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Abstract

Intra-tumour heterogeneity is a leading cause of treatment failure and disease progression

in cancer. While genetic mutations have long been accepted as a primary mechanism of

generating this heterogeneity, the role of phenotypic plasticity is becoming increasingly

apparent as a driver of intra-tumour heterogeneity. Consequently, understanding the role of

this plasticity in treatment resistance and failure is a key component of improving cancer

therapy. We develop a mathematical model of stochastic phenotype switching that tracks

the evolution of drug-sensitive and drug-tolerant subpopulations to clarify the role of pheno-

type switching on population growth rates and tumour persistence. By including cytotoxic

therapy in the model, we show that, depending on the strategy of the drug-tolerant subpopu-

lation, stochastic phenotype switching can lead to either transient or permanent drug resis-

tance. We study the role of phenotypic heterogeneity in a drug-resistant, genetically

homogeneous population of non-small cell lung cancer cells to derive a rational treatment

schedule that drives population extinction and avoids competitive release of the drug-toler-

ant sub-population. This model-informed therapeutic schedule results in increased treat-

ment efficacy when compared against periodic therapy, and, most importantly, sustained

tumour decay without the development of resistance.

Author summary

We propose a simple mathematical model to understand the role of phenotypic plasticity

and non-genetic inheritance in driving therapy resistance in cancer. We identify the role

of non-genetic inheritance on treatment resistance and use a variety of analytical and

numerical techniques to understand the impact of phenotypic plasticity on population

fitness and dynamics. We further use our model to study the role of phenotypic heteroge-

neity in therapeutic resistance in a genetically identical non-small cell lung cancer popula-

tion. Finally, we combine analytical perspectives and techniques from the theory of
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structured populations, renewal equations, and infinite dimensional dynamical systems to

derive a model-informed therapeutic strategy that both drives tumour eradication and

avoids competitive release of a drug-tolerant subpopulation. These results exemplify the

potential of using mathematical techniques to identify therapeutic strategies to guide the

evolution of a heterogeneous tumour.

Introduction

Intra-tumour heterogeneity is a leading driver of cancer treatment failure [1–3]. The genetic

instability and high proliferative capacity typical of cancer cells induces a genetically heteroge-

nous population in which resistance-conferring mutations can arise and expand during the

selective pressure of therapy. This evolutionary process leads to the eventual failure of treat-

ment and the outgrowth of a refractory tumour [3–9]. However, it is increasingly understood

that genetic aberrations are not the sole mechanism through which drug-resistant phenotypes

can arise. Rather, adaptive phenotypic changes can arise without an associated genetic muta-

tion. Such phenotypic heterogeneity has been extensively studied as a possible mechanism of

treatment resistance [7, 8, 10–14]. For example, chemotherapy has been shown to induce a

transient drug-tolerant phenotype in breast cancer cell lines such that re-sensitisation occurs

following cessation of therapy [15, 16], an example of phenotypic plasticity [17]. Whilst this

heterogeneity arises in response to environmental change, non-genetic variation in pheno-

types can also arise in unchanged environments, indicating the presence of stochastic pheno-

type switching, termed bet-hedging [13, 14]. Bet-hedging induces phenotypic diversity that

can help protect a population from extinction following catastrophic environmental changes

such as cytotoxic therapy [18–21].

In recent years, evolutionarily-informed cancer therapy regimens have arisen as a potential

strategy to delay the emergence of drug resistance. Adaptive therapies exploit competition

between clonal populations by incorporating periods without therapy wherein resistant sub-

clones, which are often assumed to have a fitness cost in the absence of treatment, can be out-

competed by drug-sensitive clones [5, 22–24]. The treatment is applied and removed based on

one or more biomarkers of disease, typically proxy measurements for tumour burden. The the-

ory underlying cancer adaptive therapy is primarily based on competition dynamics between

tumour subclones that are not plastic, for example clones arising from genetic mutations. It is

presently unclear whether adaptive therapies will prove as effective in mitigating resistance

driven by non-genetic mechanisms that change on a faster timescale than mutational rates, or

whether better understanding of such non-genetic drivers of resistance could help in the

design of more effective evolutionary therapies. Here, we address this question and study the

impact of bet-hedging strategies on the development of treatment resistance by developing a

simple and qualitative mathematical model.

Mathematical models have been used extensively to understand the development of resis-

tance to anti-cancer therapies. A number of authors have considered how phenotypic variation

arises [25, 26] as well as the effects of phenotypic heterogeneity (see [11] and references

therein). Recent modelling efforts used gene-regulatory networks or branching-type formula-

tions to investigate the role of phenotypic switching on treatment resistance [27, 28], while

other authors have used Markov processes to illuminate the role of stochastic phenotypic

switching in treatment resistance [29–31]. In addition to these approaches, many models rely,

in large part, on the use of structured equations which bridge cellular dynamics and population

level heterogeneity by explicitly considering the cellular phenotype. Often formulated as partial
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differential equations (PDEs) structured in phenotypic space, these models conceptualise con-

tinuously varying cellular phenotypes [32–35]. These PDE models often include non-local

terms to incorporate interactions between cells of different phenotypes, and solutions of these

models typically describe the density of cells in phenotype space. Consequently, these struc-

tured mathematical models are well-suited to study phenotypic evolution in dynamic environ-

ments. Here, we develop a simple structured PDE model to study the role of phenotype

plasticity in the evolution treatment resistance.

We are particularly interested in the role of stochastic phenotype switching on the develop-

ment of resistance to anti-cancer therapies. It has previously been shown that stochastic

switching between quiescence and proliferation in mammalian cells is biased by the inheri-

tance of mitogen and p53 signalling factors at cell division [36]. The concentration of these

factors was shown to be dependent on the life history of the parental cell and are thus represen-

tative of non-genetic ‘memory’ in phenotypic switching [36]. Theoretical studies of chemical

reaction networks have demonstrated that simple combinations of catalytic and autocatalytic

reactions can produce such bistable switches, with different network structures inducing dif-

ferent convergence and stability behaviour [37, 38]. Coupled with the inheritance and subse-

quent decay of intracellular signalling factors, these bistable switches can govern a diverse

range of memory-driven switching regimes. Here, we investigate the role of phenotypic mem-

ory in intracellular inheritance in driving the emergence of a resistant phenotype during ther-

apy. To this end, we use the cellular age, rather than phenotypic state, to structure our model.

In this framework, the cellular age acts as a cipher for a number of epigenetic factors that vary

throughout the cell’s life, such as protein accumulation/dilution, cell size, adaptation to envi-

ronmental stresses, etc. In the model, we use the age of the parent cell to determine the proba-

bility that daughter cells will inherit the parental phenotype: cells that reproduce soon after

their birth are more likely to bequeath their phenotype to their offspring. This mapping from

cellular age to switching probability generalises the role of the bistable switch mechanism that

governs phenotypic differentiation, as well any age-driven changes to its behaviour.

The canonical example of the stochastic nature of phenotypic inheritance is the existence of

persister cells resulting from stochastic phenotypic switches in Escherichia coli populations

[14, 20, 39, 40]. Comparatively rare in a population in stable exponential growth, the propor-

tion of persister cells increases as the population of E.coli cells competes for limited resources

[20, 39]. Accordingly, we use our model to study the role of growth phase on population com-

position. Specifically, we demonstrate that populations in exponential and stationary growth

stages respond differently to environmental changes. For example, we show that changes in

the relative fitness between two phenotypically distinct populations has a drastically different

impact on a population in exponential growth compared against the same change during the

stationary growth phase. Further, we study the role of phenotypic cooperation on population

growth in nutrient-rich environments, and show that this cooperation can hasten population

growth when compared against purely Malthusian growth.

We also study the establishment of a resistant population during cytotoxic treatment.

Through numerical simulation, we demonstrate that different phenotype switching strategies

result in either transient resistance [15, 16], or permanent resistance due to the establishment

of a dominant, resistant population [41, 42]. We then investigate alternative treatment sched-

uling options to delay or avoid the establishment of resistance by preserving a drug-sensitive

population. This scheduling, inspired by adaptive therapy [5, 22], is then shown to outperform

periodic or maximally tolerable dosing strategies in a result that is robust to parameter

changes. Applying our model to in vitro growth data from genetically homogeneous non-small

cell lung cancer (NSCLC) populations, we study the effect of phenotypic switching in resis-

tance to anti-cancer drugs. We use two different measurements of population fitness under
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treatment to derive a model-informed therapeutic schedule that balances the desire to drive

tumour extinction with the need to avoid competitive release of a drug-tolerant population

and the resulting therapy resistance. We show that this treatment schedule leads to long term

tumour decay and significantly outperforms metronomic dosing. In the interest of clarity, we

present the full analytic results in S1 Text.

Results

Phenotypic switching model

Our primary interest is to understand and quantify resistance during chemotherapy. For this,

consistent with previous experimental [15, 16, 39, 43] and theoretical [7, 13, 21, 22, 42, 44]

studies of bet-hedging, we constructed a mathematical model of phenotypic switching to track

the density of cells with a drug-sensitive (A(t, a)) or drug-tolerant (B(t, a)) phenotype at time t
and age a. The object of clinical interest at time t is unlikely to be the density of cells with a

given age, but rather total number of cells of each phenotype, given by

�AðtÞ ¼
Z 1

0

Aðt; aÞda and �BðtÞ ¼
Z 1

0

Bðt; aÞda: ð1Þ

In what follows, the total number of cells is denoted by NðtÞ ¼ �AðtÞ þ �BðtÞ.
We assume that cell phenotypes are fixed at birth [13] and reproduce at rates

RAð�AðtÞ; �BðtÞÞ and RBð�AðtÞ; �BðtÞÞ, respectively. Briefly, we consider multiple forms of

RAð�AðtÞ; �BðtÞÞ and RBð�AðtÞ; �BðtÞÞ corresponding to different biological assumptions.

When considering populations with (effectively) unlimited resources, such as those that are

continually replated during in vitro experiments, we use a Malthusian growth model with

RAð�AðtÞ; �BðtÞÞ ¼ rA and RBð�AðtÞ; �BðtÞÞ ¼ rB. We also consider the resource limited case, such

as in vitro experiments that approach total confluence, and use a logistic growth models for

RAð�AðtÞ; �BðtÞÞ and RBð�AðtÞ; �BðtÞÞ. Finally, we incorporate the effects of phenotypic coopera-

tion, whereby a larger proportion of cells of a certain phenotype can lead to increased pheno-

typic expansion through an Allee effect or frequency dependent fitness changes through a

function fnð�AðtÞ; �BðtÞÞ [2, 45–48]. The function fnð�AðtÞ; �BðtÞÞmodels the increase in relative

fitness of drug-tolerant cells as they become more common and determining a precise formu-

lation for fnð�AðtÞ; �BðtÞÞ is difficult [23]. We use a Hill function formulation of fnð�AðtÞ; �BðtÞÞ
with Hill coefficient n that modulates the type of Allee effect. We give the functional forms of

RA and RB in each case in section Growth dynamics in S1 Text.

Finally, we assume that drug-sensitive and drug-tolerant cells have phenotype-specific

death rates dA and dB. Under these assumptions, A(t, a) and B(t, a) satisfy the age structured

PDE,

@tAðt; aÞ þ @aAðt; aÞ ¼ � ½dA þ RAð�AðtÞ; �BðtÞÞ�Aðt; aÞ

@tBðt; aÞ þ @aBðt; aÞ ¼ � ½dB þ RBð�AðtÞ; �BðtÞÞ�Bðt; aÞ

)

ð2Þ

In this way, we studied the cellular ageing process over (linear) time (LHS Eq (2)), with cel-

lular loss at age a due to either death or reproduction (RHS Eq (2)). As dividing cells necessar-

ily have age a> 0, cellular reproduction results in the the removal of the mother cell, which

accounts for the negative sign on the RHS of (2). These reproducing cells produce two daugh-

ter cells with age a = 0 that re-enter the model through the boundary conditions for A(t, 0) and

B(t, 0). Accordingly, we model cellular reproduction through the non-local boundary condi-

tions given in (3). These boundary conditions account for the production of daughter cells
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with age a = 0 from all dividing mother cells with age a> 0 through the integration over the

age variable a.

The structure variable a in (2) corresponds to chronological cellular age which we use as a

cipher for a number of epigenetic factors. It is possible to include specific epigenetic factors by

including a non-constant ageing velocity as in other structured models of physiological pro-

cesses [49, 50]. However, it is difficult to determine how these epigenetic factors accumulate

throughout a cell’s lifespan and during treatment. Consequently, including a non-constant

ageing velocity would severely complicate the formulation, parametrization, and analysis of

(2) and would limit the utility of our simple model, so we only consider chronological age

here. While the distinction between disappearance of mother cells and the appearance of

daughter cells is natural in age-structured populations such as (2) [50, 51], it results in a strictly

negative RHS of (2). Since general ordinary differential equation (ODE) models consider a

homogeneous population of cells without accounting for cellular age, there is no distinction

made between the division (and subsequent removal) of a mother cell and the appearance of

daughter cells. Accordingly, ODE models only include the net population gain due to repro-

duction, i.e. each mother cell producing two daughter cells, which typically results in a non-

negative term and differs from the distinction made between division of a mother cell and pro-

duction of daughter cells in the age structured model (2). This fundamental difference between

ODE and structured PDE models results from the inclusion of biological information, such as

cellular age, and allows for explicit population heterogeneity in structured PDE models which

is generally not possible in the ODE framework.

We assumed that the probability of changing phenotypes depended on the age of the parent

cell (i.e., older mother cells are more likely to have daughter cells that switch phenotypes [52,

53], where we recall that we are using chronological age as a surrogate for the degradation of

cellular signalling pathways [36, 54–56]). The probability that a cell of age a and phenotype i
will create a cell of phenotype j during reproduction is given by βij(a) which leads to the follow-

ing boundary condition for Eq (2)

Aðt; 0Þ ¼ 2

Z 1

0

½RAð�AðtÞ; �BðtÞÞbAAðaÞAðt; aÞ þ RBð�AðtÞ; �BðtÞÞbBAðaÞBðt; aÞ�da

Bðt; 0Þ ¼ 2

Z 1

0

½RAð�AðtÞ; �BðtÞÞbABðaÞAðt; aÞ þ RBð�AðtÞ; �BðtÞÞbBBðaÞBðt; aÞ�da:

9
>>>=

>>>;

ð3Þ

The probability of a cell with phenotype A and age a producing two daughter cells with the

same phenotype is assumed to be

bAAðaÞ ¼ P�AA þ ðP
max
AA � P

�
AAÞ exp ð� sAaÞ;

while the probability of a cell of phenotype B with age a producing two cells of phenotype B is

assumed to be given by

bBBðaÞ ¼ P�BB þ ðP
max
BB � P

�
BBÞ exp ð� sBaÞ:

In both cases, Pmaxii and P�ii are the maximal and minimal probabilities that a cell with pheno-

type i produces a cell with the same phenotype, respectively, but are specific to each phenotype.

The parameter σi represents the decay rate of intracellular signalling factors and modulates

how ageing impacts the probability of daughter cells retaining the mother cells phenotype. We

enforce σi> 0. See Fig A in S1 Text for representative forms and a more in-depth discussion of
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βAA and βBB. Nascent cells were restricted to either phenotype A or B, i.e.

bABðaÞ ¼ 1 � bAAðaÞ and bBAðaÞ ¼ 1 � bBBðaÞ:

We note that the sum

Aðt; 0Þ þ Bðt; 0Þ ¼ 2

Z 1

0

½RAð�AðtÞ; �BðtÞÞAðt; aÞ þ RBð�AðtÞ; �BðtÞÞBðt; aÞ�da

is the total number of cells being born at time t. We give a cartoon schematic of the mathemat-

ical model (2) in Fig 1.

We defined a phenotypic switching strategy as a pair ðP�BB; P
max
BB Þ representing the minimal

and maximal probability that a daughter cell retains the drug-tolerant phenotype of the parent

cell. In what follows, we considered two contrasting and illustrative switching strategies: 1) the

switching strategy where resistant cells had a high probability of retaining their phenotype

if they reproduced early in life (where this probability decreased to 0 as cells age) so

[ðP�BB; P
max
BB Þ ¼ ð0; 0:9Þ], and 2) the staying strategy, where resistant cells were assumed to be

unlikely to change phenotype regardless of reproductive age (i.e. [ðP�BB; P
max
BB Þ ¼ ð0:95; 1Þ]).

These strategies, along with a symmetric strategy where ðP�BB; P
max
BB Þ ¼ ðP

�
AA; P

max
AA Þ, are illustrated

Fig 1. Schematic of the age structured PDE model (2). The life progression of a cohort of phenotype i cells with

chronological time and age on the x and y axis, respectively. These cells are born with age a = 0 and progress through

time-age space along the solid lines. The solid lines representing life progression are the characteristic curves of (2).

Cells leave the cohort due to death, which occurs at a constant, but phenotype specific, rate di, or when reproducing at

a phenotype specific rate Ri. In the figure, a parental cell with age a� leaves the cohort and reproduces to produce two

daughter cells with age a = 0. These daughter cells either inherit phenotype i with probability βii(a�) or change

phenotype with probability βij(a�). In this model formulation, the birth of two daughter cells is modelled as the

boundary condition in (3) and corresponds to the appearance of two new cells with age a = 0.

https://doi.org/10.1371/journal.pcbi.1009348.g001
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in the top row of Fig 2. In all cases, we fixed the probability of a drug sensitive cell switching to

the drug-tolerant phenotype as ðP�AA; P
max
AA Þ ¼ ð0:9; 0:95Þ.

Finally, we set

Að0; aÞ ¼ gAðaÞ ⩾ 0 and Bð0; aÞ ¼ gBðaÞ ⩾ 0; with �Að0Þ <1 and �Bð0Þ <1;

to be a biologically-relevant initial condition for the age distribution of cells. We discuss the

technical conditions and give expressions for gA(a) and gB(a) in section Initial conditions of the
ODE model in S1 Text.

Generic model of chemotherapy. We used a single compartment pharmacokinetic

model to include the effects of generic cytotoxic chemotherapy in our mathematical model.

We denote the concentration of the chemotherapeutic at time t by C(t). We assumed that the

chemotherapeutic was administered intraveneously and has a half life of t1/2. This half life

determines the linear clearance rate kelim = log(2)/t1/2, so the dynamics of C(t) are given by

d
dt
CðtÞ ¼ IðtÞ � kelimCðtÞ ð4Þ

Fig 2. Switching strategies and the Malthusian parameter λP as a function of the intrinsic growth rates of

sensitive and tolerant cells. The three switching strategies for the drug-tolerant population are the stay
strategy ðP�BB;P

max
BB Þ ¼ ð0:95; 1Þ, the switching strategy ðP�BB; P

max
BB Þ ¼ ð0; 0:9Þ, and the symmetric strategy

ðP�BB; PmaxBB Þ ¼ ð0:9; 0:95Þ. In all cases, we fixed ðP�AA; PmaxAA Þ ¼ ð0:9; 0:95Þ and σA = σB = 1 × 10−2. The probabilities

βAA(a) and βBB(a) for each strategy are shown in the top row. We calculated the Malthusian parameter λP as detailed in

the sectionNonlinear eigenproblem for the Malthusian parameter in S1 Text and plot the intrinsic growth rate of the

mixed population as a function of the intrinsic growth rates of the constituent populations in the second row. The

growth rate of the population is increasing along the main diagonal in all cases and the isoclines plot curves of equal

population level fitness. In the stay strategy, the isoclines are shorter in λB than in λA which indicates that λP is more

sensitive to changes in fitness of the tolerant population, λB. Conversely, in the switch strategy, the isoclines indicate

that λP is more sensitive to λA. Finally, the Malthusian parameter is symmetric along the main diagonal in the

symmetric strategy which indicates that fitness of the tolerant or sensitive phenotype equally impacts mixed population

fitness.

https://doi.org/10.1371/journal.pcbi.1009348.g002
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where I(t) models the I.V. administration of the cytotoxic drug during an injection time of

Tadmin administered at times ftig
n
i¼1

and is given by

IðtÞ ¼

( Dose
Vol�Tadmin

if t 2 ðti; ti þ TadminÞ

0 otherwise:

We model the effect of chemotherapy through the increase in the death rate of drug-sensi-

tive cells through

dAðtÞ ¼ dA þ dmaxA � dA
� � CðtÞ

CðtÞ þ C1=2

;

where the half effect drug concentration is given by C1/2 and the maximal death rate of drug-

sensitive cells is dmaxA . We note that it is the ratio of the drug concentration C(t) and the half

effect C1/2 that completely determine the pharmacodynamics of the therapy in question in our

model. While using this simple pharmacodynamic model limits the direct applicability of our

work, it allows for the identification of crucial aspects in determining therapeutic effects.

Effects of phenotypic switching on population fitness

We studied the role of phenotypic heterogeneity on population fitness in the presence of

unlimited resources by considering two distinct measures of population fitness: the intrinsic

growth rate of the population or Malthusian parameter λP, and the expected number of off-

spring or basic reproduction number R0. In structured population models, these quantities are

often related through the sign relationship: sign(λP) = sign(R0 − 1) [57–59]. Precise mathemati-

cal formulations and results pertaining to these two metrics are described in sectionModel
analysis in S1 Text. In particular, we establish the previously mentioned sign relationship

between λP and R0 in Theorem I in S1 Text. Thus, we can use either λP< 0 or R0 < 1 as thresh-

olds for population growth when later designing a treatment schedule.

A population comprised entirely of drug-sensitive cells has an intrinsic growth rate given

by λA = rA − dA (and similarly, λB = rB − dB, for a population of entirely drug-tolerant cells, see

Proposition B in S1 Text). The cost of resistance was assumed to reduce the intrinsic growth

rate in the tolerant population, i.e., λB ⩽ λA. In a heterogeneous population of cells where cells

cannot switch phenotypes, the Malthusian parameter is simply the maximum of growth rates

of the constituent populations (λP = max[λA, λB]). However, if cells exhibit phenotype plastic-

ity, then the presence of a less-fit phenotype decreases the fitness of the combined population,

and the intrinsic growth rate of the heterogeneous population falls between the growth rate of

the constituent populations i.e., λP 2 (λB, λA) (Fig 2) for the switch and stay strategies men-

tioned earlier as well as the symmetric strategy where ðP�BB; P
max
BB Þ ¼ ðP

�
AA; P

max
AA Þ ¼ ð0:9; 0:95Þ.

We first note that the population level fitness is an increasing function of the fitness of the sub-

populations, λA and λB, as we would expect. Further inspection of Fig 2 illustrates how differ-

ent switching strategies influence the role of fitness increases in each constituent sub-

population on fitness of the entire population. In particular, we note that in the stay strategy,

fitness increases in the drug-tolerant population are more impactful on the entire population

than the drug sensitive population, while the opposite is in true for the stay strategy.

Tumour composition evolves during population growth

In nutrient-rich environments, similar to serial replating in in vitro experiments, cooperation

amongst drug-tolerant cells allows for tumour growth at a rate faster than purely Malthusian

growth (Fig B in S1 Text). In the presence of unlimited resources, increasing the death rate dA
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of drug-sensitive cells while holding rA constant acts to decrease the fitness of the drug-sensi-

tive cells (Fig 3A and 3B), corresponding to both a decrease in the relative fitness difference

between drug-sensitive and drug-tolerant cells and a decrease in the total population fitness.

This is independent of the parameters that determine phenotypic inheritance (see section Non-
linear eigenproblem for the Malthusian parameter in S1 Text for details). We found that the

proportion of sensitive type A cells was consistently higher during unlimited growth than in

the resource limited case. This prediction is in line with experimental results where there was a

smaller proportion of persister cells during Malthusian growth [20, 39]. Further, the strictly

decreasing behaviour of the ratio �A=ð�A þ �BÞ as dA increases, so λA decreases while λB remains

constant, indicates that the fitness difference between phenotypes plays a critical role in deter-

mining population composition during Malthusian growth.

Fig 3. The proportion of drug-sensitive cells for increasing values of the sensitive cell death rate. A and B) the

proportion of the total population that is drug sensitive during Malthusian growth calculated using the stable age

distribution detailed in section Stable age distribution and population proportion in S1 Text as a function of increasing

sensitive death rate dA. A) plots the proportion of drug sensitive cells for three values of PmaxBB ¼ 0:1; 0:37; 0:63. B)

presents the proportion of drug sensitive cells for σB = [1 × 10−3, 0.25, 0.5, 0.75]. If drug-tolerant cells are unlikely to

retain tolerant phenotype upon reproduction, then phenotype switching can partially mitigate the effect of increasing

death rate of drug sensitive cells. The proportion of drug-tolerant cells in A and B compare favourably with the

population composition of drug-tolerant cells reported by Sharma et al. [15]. C and D) the proportion of drug sensitive

cells in the limited-resource setting is obtained by simulating the model (2) for 500 days and computing of drug

sensitive cells at day 500. C) the model predictions for PmaxBB ¼ 0:1; 0:37; 0:63. D) the model predictions for σB =

[1 × 10−3, 0.25, 0.5, 0.75]. Phenotypic switching is less capable of mitigating increased death in the resource-limited

setting.

https://doi.org/10.1371/journal.pcbi.1009348.g003
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In the limited resource situation, contrasting to the Malthusian case, the ratio �A=ð�A þ �BÞ
initially decreases before reaching a plateau and remaining relatively constant as dA is

increased. Accordingly, the relative fitness difference between phenotypes is less important

than the probability of phenotypic switching in determining population composition (Fig 3C

and 3D). In fact, if the maximal probability of drug-tolerant cells retaining their phenotype

(PmaxBB ) is sufficiently small, increasing dA increases the proportion of type A cells (see section

Phenotype switching may mitigate fitness differences in S1 Text). Conversely, if drug-tolerant

cells are likely to produce drug-tolerant cells via a high probability of phenotypic inheritance,

illustrated by the PmaxBB ¼ 0:63 and σB = 1 × 10−3 cases, the population evolves towards being

predominantly drug-tolerant (phenotype B), despite the fact that λA> λB. Contrary to the

unlimited resource case, where the relative fitness between phenotypes is the determining fac-

tor, the approximately constant proportion of drug-sensitive cells in the resource-limited set-

ting suggests the importance of resource constraints in driving the establishment of a drug-

tolerant population.

Periodic treatment leads to dominant phenotype switches. We next sought to quantify

the permanence of treatment resistance as a function of the switch and stay phenotypic switch-

ing strategies discussed earlier. To measure the effectiveness of a given treatment strategy S for

treatment from t = 0 to t = Tend, we calculated the average total number of cells as a fraction of

the population carrying capacity, K,

BurdenðSÞ ¼
1

Tend

Z Tend

0

NðtÞ
K

dt ¼
1

Tend

Z Tend

0

�AðtÞ þ �BðtÞ
K

dt; ð5Þ

assuming here the physiologically-realistic finite resource case with phenotypic cooperation.

Since we are aiming to avoid competitive release of the resistant sub-population and are pri-

marily interested in a sustainable reduction in tumour size, we consider the cumulative

tumour burden over the entire treatment interval. In particular, (5) is related to the objective

response rate, or the tumour reduction following therapy, as schedules with a lower tumour

burden as defined in (5) would presumably also have a higher objective response rate. Further,

we used data from in vitro growth assays to parametrize our mathematical model [60]. In these

in vitro experiments, the population size can be easily measured and used as a proxy for treat-

ment efficacy. However, if we were fitting the model to clinical data rather than in vitro data, it

would be possible to use more clinically relevant measurements of treatment effect, such as

time to disease progression or treatment failure due to resistance. In our framework, treatment

resistance was defined as a significantly decreased therapeutic effect on the total population.

The robustness of our results when considering different switching strategies is shown in sec-

tion General results are robust to parameter variation in S1 Text.

We simulated a 21-day cyclic chemotherapy with the half-life of the anti-cancer agent set to

t1/2 = 6 hrs, similar to cyclophosphamide, etoposide, and teniposide [61]. For both the switch
and stay strategies, the tumour population eventually developed resistance as the drug-tolerant

phenotype became dominant during treatment (Fig 4). We observed that the proportion of

drug-sensitive cells in the switch population remained above 40% of the total population—at

least during the simulated treatment regimen—while the drug-sensitive cells in the stay popu-

lation were effectively driven extinct during treatment. Thus different switching strategies act

to either maintain or destroy a treatment-susceptible population. However, in the long term,

the switch population eventually reverted back to a predominantly drug-sensitive population

after treatment was discontinued. Clinically, this corresponds to transient resistance and an

eventually re-sensitised population that has been observed in some cancers [8, 15, 16]. This re-

sensitization suggests that treatment holidays, where therapy is re-applied after a break may be
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beneficial, as the switch population will eventually return to a mostly drug-sensitive state.

Conversely, the stay population evolved into a drug-tolerant phenotype dominated state and

acquired essentially permanent resistance to therapy. In this case, reapplying the same therapy

would be unsuccessful, even after a treatment holiday. These contrasting results demonstrate

that different strategies of phenotypic switching can account for two drastically different types

of therapeutic resistance by inducing either transient or permanent changes to the population,

further underlining the difficulty of designing effective therapies to prevent phenotypic switch-

ing. In section Parameter identifiability during cancer therapy in S1 Text, we show that the

response to treatment can help identify the switching strategy.

Avoiding resistance to therapy in NSCLC

Lung cancer is the leading cause of cancer-related death in the United States, and non-small

cell lung cancer (NSCLC) accounts for 20% of all cancer-related deaths [62]. Nearly two-thirds

of NSCLC patients present with surgically unresectable disease and rely on systemic therapies

for survival. Better characterisation of NSCLC at the molecular level has resulted in the intro-

duction of a number of targeted therapies that are safer and more effective than standard che-

motherapy. However, successful long-term treatment of NSCLC remains hampered by drug

resistance [63]. We have recently shown that phenotypic interactions in co-cultured NSCLC

spheroids and heterogeneity within patient samples drive a Cooperative Adaptation to Ther-

apy (CAT) [7]. During CAT, cancer cells behave co-operatively to induce drug tolerance in

neighbouring cells and thus induce population level treatment resistance. We sought to further

quantify the evolution of phenotypic switching in NSCLC using our switching model to better

understand treatment failure due to drug tolerance by fitting the model to the Wild Type

(WT), Mutation 1 (M1), and Mutation 2 (M2) data from [7]. In the subsequent analysis of

our model during therapy, we derived a number of analytical results and expressions that

characterise our model-informed treatment schedule. These quantities and their biological

Fig 4. The effect of switching strategy on treatment efficacy. The effect of periodic treatment on a population using

either the switch (A) or the stay strategy (B). Periodic therapy is applied as described in Periodic Treatment Leads to
Dominant Phenotype Switches. Therapy is applied between days 50 and 275, marked by the black stars. Red curves

show the proportion of sensitive cells �AðtÞ=NðtÞ. Blue curves shows the dynamics of the total population as a fraction

of the population carrying capacityN(t)/K. Model parameters used in these simulations are given in Table A in S1

Text.

https://doi.org/10.1371/journal.pcbi.1009348.g004
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interpretation are summarized in Table 1 with the full analytical details given in section Appli-
cation to non-small cell lung cancer in S1 Text.

Beyond the intrinsic heterogeneity within tumours, external factors, including maximally

tolerated dosing schedules, can lead to the establishment of a resistant phenotype and limit the

effectiveness of therapy. This is clearly clinically disadvantageous as shown in the preceding

section. If there were no cooperation amongst drug-tolerant cells, then once the selection pres-

sure of therapy was removed, the population would become re-sensitised to therapy as the fit-

ter, drug-sensitive, phenotype became dominant. Thus, a possible therapeutic strategy is to

limit the fitness gain of drug-tolerant cells due to cooperation. In our model formulation, lim-

iting fitness gain due to cooperation is equivalent to limiting cooperation driven increases in

reproduction rates modelled by rBfnð�AðtÞ; �BðtÞÞ, that is, enforcing rBfnð�AðtÞ; �BðtÞÞ < εrA;
where ε 2 (rB/rA, 1) measures the allowable amount of fitness gain due to co-operation of

drug-tolerant cells. To accomplish this, the ratio of drug-tolerant to drug-sensitive cells,

yðtÞ ¼ �BðtÞ=�AðtÞ, must not exceed the threshold ratio W
�

ε given by

W
�

ε ¼
εrA � rB
rAð1 � εÞ

� �1=n

; ð6Þ

where we recall that the parameter n determines the strength of the Allee effect in fnð�AðtÞ; �BðtÞÞ.
Using W

�

ε, it is possible to schedule therapy to avoid competitive release (“fall then rebound”)

as drug-sensitive phenotypes switch to drug-tolerant ones and thus maintain a drug-sensitive

population (see section Generic strategy to avoid treatment failure in S1 Text and [22, 23]).

Here, we detail a strategy for our NSCLC data that simultaneously ensures that the total

tumour population decays and the population of drug-tolerant cells remains dependent on the

drug-sensitive cells for survival. This strategy requires a delicate balance of maintaining che-

motherapeutic concentrations at a large enough value to inhibit growth of the drug-sensitive

cells while maintaining the frequency of drug-tolerant cells below a level that induces signifi-

cant cooperation and the resulting competitive release. In the analytical work that underlies

the model-informed schedule, we assumed that rB< dB. This assumption is satisfied by param-

eter fitting to the NSCLC data described in section Application to non-small cell lung cancer
data in S1 Text. In the analytical work, we also assumed that there were ample resources avail-

able to use the PDE (2) corresponding to Malthusian growth, although we include the carrying

capacity in our simulations. Lastly, we assumed that the chemotherapeutic infiltrated the

tumour uniformly and that therapy is administered over a fixed period T. We calculate the

Table 1. Summary of analytical expressions used to determine model-informed therapy.

Parameter Value Biological interpretation Reference

λA rA − dA Intrinsic growth rate of drug-sensitive cells Prop. B

λB rB − dB Intrinsic growth rate of drug-tolerant cells Prop. B

l
�

A rA � dmaxA Treated growth rate of drug-sensitive cells Definition

λB(θ) rB fn(θ) − dB Growth rate of drug-tolerant cells with Allee effect Eq (8)

ε ε 2 rB
rA
; 1

� �
Permissible fitness from Allee effect Chosen

W
�

ε εrA � rB
rAð1� εÞ

h i1=n Ratio �B=�A to ensure rB< εrA with Allee effect Eq (6)

Dose� aT
lA
� l�A

Minimum dose size to ensure R�
0
< 1 Eq (7)

θ� � lB
lA

h i1=n Threshold θ� such that λB(θ) < 0 for θ< θ� Eq (9)

https://doi.org/10.1371/journal.pcbi.1009348.t001
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chemotherapeutic concentration during metronomic therapy in section Treatment induced
periodic environment in S1 Text along with the precise analytical results underpinning our

strategy.

From a classical population dynamics perspective, if the treated basic reproduction number

R�
0

is less than 1, then the tumour population is expected to decay during treatment. In an

approximately periodic environment, where chemotherapy is administered every T days, the

threshold minimum dose size to ensure that R�
0
< 1 is

Dose� ¼
lA
� l

�

A

aT; ð7Þ

where l
�

A ¼ rA � d
max
A < 0 is the decay rate of the drug-sensitive population during treatment

and αT is a constant depending on the period of administration T. We give a derivation of (7)

and the explicit expression for αT in the section R�
0
in the treated environment in S1 Text. To

render this threshold clinically relevant, we rewrite Eq (7) as

lA
� l

�

A

¼
Dose�

aT
:

The left hand side above is comprised of patient specific parameters, namely the intrinsic

growth rate of the drug susceptible population λA, and the decay rate of the sensitive popula-

tion during treatment, l
�

A: To estimate these quantities, consider two time series, �Ai and �A�i ,
representing a drug-sensitive population grown in normal media or in the presence of a che-

motherapeutic, respectively. Due to phenotypic switching, it is unlikely that these populations

are comprised of solely drug susceptible cells, which complicates the estimation of λA and l
�

A

directly from experimental data. Nevertheless, to first approximation, the slope of log ð�AiÞ

during the early exponential stage of growth offers an estimate for the intrinsic growth rate

λA = rA − dA. Assuming, for simplicity, that the chemotherapeutic agent only acts to increase

the death rate of cells, then the the slope of log ð�A�i Þ during exponential decay rate gives an

estimate for l
�

A ¼ rA � d
max
A . The right hand side of Eq (7) is comprised of parameters describ-

ing the properties of the drug as well as the size and frequency of drug administration that can

be directly translated to the clinic.

Recalling that the ratio of drug-tolerant to drug-sensitive cells is denoted yðtÞ ¼ �BðtÞ=�AðtÞ;
the expression for the fitness of the drug-tolerant population including the Allee effect is

lBðyÞ ¼ rBfnð�AðtÞ; �BðtÞÞ � dB: ð8Þ

where fnð�AðtÞ; �BðtÞÞmodels cooperation mediated fitness increases. In particular, we recall

that fnð�AðtÞ; �BðtÞÞ is a Hill type function with Hill coefficient n ⩾ 1. In this context, n can be

understood as representing the necessary amount of cooperation between drug-tolerant cells

to induce a fitness increase. To inhibit competitive release of drug-tolerant cells (i.e. the

observed “fall and rebound” in the NSCLC spheroid data during therapy), we updated

our approach to avoid the establishment of the drug-tolerant phenotype by enforcing that

λB(θ�)< 0 even when considering cooperation. This yields the threshold ratio

y
�
¼
� lB
lA

� �1=n

: ð9Þ

As λB< 0, the right hand side of Eq (9) is the ratio of the decay rate of drug-tolerant cells to

the growth rate of drug-sensitive cells. If the population of drug-tolerant cells decays at a faster

rate than the population of drug-sensitive cells grows (|λB|> λA), then drug-tolerant cells must
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outnumber drug-sensitive cells before cooperation will allow for expansion of the drug-toler-

ant population. In this case, cooperation acts to attenuate the factor by which drug-tolerant

cells must outnumber drug-sensitive cells before the drug-tolerant population is self-sustain-

ing, since

� lB
lA

� �1=n

⩽
� lB
lA

:

Conversely, if |λB|< λA, then increasing levels of cooperation necessitates a larger propor-

tion of drug-tolerant cells to permit self-renewal of the treatment resistant population. Once

again, the ratio of untreated intrinsic growth rates can be directly estimated from in vitro
data. In summary, ensuring that θ< θ� is sufficient to avoid the establishment of a resistant

population.

Model-informed treatment drives tumour extinction

Lastly, we combined the strategies ensuring tumour decay or avoiding the establishment of

resistance described above to drive long-term treatment effectiveness to docetaxel (see sections

Model informed therapy of other therapeutics and Parameter fitting in S1 Text for similar results

for the chemotherapeutics afatanib and bortezomib and details of the parametrization of the

pharmacokinetic models for each therapeutic).

In most treatment schedules, docetaxel is administered either weekly or once-every-three-

weeks [64], however, it is not obvious that either of these cycle lengths represent optimal treat-

ment periods. Rather, as suggested by Bacevic et al. [23] and others, it may be ideal to dose

more frequently and with less intensity to maintain drug pressure on the population. There-

fore, we did not a priori fix the period of administration T to model-informed therapy. Rather,

for T = 1, 2, 3. . ., 7 days, we determine the model-informed dose size as

Dose�

C1=2Vol
¼

7

T
min

T¼1;2;3;...;7

lA
� l

�

A

� �

1 � exp � kelimT½ �ð Þ exp ðkelimTÞ;DMTD

� �

:

where DMTD is the dose size under maximally tolerated dosing. Increasing the density of ther-

apy increases the burden of therapy and may be overwhelmingly toxic. Accordingly, we

imposed that the cumulative chemotherapeutic dose under model-informed therapy does not

surpass what would be administered in the fixed periodic schedule. For each period T, we used

the minimal dose size that satisfies (7), as our calculation of R�
0

only identifies a sufficient con-

dition to drive tumour population decay, and any larger dose size potentially allows competi-

tive release of the drug-tolerant population.

We tested the model-informed therapy for each value of T = 1, 2, 3, . . ., 7 days and chose

the largest therapy period T that avoided the establishment of a drug-tolerant population and

led to sustained population decay. While the decision to administer therapy on each treatment

day nT is dependent on the ratio θ(t) < θ�, and so the tumour micro-environment may not be

precisely periodic, our results indicate that combining the two model-informed constraints

successfully drives tumour extinction.

We compared our model-informed therapy to periodic dosing administered every 7 days

and found that informed therapy performed comparatively to periodic dosing during the ini-

tial stage of therapy (Fig 5). However, the benefit of our model-informed therapy becomes

apparent when inspecting the behaviour of the treated tumour over longer periods: the fixed

dosing schedule allowed for the establishment of a drug-tolerant phenotype and the eventual

loss of effectiveness of therapy, while the model-informed therapy maintained a drug-sensitive

population and led to sustained tumour decay. In fact, the stable oscillations at (or below) the
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Fig 5. Comparing model-informed and periodic dosing treatment regimens. A and C) Comparison of model-

informed therapeutic strategy with T = 3 against periodic treatment with docetaxel for the WT and M1 populations,

respectively. The total tumour populations under periodic or model-informed therapies are given in dashed grey or in

solid blue, respectively. The drug sensitive ð�AðtÞÞ and drug-tolerant ð�BðtÞÞ sub-populations under model-informed

therapy are shown in dot-dashed orange or dotted purple. The beginning of treatment on day 50 is denoted by a black

star. The inset in C shows the rapid decay of the M1 tumour population during therapy. B and D) The ratio yðtÞ ¼
�BðtÞ=�AðtÞ during model-informed therapy in solid orange and the threshold ratio θ� in dashed orange for the WT and

M1 populations respectively. E) illustrates the model-informed therapy where θ(t) is used to decide if therapy is given

or not. The model parameters used in this simulation are given in Tables C and D in S1 Text.

https://doi.org/10.1371/journal.pcbi.1009348.g005
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threshold ratio θ� in Fig 5B and 5D combined with the exponential decay of N(t) shown in Fig

5A and 5C illustrate the efficacy of the model-informed therapy to preserve a sufficiently large

population of sensitive cells while driving tumour extinction. The model-informed therapy is

designed to consistently have a large enough population of sensitive cells, characterised by

θ(t)< θ�, to avoid resistance while imposing enough treatment pressure to ensure R�
0
< 1 dur-

ing therapy (see sections R�
0
in the treated environment and Limiting cooperation of drug toler-

ant cells in S1 Text for details). Consequently, the observed exponential decay is precisely what

is predicted from the design of model-informed therapy.

As before, we computed the effectiveness of therapy using Eq (5). The ratio of tumour bur-

den in the model-informed therapy to periodic therapy was 0.5598 and 0.7600 for the WT and

M1 cells studied (see Materials and methods), respectively, over 100 days of treatment. The

effectiveness of model-informed therapy becomes more pronounced when considering

longer treatment intervals, as the model-informed therapy drives sustained tumour decay.

This result clearly demonstrates that model-informed therapy significantly outperforms peri-

odic therapy, and is consistent across all populations and therapeutics considered, demonstrat-

ing the robust efficacy of this adaptive and model informed approach to maintaining drug-

tolerant phenotypes.

Discussion

Despite the introduction of novel targeted therapies and increased characterisations of individ-

ual patient’s genetic landscapes, drug resistance continues to drive treatment failure. This sug-

gests that identifying and understanding non-genetic factors contributing to drug therapy

tolerance is crucial to providing better care. In this work we proposed a simple quantitative

model of stochastic phenotype switching in the context of cancer. Our model is comprised of

two non-local age structured PDEs that incorporate phenotypic switching through non-local

boundary terms. Specifically, phenotypic switching is described as a random process where

the probability of inheriting the parents’ phenotype is a decreasing function of cellular age at

reproduction. This mapping from age to switching probability generalises the role of molecular

switching mechanisms and the inheritence of signalling factors in phenotype determination.

In this sense, we have studied the role of phenotypic ‘memory’ governed by the inheritance of

intracellular factors, similar to the biological phenomenon observed by Yang et al. [36] where

inheritance of signalling factors such as p53 and mitogen can predispose daughter cells towards

quiescence or proliferation. Recent experimental work has implicated these signalling factors

and the resulting non-genetic memory in response to anti-cancer treatment. In particular,

resistance to targeted therapies in NSCLC has been shown to result from a series of gradual

epigenetic and genetic adaptations to treatment induced selection pressures [65].

Those experimental results have specifically identified the role of treatment induced stress

on mother cells as a determining factor in daughter cell’s adoption of a “persister” like pheno-

type [52, 53, 66–68]. In previous theoretical work we demonstrated that the precise mecha-

nisms governing phenotype switching determine the rate of extinction under cytotoxic

therapy [13]. Thus, molecular switching mechanisms may be subject to evolution by natural

selection. The model presented here represents a more general framework to further explore

this phenomenon, and to extend it through the introduction of phenotypic memory, by speci-

fying switching dynamics in a functional, rather than network-defined, form. In this sense, our

work addresses similar questions to [27, 28] although via a different and complementary axis,

particularly in our analytical results and the development of the model-informed treatment.

Given the assumption of unlimited resources, we derived expressions for the Malthusian

parameter and basic reproduction number, and established the classic sign relationship
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between these two measures of population fitness. From the structured PDE model (2), we

derived an equivalent ODE model describing the dynamics of drug-tolerant and sensitive pop-

ulations to study the impact of resource availability and intra-phenotype cooperation on popu-

lation growth. This allowed us to show that competition for limited resources facilitates the

establishment of a less fit phenotype. Incorporating a phenomenological model of cytotoxic

therapy, we showed that the phenotype switching strategy of the drug-tolerant population (to

either preferentially inherit or relinquish the parent cells phenotype) determined the type of

treatment resistance observed. In particular, our mathematical model can reproduce both

transient drug resistance or epigenetic permanent resistance by only changing the switching

strategy of the drug-tolerant population. Leveraging this, we proposed a treatment schedule

that exploits the population composition to avoid the establishment of treatment resistance.

Importantly, we then applied our model to understand the development of treatment resis-

tance within ex vivoNSCLC tumour spheroids to understand the impact of phenotypic switch-

ing on response to treatment. When exposed to chemotherapeutics, genetically identical

NSCLC populations were found to exhibit a “fall then rebound” behaviour indicative of phe-

notypic resistance. We derived the basic reproductive number in the context of periodic treat-

ment and determined a therapy schedule that avoided the establishment of resistance and

exhibited sustained tumour decay. The NSCLC data and our results underline that phenotypic

switching may be occurring in a genetically identical population of NSCLC cells and may be

driving treatment resistance. It is thus important to quantify its presence and impact of on

treatment scheduling. In this work, we presented a mathematical model to understand pheno-

typic heterogeneity and derived a model-informed strategy to mitigate –and potentially avoid–

phenoytpically driven treatment resistance.

Our phenomenologically-based model is simple. Consequently, our results must be evalu-

ated in light of the many assumptions and limitations of our model, and remain to be further

validated in experimental systems. We also made an important assumption that cancer cells

are either entirely drug-tolerant or drug-sensitive. While this assumption of a discrete pheno-

type landscape simplifies the mathematical modelling, it is not biologically realistic. Further-

more, the results of Vander Velde et al. [65] suggest implementing a continuous phenotype

landscape in our model as well as extending our analysis to study combination therapies, strat-

egies for drug combination, and the continued evolution of treatment resistance. Moreover,

we do not consider the role of spatial and metabolic heterogeneity [69–71], drug infiltration

[72, 73], nor the role of other cells in the tumour micro-environment [74].

These limitations notwithstanding, our work identifies the role of stochastic switching in

therapeutic resistance, explicitly incorporates non-genetic inheritance, or phenotypic memory,

in a physiologically structured mathematical model, and highlights the role of mathematical

modelling in understanding and developing evolutionary-inspired therapeutic strategies.

Materials and methods

Non-small cell lung cancer data

We used the previously published in vitro growth assay data from Craig et al. [7] to parame-

trize our mathematical model. Briefly, in their work, the parental (WT) cell line was derived

from KRas-G12D, p53−/−, Dicer1f/− genotype lung tumours and mutants (M1 and M2) were

obtained through transfection to Dicer1+/+ and Dicer1-/- using CRISPR-Cas9 [75]. Cells were

plated as tumour spheroids on NanoCulture plates and population growth without and with

drug was assessed via flow cytometry on days 1, 3, 5, and 7 [7].

In the untreated experiments, Craig et al. [7] cultured a genotypically homogeneous popu-

lation of NSCLC cells for 7 days. In the treated experiments, after 72 hours of growth in
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untreated medium, the authors bathed the population of cells in a constant and lethal concen-

tration of one of three chemotherapeutics (docetaxel, afatinib, or bortezomib) and counted the

number of surviving cells. As the anti-cancer drug concentration is constant, we assume that

the observed “fall and rebound” behaviour is not driven by the proliferation of a drug-sensitive

population, but rather due to the expansion of a drug-tolerant population, similar to the phe-

notypic resistance observed in numerous studies [8, 15, 16]. While the drug-tolerant popula-

tion may have arisen due to genetic mutations, the short treatment time of 96 hours suggests

the expansion of a previously established drug-tolerant phenotype. We report results for the

WT and Mutation 1 (M1) lineages treated with docetaxel in the main text with similar results

for WT, M1 cells treated with afatinib and bortezomib, as well as a separate population Muta-

tion 2 (M2) cells shown in sectionModel informed therapy for other therapeutics in S1 Text.

Numerical simulation of phenotypic switching model

Eq (2) is a system of coupled non-local PDEs for the cell densities A(t, a) and B(t, a). Rather

than implementing these PDEs numerically, we note that we are primarily interested in the

number of drug-sensitive and drug-tolerant cells, given by

�AðtÞ ¼
Z 1

0

Aðt; aÞda and �BðtÞ ¼
Z 1

0

Bðt; aÞda:

For L1 initial data, the theory of transport equations ensures that these integrals are finite

for t> 0 [51]. Therefore, rather than solving the system of coupled PDEs and integrating over

age to compute �AðtÞ and �BðtÞ, we derive an equivalent finite dimensional system of ordinary

differential equations for the populations �AðtÞ and �BðtÞ. The derivation uses Leibniz’s integral

rule and integration by parts and is detailed in section Ordinary differential equations for �AðtÞ
and �BðtÞ in S1 Text. Incorporating phenotypic switching through the boundary conditions

necessitates two extra ODEs for the proportion of drug-sensitive or drug-tolerant cells retain-

ing their phenotype. The resulting ODE model is

d
dt

�AðtÞ ¼ � RAð�AðtÞ; �BðtÞÞ þ dA þ dmaxA � dA
� � CðtÞ

CðtÞ þ C1=2

" #

�AðtÞ

þ2RAð�AðtÞ; �BðtÞÞNAAðtÞ þ 2RBð�AðtÞ; �BðtÞÞ½�BðtÞ � NBBðtÞ�

d
dt

�BðtÞ ¼ � ½RBð�AðtÞ; �BðtÞ þ dB��BðtÞ þ 2RAð�AðtÞ; �BðtÞÞð�AðtÞ � NAAðtÞÞ

þ 2RBð�AðtÞ; �BðtÞÞNBBðtÞ

d
dt
NAAðtÞ ¼ PmaxAA ½2RAð�AðtÞ; �BðtÞÞNAAðtÞ þ 2RBð�AðtÞ; �BðtÞÞð�BðtÞ � NBBðtÞÞ�

� RAð�AðtÞ; �BðtÞÞ þ dA þ dmaxA � dA
� � CðtÞ

CðtÞ þ C1=2

 !

NAAðtÞ

þ sAðP�A �AðtÞ � NAAðtÞÞ

d
dt
NBBðtÞ ¼ PmaxBB ½2RAð�AðtÞ; �BðtÞÞð�AðtÞ � NAAðtÞÞ þ 2RBð�AðtÞ; �BðtÞÞNBBðtÞ�

� ðRBð�AðtÞ; �BðtÞÞ þ dBÞNBBðtÞ � sBNBBðtÞ þ sBP�B�BðtÞ;

d
dt
CðtÞ ¼ IðtÞ � kelimCðtÞ
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where we use the single compartment model for C(t) and use initial conditions corresponding

to tumour populations in exponential growth that are given in section Initial conditions of the
ODE model in S1 Text.

Model parametrization to NSCLC data

To fit the mathematical model to the NSCLC in vitro data, we fix P�AA ¼ 0 and PmaxAA ¼ 0:95, set

σA = σB = 1 × 10−2 hours−1 and dA = dB, and account for the fitness cost of resistance by enforc-

ing rB ⩽ rA. The parameters remaining to be fit control either population growth (rA, rB, and

dA), or the probability of retaining the drug-tolerant phenotype (P�BB and PmaxBB ). Thus, there are

five parameters to be fit to experimental data.

We show in section Parameter identifiability during cancer therapy in S1 Text that

these parameters may not be identifiable for untreated data. In particular, for a given pair

ðP�BB; P
max
BB Þ, it is possible to fit the parameters rA, rB and dA can be chosen to fit experimental

data equally well in the absence of treatment. However, the role of the parameters ðP�BB; P
max
BB Þ

becomes evident once therapy is administered and the previously indistinguishable curves

become distinct. Therefore, we simultaneously fit the untreated and docetaxel data from [7] to

determine the five parameters to be fit.

During the treated experiments, the cells are continuously bathed in lethal concentrations

of each chemotherapeutic, so we model the death rate of the drug-sensitive cells during fitting

as

dAðtÞ ¼

( dA if t < ttreat

dmaxA if t ⩾ ttreat:

For treated and untreated time series data fDataig
n
i¼1
; we fit the parameters rA; rA; dA ¼

dB; dmaxA ; P�BB and PmaxBB by minimizing

ErrorðrA; rB; dA; d
max
A ; P�BB; P

max
BB Þ ¼

Xn

i¼1

ðNðtiÞ � DataiÞ
2

ð10Þ

where NðtiÞ ¼ �AðtiÞ þ �BðtiÞ is the total number of cancer cells predicted by the mathematical

model. We used the Matlab [76] algorithm fmincon to minimize (10) with 15 initial starting

points in parameter space. The results of our fitting to the untreated and docetaxel data are

shown in Fig F in S1 Text.

Having fit the parameters rA; rB; dA ¼ dB; dmaxA ; P�BB and PmaxBB to the untreated and docetaxel

treated population data, we fix the tumour growth parameters rA, rB, dA = dB, and only fit

dmaxA ; P�BB and PmaxBB for the data from experiments with afatinib and bortezomib. We do not refit

the growth rate rB, both to avoid overfitting, and as cancer cells with a drug-tolerant phenotype

have exhibited cross-resistance to other chemotherapeutics [16]. We list the tumour growth

and switching parameters in Tables B and C in S1 Text.

Supporting information

S1 Text. Supporting information file. Supporting mathematical analysis, tables, and

figures.

Fig A. Phenotypic switching probability and relative fitness gain. Figure A shows a repre-

sentative form of the function βii(a) that represents the probability that a mother cell with

phenotype i and age a bequeaths it’s phenotype to the daughter cells. Figure B shows the
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frequency dependent fitness increase function fn(θ) for n = 1, 2, 10 used to model fitness

increases of the drug tolerant phenotype due to the Allee effect.

Table A. The generic model parameters. The generic model parameters used to illustrate

the impact of phenotypic switching on treatment resistance.

Fig B. A comparison of growth rates for different growth functions fn, n = 1, 2, 3, 10,

against Malthusian growth. The “no Allee” curves correspond to no frequency dependent

fitness increase and fn = 1. Figure A shows the population evolution from an initial popula-

tion comprised of 100 drug sensitive cells and one drug tolerant cell for the generic parame-

ters in Table S1 obtained by simulating (S15). Figure B shows the population evolution from

an initial population comprised of 1 drug tolerant cell and 100 drug tolerant cells for the

generic parameters in Table A obtained by simulating (S15).

Fig C. The proportion of drug-sensitive cells for increasing values of the sensitive cell

death rate. A and B) the proportion of drug sensitive cells in the limited-resource setting is

obtained by simulating the model (S2) for 500 days and computing of drug sensitive cells at

day 500. A) the model predictions for PmaxBB ¼ 0:05; 0:13; 0:22. B) the model predictions for

σB = [1 × 10−3, 0.25, 0.5, 0.75] with PmaxBB ¼ 0:6.

Fig D. Fitting of the mathematical model to the Dingli et al. 2009 [60] data for a variety

of fitting strategies. Figure A shows the fitting of the mathematical model (S2)to the Dingli

et al. [60] data for the 8 different switching strategies given in the text. Figure B shows the

regrouping of same 8 strategies after 2 applications of therapy. The parameters used in these

simulations are given in Table B.

Table B. The tumour growth parameters obtained by fitting (S2) to the Dingli et al. [60]

data for the 8 different switching strategies.

Fig E. The effect of adjustable therapy on a population using either a switch or stay strat-

egy. The switch population is shown in figure A) and the stay population is shown in figure

B). In both cases, treatment is applied between the black stars on days 20 and 272. The red

curve shows the proportion of drug sensitive cells �AðtÞ=NðtÞ and the blue curve shows the

dynamics of N(t). The parameters used in these simulations are given in Table A.

Fig F. Fitting results of Equation (S2) to the WT and M1 data from [7] treated with doce-

taxel. The model fits to the WT and M1 data are shown in Figures A and B, respectively. In

all cases, the untreated data is given by the black stars while the untreated simulation is in

solid blue. The docetaxel treated data is given by the hollow circles and the treated simula-

tion is in dashed blue. The parameters used in these simulations are given in in Tables C

and D.

Fig G. Fitting results of Equation (S2) to the WT, M1 and M2 data from [7] treated with

afatinib and bortezomib. The top row shows the model fits to the WT, M1, and M2 data

treated with afatinib, respectively. The bottom row shows the model fits to the WT, M1, and

M2 data treated with bortezomib, respectively. The parameters used in these simulations are

given in Tables C and D.

Table C. The switching parameters for WT, M1, and M2 cell lines obtained by fitting

(S2) to the tumour growth data.

Table D. The tumour growth parameters for the WT, M1, and M2 type cells obtained by

fitting (S2) to the tumour growth data.

Table E. The effectiveness of model-informed therapy when compared to periodic dos-

ing over 150 days of therapy.

Fig H. Comparing model informed therapy and periodic dosing for afatinib Figures A

and C compare model-informed therapeutic strategy with T = 3 against periodic treatment

with afatinib for the WT and M1 populations, respectively. The total tumour populations
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under periodic or model-informed therapies are given in dashed grey or in solid blue,

respectively. The drug sensitive ð�AðtÞÞ and drug tolerant ð�BðtÞÞ sub-populations under

model informed therapy are shown in dot-dashed orange or dotted purple. The beginning

of treatment on day 50 is denoted by a black star. The inset figure in Figure C shows the

rapid decay of the M1 tumour population during therapy. Figures B and D show the ratio

yðtÞ ¼ �BðtÞ=�AðtÞ during model-informed therapy in solid orange and the threshold ratio θ�

in dashed orange. Figure E illustrates the model-informed therapy where θ(t) is used to

decide if therapy is given or not. The model parameters used in this simulation are given in

Tables C and D.

Fig I. Comparing model informed therapy and periodic dosing for bortezomib. Figures

A and C compare model-informed therapeutic strategy with T = 3 against periodic treat-

ment with bortezomib for the WT and M1 populations, respectively. The total tumour pop-

ulations under periodic or model-informed therapies are given in dashed grey or in solid

blue, respectively. The drug sensitive ð�AðtÞÞ and drug tolerant ð�BðtÞÞ sub-populations under

model informed therapy are shown in dot-dashed orange or dotted purple. The beginning

of treatment on day 50 is denoted by a black star. The inset figure in Figure C shows the

rapid decay of the M1 tumour population during therapy. Figures B and D show the ratio

yðtÞ ¼ �BðtÞ=�AðtÞ during model-informed therapy in solid orange and the threshold ratio θ�

in dashed orange. Figure E illustrates the model-informed therapy where θ(t) is used to

decide if therapy is given or not. The model parameters used in this simulation are given in

Tables C and D.
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32. Ardaševa A, Gatenby RA, Anderson ARA, Byrne HM, Maini PK, Lorenzi T. Evolutionary dynamics of

competing phenotype-structured populations in periodically fluctuating environments. Journal of Mathe-

matical Biology. 2019;. https://doi.org/10.1007/s00285-019-01441-5 PMID: 31641842

33. Lorenzi T, Chisholm RH, Clairambault J. Tracking the evolution of cancer cell populations through the

mathematical lens of phenotype-structured equations. Biology Direct. 2016; 11(1):1–17. https://doi.org/

10.1186/s13062-016-0143-4 PMID: 27550042

34. Busse JE, Gwiazda P, Marciniak-Czochra A. Mass concentration in a nonlocal model of clonal selec-

tion. Journal of Mathematical Biology. 2016; 73(4):1001–1033. https://doi.org/10.1007/s00285-016-

0979-3 PMID: 26936033

35. Chisholm RH, Lorenzi T, Lorz A, Larsen AK, De Almeida LN, Escargueil A, et al. Emergence of Drug

Tolerance in Cancer Cell Populations: An Evolutionary Outcome of Selection, Nongenetic Instability,

and Stress-Induced Adaptation. Cancer Research. 2015; 75(6):930–939. https://doi.org/10.1158/0008-

5472.CAN-14-2103 PMID: 25627977

36. Yang HW, Chung M, Kudo T, Meyer T. Competing memories of mitogen and p53 signalling control cell-

cycle entry. Nature. 2017; 549(7672):404–408. https://doi.org/10.1038/nature23880 PMID: 28869970

37. Cardelli L, Csikász-Nagy A. The Cell Cycle Switch Computes Approximate Majority. Scientific Reports.

2012; 2(1):656. https://doi.org/10.1038/srep00656 PMID: 22977731

38. Cardelli L. Morphisms of reaction networks that couple structure to function. BMC Systems Biology.

2014; 8(1):84. https://doi.org/10.1186/1752-0509-8-84 PMID: 25128194

39. Keren I, Kaldalu N, Spoering A, Wang Y, Lewis K. Persister cells and tolerance to antimicrobials. FEMS

Microbiology Letters. 2004; 230(1):13–18. https://doi.org/10.1016/S0378-1097(03)00856-5 PMID:

14734160

40. Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S. Bacterial persistence as a phenotypic switch; Sup-

plemental Materials. Science. 2004; 305(5690):1622–1625. https://doi.org/10.1126/science.1099390

PMID: 15308767

41. Shaffer SM, Dunagin MC, Torborg SR, Torre EA, Emert B, Krepler C, et al. Rare cell variability and

drug-induced reprogramming as a mode of cancer drug resistance. Nature. 2017; 546(7658):431–435.

https://doi.org/10.1038/nature22794 PMID: 28607484

PLOS COMPUTATIONAL BIOLOGY Memory in non-genetic inheritance and its impact on cancer treatment resistance

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009348 August 30, 2021 23 / 25

https://doi.org/10.1038/s41467-017-01968-5
https://doi.org/10.1038/s41467-017-01968-5
http://www.ncbi.nlm.nih.gov/pubmed/29180633
https://doi.org/10.1038/s41467-017-01516-1
https://doi.org/10.1038/s41467-017-01516-1
http://www.ncbi.nlm.nih.gov/pubmed/29222471
https://doi.org/10.1158/0008-5472.CAN-19-2669
https://doi.org/10.1158/0008-5472.CAN-19-2669
https://doi.org/10.1098/rstb.2009.0241
https://doi.org/10.1098/rstb.2009.0241
http://www.ncbi.nlm.nih.gov/pubmed/20083632
https://doi.org/10.1098/rsif.2019.0332
http://www.ncbi.nlm.nih.gov/pubmed/31690233
https://doi.org/10.1016/j.jtbi.2020.110162
http://www.ncbi.nlm.nih.gov/pubmed/31953135
https://doi.org/10.1073/pnas.1712064115
http://www.ncbi.nlm.nih.gov/pubmed/29229836
https://doi.org/10.1016/j.cell.2011.07.026
https://doi.org/10.1016/j.cell.2011.07.026
http://www.ncbi.nlm.nih.gov/pubmed/21854987
https://doi.org/10.1038/ncomms3467
https://doi.org/10.1038/ncomms3467
http://www.ncbi.nlm.nih.gov/pubmed/24045430
https://doi.org/10.1007/s00285-019-01441-5
http://www.ncbi.nlm.nih.gov/pubmed/31641842
https://doi.org/10.1186/s13062-016-0143-4
https://doi.org/10.1186/s13062-016-0143-4
http://www.ncbi.nlm.nih.gov/pubmed/27550042
https://doi.org/10.1007/s00285-016-0979-3
https://doi.org/10.1007/s00285-016-0979-3
http://www.ncbi.nlm.nih.gov/pubmed/26936033
https://doi.org/10.1158/0008-5472.CAN-14-2103
https://doi.org/10.1158/0008-5472.CAN-14-2103
http://www.ncbi.nlm.nih.gov/pubmed/25627977
https://doi.org/10.1038/nature23880
http://www.ncbi.nlm.nih.gov/pubmed/28869970
https://doi.org/10.1038/srep00656
http://www.ncbi.nlm.nih.gov/pubmed/22977731
https://doi.org/10.1186/1752-0509-8-84
http://www.ncbi.nlm.nih.gov/pubmed/25128194
https://doi.org/10.1016/S0378-1097(03)00856-5
http://www.ncbi.nlm.nih.gov/pubmed/14734160
https://doi.org/10.1126/science.1099390
http://www.ncbi.nlm.nih.gov/pubmed/15308767
https://doi.org/10.1038/nature22794
http://www.ncbi.nlm.nih.gov/pubmed/28607484
https://doi.org/10.1371/journal.pcbi.1009348


42. Pisco AO, Huang S. Non-genetic cancer cell plasticity and therapy-induced stemness in tumour

relapse: ‘What does not kill me strengthens me’. British Journal of Cancer. 2015; 112(11):1725–1732.

https://doi.org/10.1038/bjc.2015.146 PMID: 25965164

43. Gallie J, Libby E, Bertels F, Remigi P, Jendresen CB, Ferguson GC, et al. Bistability in a Metabolic Net-

work Underpins the De Novo Evolution of Colony Switching in Pseudomonas fluorescens. PLoS Biol-

ogy. 2015; 13(3):1–28. https://doi.org/10.1371/journal.pbio.1002109

44. Gravenmier CA, Siddique M, Gatenby RA. Adaptation to Stochastic Temporal Variations in Intratumoral

Blood Flow: The Warburg Effect as a Bet Hedging Strategy. Bulletin of Mathematical Biology. 2018; 80

(5):954–970. https://doi.org/10.1007/s11538-017-0261-x PMID: 28508297

45. Dingli D, Chalub FACC, Santos FC, Van Segbroeck S, Pacheco JM. Cancer phenotype as the outcome

of an evolutionary game between normal and malignant cells. British Journal of Cancer. 2009; 101

(7):1130–1136. https://doi.org/10.1038/sj.bjc.6605288 PMID: 19724279

46. Ross-Gillespie A, Gardner A, Buckling A, West SA, Griffin AS. Density Dependence and CooperationL

Theory and a Test with Bacteria. Evolution. 2009; 63(9):2315–2325. https://doi.org/10.1111/j.1558-

5646.2009.00723.x PMID: 19453724

47. Kimmel GJ, Gerlee P, Brown JS, Altrock PM. Neighborhood size-effects shape growing population

dynamics in evolutionary public goods games. Communications Biology. 2019; 2(1):53. https://doi.org/

10.1038/s42003-019-0299-4 PMID: 30729189

48. Archetti M, Pienta KJ. Cooperation among cancer cells: applying game theory to cancer. Nature

Reviews Cancer. 2019; 19(2):110–117. https://doi.org/10.1038/s41568-018-0083-7 PMID: 30470829

49. Cassidy T, Humphries AR, Craig M, Mackey MC. Characterizing Chemotherapy-Induced Neutropenia

and Monocytopenia Through Mathematical Modelling. Bull Math Biol. 2020; 82(8):104. https://doi.org/

10.1007/s11538-020-00777-0 PMID: 32737602

50. Cassidy T, Craig M, Humphries AR. Equivalences between age structured models and state dependent

distributed delay differential equations. Mathematical Biosciences and Engineering. 2019; 16(5):5419–

5450. https://doi.org/10.3934/mbe.2019270 PMID: 31499719

51. Perthame B. Transport Equations in Biology. Frontiers in Mathematics. Basel: Birkhäuser Basel; 2007.
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