

Public - Medicaid (%)

Public - non-medicaid (%)

Self-pay (%)

34.5a

62.1a

2.9

0.39

39.4

56.6

3

0.9

0.025

0.013

0.933

0.224

ICU admission (%) 63.9a 44.7 < 0.001

Placed on extracorporeal membrane oxygenation

(%)

8.7a 2.1 < 0.001

Mortality (%) 0.20 0.06 0.19

a Statistically significant difference between PSI* and non-PSI* groups.

TABLE 2 | Performance metrics of the deep learning models in predicting PSI* in the next 48 h of hospitalization.

Metrics Bidirectional LSTM Bidirectional LSTM +

Under sampling majority

class

Bidirectional LSTM +

Focal loss

Bidirectional LSTM +

Focal loss +

Attention

Train Test Train Test Train Test Train Test

AUROC (%) 88.4

[86.7, 89.9]

89.3

[86.6, 91.5]

88.3

[86.8, 89.6]

85.7

[82.5, 88.2]

92.8

[90.8, 94.8]

91.1

[86.8, 94.9]

99.7

[99.6, 99.7]

99.3

[99.0, 99.6]

Sensitivity (%) 85.1

[85.0, 85.2]

85.3

[78.3, 91.6]

85.1

[85.0, 85.2]

81.1

[72.7, 88.4]

85.1

[85.0, 85.2]

83.3

[75.3, 90.2]

85.1

[85.0, 85.2]

72.9

[62.8, 82.1]

Specificity (%) 84.3

[83.6, 85.2]

84.2

[83.2, 85.2]

84.0

[83.3, 84.7]

83.2

[82.4, 83.9]

93.6

[92.5, 94.7]

93.2

[92.0, 94.3]

99.4

[99.2, 99.6]

99.4

[99.2, 99.5]

Positive Predictive

Value (%)

0.4

[0.3, 0.4]

0.4

[0.3, 0.5]

0.4

[0.3, 0.4]

0.3

[0.3, 0.4]

1.0

[0.8, 1.2]

0.9

[0.7, 1.1]

9.4

[6.9, 12.5]

7.7

[5.7, 10.3]

Negative

Predictive Value

(%)

99.9

[99.9, 99.9]

99.9

[99.9, 99.9]

99.9

[99.9, 99.9]

99.9

[99.9, 99.9]

99.9

[99.9, 99.9]

99.9

[99.9, 99.9]

99.9

[99.9, 99.9]

99.9

[99.9, 99.9]

Accuracy (%) 84.3

[83.6, 85.2]

84.2

[83.2, 85.2]

84.0

[83.3, 84.7]

83.2

[82.4, 83.9]

93.5

[92.5, 94.7]

93.1

[92.0, 94.3]

99.4

[99.2, 99.6]

99.3

[99.2, 99.5]

F-1 Score (%) 0.8

[0.7, 0.9]

0.8

[0.6, 0.9]

0.8

[0.7, 0.9]

0.7

[0.6, 0.8]

3.3

[2.3, 4.2]

2.6

[1.4, 3.9]

58.0

[46.0, 70.8]

16.1

[10.4, 22.5]

AUPRC (%) 0.4

[0.3, 0.4]

0.4

[0.3, 0.5]

0.3

[0.3, 0.4]

0.3

[0.2, 0.3]

3.9

[3.1, 4.7]

3.2

[1.9, 5.3]

80.7

[76.3, 84.6]

41.2

[30.7, 50.2]

The two numbers in the brackets present the estimated 95% confidence interval using bootstrap sampling. LSTM, long short-term memory; AUROC, area under receiver

operating characteristic; AUPRC, area under precision-recall curve.
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FIGURE 3 | (Top) Receiver Operating Characteristics curves for all four models tested in the window-wise study. (Bottom) Precision-Recall curve for all the models

tested in the window-wise study. In both plots, our proposed model which is the Bidirectional LSTM with Focal loss and attention mechanism achieved the highest

area under curve.

apparent prevalence of PSI∗ relative to using an entire encounter
as the unit of analysis. Thus, we anticipate this model would be
more likely to be used as a non-interruptive monitoring system
(e.g., displayed on patient lists) that can segregate out low-risk
patients (NPV 0.999) while informing clinicians’ estimate of the
risk of PSI∗ in order to make decisions about line maintenance
and interventions. Similarly, the model could direct attention
for teams reviewing vascular access across a unit or a hospital
to improve the efficiency of PSI∗ prevention efforts. We further
investigated the performance of the model in predicting PSI
which means relaxing the restriction on the laboratory result of
the culture drawn. The results are presented in Appendix E.

In our study cohort, PSI∗ was more common in African
American patients and those with Medicaid insurance. While
this analysis was not designed to describe disparities or their
sources, this finding was nonetheless consistent with health

disparities seen in adult sepsis patients (36). Model performance
was not significantly different by patient race or insurance status
(Appendix F). We also performed sensitivity analysis based on
patient age and included the results in Appendix G.

Our study has important strengths and limitations. We also
had several limitations. First, our data was associated with a
single pediatric health system and may reflect the particular
structure and patient mix of this setting. While we extracted
EHR features expected to be available across systems, the
external application of our model on other health systems
may be biased. Nonetheless, limiting to structured EHR data
likely reduces the technical barriers to implementation in
a real-time system. Second, our model was developed and
evaluated based on a retrospective cohort. While we attempted
to simulate prospective implementation using a window-
wise design, predictive performance may deteriorate when
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FIGURE 4 | Feature importance plot based on SHAP values for an example prediction in which the model predicted the patient would develop a CLABSI within the

next 48 h.

TABLE 3 | Performance of PELOD-2 score in predicting PSI* in the next 48 h of hospitalization.

Metrics PELOD-2 Threshold = 4 PELOD-2 Threshold = 6 PELOD-2 Threshold = 8 PELOD-2 Threshold = 10

Train Test Train Test Train Test Train Test

Sensitivity (%) 46.0

[44.0, 47.8]

52.0

[48.4, 55.9]

6.6

[5.6, 7.6]

7.4

[5.5, 9.5]

2.0

[1.5, 2.6]

3.2

[1.8, 4.5]

0.7

[0.4, 1.0]

0.6

[0.0, 1.2]

Specificity (%) 83.2

[83.1, 83.2]

82.7

[82.5, 82.8]

97.2

[97.2, 97.3]

97.1

[97.0, 97.2]

99.2

[99.2, 99.2]

99.2

[99.2, 99.3]

99.8

[99.8, 99.8]

99.9

[99.8, 99.9]

Positive Predictive

Value (%)

0.9

[0.9, 1.0]

1.1

[1.0, 1.2]

0.8

[0.7, 0.9]

0.9

[0.7, 1.2]

0.8

[0.6, 1.1]

1.5

[0.9, 2.1]

1.2

[0.6, 1.8]

1.5

[0.0, 3.1]

Negative Predictive

Value (%)

99.8

[99.8, 99.8]

99.8

[99.8, 99.8]

99.7

[99.7, 99.7]

99.6

[99.6, 99.7]

99.7

[99.7, 99.7]

99.6

[99.6, 99.7]

99.7

[99.7, 99.7]

99.6

[99.6, 99.7]

Accuracy (%) 83.0

[82.9, 83.1]

82.5

[82.4, 82.7]

96.9

[96.9, 97.0]

96.8

[96.7, 96.9]

98.9

[98.9, 98.9]

98.9

[98.8, 98.9]

99.5

[99.5, 99.5]

99.5

[99.5, 99.5]

F-1 Score (%) 1.8

[1.7, 1.9]

2.1

[1.9, 2.4]

1.4

[1.2, 1.7]

1.7

[1.2, 2.1]

1.2

[0.9, 1.5]

2.0

[1.2, 2.9]

0.8

[0.5, 1.3]

0.9

[0.0, 1.8]

Different thresholds are selected for the PELOD-2 values. If a score exceeded the threshold, the predicted outcome for that patient would be developing PSI* during the next 48 h of

hospitalization. The two numbers in the brackets present the estimated 95% confidence interval using bootstrap sampling.

implemented in real time. Third, we have not evaluated how
these predictions would supplement clinical decision-making
when clinicians determine to remove a CVL or change their
interventions. Thus, it is possible that implementation at this or
even a higher level of predictive performance may not change
outcomes. Fourth, we included patients with CVLs placed prior
to admission. While inclusion of CVLs placed prior to admission
may lower predictive performance since the model has fewer

data available, we nonetheless felt it important to include as this
reflects the decision-making cliniciansmustmake in reality about
all CVLs whether placed locally or not. Finally, we benchmarked
our comparison vs. a standard of illness score. While not
intended for the prediction of infections, PELOD, along with
other scores such as the Pediatric Risk of Mortality (PRISM)
and Pediatric Index of Mortality (PIM) scores are currently the
only standard that exist to identify the risks of morbidity and
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mortality in hospitalized children. Thus, it would not be expected
for these scores to have strong predictive performance for PSI∗

associated with CVL. Nonetheless, we demonstrate our model’s
additional value when applied to this use case compared to
existing severity scores.

We only included structured data in our analyses while
unstructured data are known to have benefits when used in
predictive models. Including text data or waveform data in
subsequent iterations may improve our prediction outcomes.

CONCLUSIONS

We developed a novel, explainable deep learning framework
that can predict if PSI∗ will occur for a patient with CVL
during the next 48 h of hospitalization using routinely recorded
features in EHR. This model provides insights to its decision
making by providing the most influential features and their
effect sizes on the predicted probability of PSI∗ during the
next 48 h of hospitalization. This framework is capable of being
implemented in a real-time setting and serve as a clinical decision
support system.
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