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Background and objectives: Myasthenia gravis (MG) is a T cell-driven,

autoantibody-mediated disorder affecting transmission in neuromuscular

junctions. The associations between the peripheral T cells and MG have been

extensively studied. However, they are mainly of observational nature, thus

limiting our understanding of the effect of inflammatory biomarkers on MG risk.

With large data sets now available, we used Mendelian randomization (MR)

analysis to investigate whether the biomarkers on T cells are causally associated

with MG and further validate the relationships.

Methods: We performed a two-sample MR analysis using genetic data from

one genome-wide association study (GWAS) for 210 extensive T-cell traits in

3,757 general population individuals and the largest GWAS for MG currently

available (1,873 patients versus 36,370 age/gender-matched controls) from US

and Italy. Then the biomarkers of interest were validated separately in two

GWASs for MG in FIN biobank (232 patients versus 217,056 controls) and UK

biobank (152 patients versus 386,631 controls).

Results: In the first analysis, three T-cell traits were identified to be causally

protective for MG risk: 1) CD8 on terminally differentiated CD8+ T cells (OR

[95% CI] = 0.71 [0.59, 0.86], P = 5.62e-04, adjusted P =2.81e-02); 2) CD4+

regulatory T proportion in T cells (OR [95% CI] = 0.44 [0.26, 0.72], P = 1.30e-03,

adjusted P =2.81e-02); 3) HVEM expression on total T cells (OR [95% CI] = 0.67

[0.52, 0.86], P = 1.61e-03, adjusted P =2.81e-02) and other eight T-cell

subtypes (e.g., naïve CD4+ T cells). In particular, HVEM is a novel immune

checkpoint on T cells that has never been linked to MG before. The SNPs on the

TNFRSF14 per se further support a more direct link between the HVEM and MG.

The validation analysis replicated these results in both FIN and UK biobanks.

Both datasets showed a concordant protective trend supporting the findings,

albeit not significant.
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Conclusion: This study highlighted the role of HVEM on T cells as a novel

molecular-modified factor for MG risk and validated the causality between T

cells and MG. These findings may advance our understanding of MG’s

immunopathology and facilitate the future development of predictive

disease-relevant biomarkers.
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Introduction

Myasthenia gravis (MG) is an autoimmune disease that

main ly affects the postsynapt ic membrane at the

neuromuscular junction. Fatigability and weakness in skeletal

muscles are the representing clinical features. Immune

dysregulation in MG mainly involves malfunctioned T cells,

autoreactive B cells, and autoantibody production (1).

Autoantibodies that were against postsynaptic membrane

components mainly consist of the anti-acetylcholine receptor

(AChR), anti-muscle specific kinase (MuSK), and lipoprotein-

related protein 4 (LRP4) antibodies (2).

The thymus is a gland where T cells differentiate and mature.

The removal of thymus (thymectomy) brought long-term

benefits by improving the clinical outcome in thymomatous

and non-thymomatous MG patients (3, 4) . In the

immunological pathogenesis of AChR-associated MG, the

thymus releases AChR autoreactive T cells to activate

peripheral AChR-directed B cells (5). Besides, chronic

inflammation maintained by circulating T helper 17 (Th17)

cells, autoantibody production promoted by follicular T (Tfh)

cells, and impaired rebalancing function of regulatory T (Treg)

cells contribute to the MG exacerbation (6). In contrast, CD8+ T

cells were involved in MG pathogenesis, and there are relatively

very few studies investigating the exact correlations (7). Current

studies on T cells and MG were mainly conventional

and observational.

Mendelian randomization (MR) uses genetic variants as the

exposure proxy of the exposure to examine the causal effect of

that exposure on the outcome (8). The correlations between

genetic variants and MG have been explored in several genome-

wide association studies (GWASs) and human leukocyte antigen

(HLA) haplotype analysis, by which T-cell relevant genes,

including CTLA4, TNFRSF11A, PTPN22, and the HLA

haplotypes, have been implicated in the pathogenesis of MG

(9–12). With now available large data sets, MR analysis may be

an elegant tool to explore the novel biomarkers from T cells with

causal impacts on MG risk, which has rarely been performed in

this field.
02
We hypothesized that molecules in peripheral T cell traits

have direct causal effects on MG risk. A two-sample MR study

was performed to determine this causal relationship by

leveraging extensive T-cell traits from 3,757 general

population-derived individuals and the largest GWAS on MG

with 1,873 patients and 36,370 age- and gender-matched healthy

controls. The results were further replicated in both FIN biobank

with 217,288 individuals and UK biobank with 386,783

individuals. This study may establish causal links between the

T-cell relevant molecules and MG development.
Materials and methods

Data sources

The current study applied a two-sample MR method to

analyze causal relationships between 210 T-cell traits and MG.

The data sources were chosen from studies with publicly

available summary GWAS data, and detailed information

about different GWAS datasets is displayed in Table 1. The

extensive T-cell traits (listed in Supplementary File 1) were

derived from the SardiNIA project composed of GWAS data

from 3,757 general population individuals who are native to the

central east coast of Sardinia, Italy (13). These T-cell traits

included subtypes in the T-cell panel (double negative, double

positive, CD4+, CD8+), regulatory T (Treg) panel, maturation

stages (central memory/effector memory/terminally

differentiated), and cell marker expression levels on different T

cells. As a primary analysis, the MG data were sourced from the

currently largest meta-GWAS conducted in the US and Italy

(1,873 patients versus 36,370 age/gender-matched controls)

(11). Only anti-acetylcholine receptor antibody-positive

(AChR+) MG patients were enrolled in this study, and

patients with positive test results for antibodies to muscle-

specific kinase (MuSK+) were excluded from the enrollment.

In the secondary analysis, the validation datasets include FIN

Biobank (https://gwas.mrcieu.ac.uk/datasets/finn-b-G6_
frontiersin.org
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MYASTHENIA/) (232 patients versus 217,056 controls) and

UK Biobank (http://www.nealelab.is/uk-biobank) (152

patients versus 386,631 controls). The MG phenotype was

ascertained from participants’ self-reported questionnaires;

information of MG subtypes is not applicable. All original

studies obtained ethical approval and informed consent from

the participants.
Instrument selection

For selecting the most unbiased and representing

instrumental genetic variables, a series of quality control

steps were conducted to determine eligible instrumental

SNPs (Figure 1). First, significant SNPs associated with

exposures with genome-wide significance (P < 5 × 10−8) and

minor allele frequency (MAF) > 0.01 were selected. Second,

given that many SNPs may locate adjacently in linkage

disequilibrium status in a GWAS, we performed a clumping

process (R2 < 0.001, window size = 10,000 kb) using European

reference samples from the 1000 genomes project and retained

only the SNP with the lowest P-value. Third, exposure SNPs

were extracted in the outcome GWAS summary data. If a

particular exposure SNP was not present in the outcome

GWAS, then a proxy SNP in linkage disequilibrium with the

exposure SNP (minimum LD r-squared value 0.8) was used.

Fourth, the exposure and outcome SNPs were harmonized, by

which ambiguous SNPs in which the effect allele cannot be

determined were removed. Palindromic SNPs were specifically

checked in original datasets to avoid unwanted reverse effects.

The strength of the genetic instrument was evaluated by F-

statistics, and a weak instrument with F-statistic < 10 was

removed. The calculation of the F statistic is F = R2(n-k-1)/k

(1-R2), where R2 represents the exposure variance explained by

the instrumental SNPs, n is the sample size, and k represents

the number of instrumental variables (14). These stringently

selected SNPs were used as the instrumental variables for the

subsequent two-sample MR analysis.
Frontiers in Immunology 03
Two-sample MR analysis

Different MR methods were used to estimate the causative

effect of exposure variables on the outcome accordingly. The

Wald ratio method was used when only one instrumental SNP

was available, and the inverse variance weighting (IVW) method

was used when more than one SNP was presented. All causal

estimates were converted to odds ratios (ORs) for the outcome

which was a dichotomous phenotype. For exposure with more

than three SNPs available, sensitivity analyses were performed
TABLE 1 GWAS datasets used in this Mendelian randomization (MR) study.

Dataset Phenotype/
variable

First
author
(year)

Sample
size (cases/
controls)

Population Sex Phenotype ascertainment

Exposure 1 210 kinds of
T-cell traits
and markers

Orrù
(2020)

3,757 Sardinian
(Italy)

57.0%
female

Normal individuals’ peripheral blood was antibody-stained and processed for flow
cytometry

Outcome 1 Myasthenia
gravis

Chia
(2022)

38,243 (1,873/
36,370)

US and Italian 47.2%
female

Patients diagnosed in myasthenia gravis clinics: characteristic fatigable weakness
and electrophysiological and/or pharmacological abnormalities and confirmed by
the presence of anti-acetylcholine receptor antibodies

Outcome 2 Fin
biobank

217,288 (232/
217,056)

Finnish Mixed Self-reported phenotype (myasthenia gravis subtype information are not
applicable)

Outcome 3 UK
biobank

386,783 (152/
386,631)

UK Mixed Self-reported phenotype (myasthenia gravis subtype information are not
applicable)
FIGURE 1

The workflow of instrumental SNP selection and Mendelian
randomization (MR) analysis.
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using different MR methods which hold different assumptions at

the cost of reduced statistical power, including weighted median

(15), weighted mode (16), simple mode, MR Egger regression

(17), and MR-PRESSO (18). The Steiger directionality test was

performed in those significant results to validate whether the

assumption that exposure causes outcome is valid (19). For

exposures with less than three instrumental SNPs, pleiotropy

analysis was performed using the PhenoScanner database to

query additional associated traits found in previously published

GWASs (20). Finally, statistical power for each exposure was

calculated with a two-sided type-I error rate a = 0.05 (21).
MR assumptions

Three core instrumental variable assumptions for this study

were specifically considered: 1) Relevance: instrumental SNPs are

associated with the exposure of T-cell signatures. The genetic

bases for T-cell functions and subtypes have been fully

investigated, and genetically engineered T-cell immunotherapies

have provided remarkable clinical success (22). We also calculated

the F-statistic for each T-cell signature, and only those

instrumental SNPs with F-statistic > 10 were considered

qualified. 2) Independence: there is no confounder between the

instrumental SNPs and the outcome. Only genetic data sourced

from European ancestry and both-sex populations were used in

this study to avoid common confounders due to demographic

variety. 3) Exclusion restriction: instrumental SNPs affect the

outcome exclusively through their potential effects on the

exposure T-cell signatures. The pathological mechanisms of how

irregulated T cells cause MG have been explained in the

introduction. To identify potential horizontal pleiotropy, we also
Frontiers in Immunology 04
searched the PhenoScanner database to find other impacts that

might be caused by those instrumental SNPs.
Statistical analysis

We performed the MR analyses in the R, version 4.1.2 (R

Foundation for Statistical Computing, Vienna, Austria), with the

TwoSampleMR package (23). Other packages used for

processing data and generating figures include Tidyverse,

Rsnps, and Forestplot. Since exposures (T-cell traits) were

repeatedly compared with each outcome (MG), the P-values

were adjusted by the false discovery rate (FDR) method.
Results

The detailed characteristics of the instrumental SNPs

associated with 210 T-cell traits (SNP n = 630) used in this

study are displayed in Supplementary File 1. The MR findings

between them and the outcome in each dataset are displayed in

Supplementary File 2. The pleiotropy analysis results for those

significant results are displayed in Supplementary File 3.
Primary analysis: The US and
Italian cohorts

In the primary analysis, after FDR adjustment, the top 15

significant variables are as specifically displayed in Figure 2. All

selected instrumental variants showed strong F statistics

(median 223.24, IQR 1167.90) with the exposure, and the
FIGURE 2

MR result in primary analysis (US and Italian patients). SNP N, number of SNP. The top 12 ranked T-cell traits by P value show protective effect
on MG risk after false discovery rate (FDR) adjustment.
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powers of all MR analyses were relatively large (median 1.00,

IQR 0.03), as shown in Table 2. We identified three T-cell traits

of interest which had protective effects on the risk of MG: 1)

CD8 on terminally differentiated CD8+ T cells (OR [95%

CI] = 0.71 [0.59, 0.86], P = 5.62e-04, adjusted P =2.81e-02); 2)

CD4+ Tregs proportion in T cells (OR [95% CI] = 0.44 [0.26,

0.72], P = 1.30e-03, adjusted P =2.81e-02); 3) HVEM on total T

cells (OR [95% CI] = 0.67 [0.52, 0.86], P = 1.61e-03, adjusted

P =2.81e-02) and other eight T-cell subtypes (naive CD4+ T cells,

terminally differentiated CD4+ T cells, CD8+ T cells, effector

memory CD4+ T cells, CD4 regulatory T cells, effector memory

CD8+ T cells, central memory CD4+ T cells, CD45RA- CD4+ T

cells). The Steiger directionality test showed that all results

conformed to the right exposure to outcome direction.

Among them, no exposure has instrumental SNPs of more

than 2. Then the Wald ratio or IVW methods were used to

conduct the MR analysis, and no proxy SNP was used in these

exposures. Two instrumental SNPs (rs2571390, rs2523887) for

exposure “CD8 on terminally differentiated CD8+ T cell” were

not located on any known genes. Three SNPs corresponding to

HVEM expression levels on T subsets were located on the

HVEM encoding gene, TNFRSF14 perse (rs1886730,
Frontiers in Immunology 05
rs2227313), and a non-coding RNA gene LOC100996583

(rs2182176). One SNP was related to the exposure “CD4

regulatory T cell %T cell” and was located on splicing factor

45 encoding gene RBM17 (rs1571025). Notably, HVEM is a

novel immune checkpoint that has never been linked with MG

before. The SNPs found on the TNFRSF14 per se indicate a more

direct link between the HVEM on T cells and MG.
Secondary analysis: Validations in FIN
and UK biobanks

Since MG is a rare autoimmune disease with a low

prevalence (around 12 per 100,000 population) (24), and

another GWAS dataset with a large sample size of patients was

not available, hence we conducted this replication in publicly

available FIN and UK biobanks (Figure 3). Before P-value

adjustment, the exposure “CD8 on Terminally Differentiated

CD8+ T cell” in the UK biobank barely reached significance in

MR analysis (OR [95% CI] = 0.61 [0.37, 1.00], P =5.01e-02),

while after FDR adjustment, all results in both datasets showed a

similar protective tendency with the primary analysis but did not
TABLE 2 Detailed MR result in the primary analysis (the US and Italian cohorts).

Exposure Method SNP
N

OR r2.exposure r2.outcome P value
(adjusted)

Power F statistic Correct
causal

direction

Steiger
pval

CD8 on terminally
differentiated CD8+ T cell

Inverse variance
weighted

2 0.71 4.21E-02 3.11E-04 2.81E-02 0.83 82.46 TRUE 4.12E-23

HVEM on naive CD4+ T cell Wald ratio 1 0.60 3.30E-02 3.11E-04 2.81E-02 0.98 128.21 TRUE 8.12E-09

HVEM on terminally
differentiated CD4+ T cell

Wald ratio 1 0.59 5.61E-02 6.11E-04 2.81E-02 1.00 223.24 TRUE 5.59E-14

HVEM on CD8+ T cell Wald ratio 1 0.61 6.83E-02 6.11E-04 2.81E-02 1.00 275.09 TRUE 3.59E-17

HVEM on effector memory
CD4+ T cell

Wald ratio 1 0.65 4.15E-02 3.01E-04 2.81E-02 0.96 162.47 TRUE 5.15E-11

CD4 regulatory T cell %T cell Wald ratio 1 0.44 2.00E-02 5.41E-04 2.81E-02 1.00 76.69 TRUE 2.25E-11

HVEM on effector memory
CD8+ T cell

Wald ratio 1 0.67 2.42E-01 1.56E-03 2.81E-02 1.00 1196.25 TRUE 4.36E-67

HVEM on central memory
CD4+ T cell

Wald ratio 1 0.67 2.55E-01 1.56E-03 2.81E-02 1.00 1286.80 TRUE 6.24E-72

HVEM on CD45RA- CD4+ T
cell

Wald ratio 1 0.68 2.75E-01 1.56E-03 2.81E-02 1.00 1423.66 TRUE 3.66E-79

HVEM on T cell Wald ratio 1 0.67 2.43E-01 1.56E-03 2.81E-02 1.00 1208.15 TRUE 1.00E-67

HVEM on CD4+ T cell Wald ratio 1 0.67 2.66E-01 1.56E-03 2.81E-02 1.00 1362.65 TRUE 5.93E-76

HVEM on central memory
CD8+ T cell

Wald ratio 1 0.69 2.96E-01 1.56E-03 2.81E-02 1.00 1578.89 TRUE 3.11E-87

CD4 regulatory T cell %CD4+
T cell

Inverse variance
weighted

2 0.59 3.81E-02 5.76E-04 1.38E-01 0.99 74.38 TRUE 1.77E-22

CD4 on HLA DR+ CD4+ T
cell

Wald ratio 1 1.63 1.32E-02 1.50E-04 2.46E-01 0.66 50.04 TRUE 4.35E-08

Effector memory CD8+ T cell
%T cell

Inverse variance
weighted

2 1.25 2.65E-02 1.56E-04 2.75E-01 0.33 51.15 TRUE 1.71E-17
front
R2.exposure and R2.outcome represent the phenotype variance which can be explained by the corresponding instrumental SNPs.
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reach significance. In the FIN biobank, the CD4+ regulatory T

cell% T cell OR [95% CI] is 0.81 [0.15, 4.42], and HVEM on

overall T cells is 0.83 [0.44, 1.56]. In the UK biobank, the CD4+

regulatory T cell% T cell OR [95% CI] is 1.05 [0.27, 4.04], and

HVEM on overall T cells is 1.00 [0.52, 1.93]. This may be due to

the much lower power in the FIN (median 0.09, IQR 0.04) and

UK biobanks (median 0.03, IQR 0.04), as shown in Tables 3, 4.

Still, the Steiger directionality test showed that all results were

consistent with the same exposure to outcome direction.
Discussion

This is the first MR study exploring the causal effects of risk

factors on MG to the best of our knowledge. MR uses genetic

variants as instrumental variables, fixed at conception, to

conduct causal inferences about the impact of modifiable risk

factors, which can overcome some types of confounding (25).

This study was reported in accordance with the Strengthening

the Reporting of Observational Studies in Epidemiology Using

Mendelian Randomization (STROBE-MR) Statement (26). Our

primary analysis extensively evaluated the causality between T-

cell traits and MG, and three protective factors were identified in

our study.

The first trait is the higher CD8 expression on terminally

differentiated CD8+ T cells, the most mature CD8+ T cells

residing in the periphery. Previous studies found that CD8

expression levels were lower in CD8+ T cells of chronic graft-

versus-host disease and terminally differentiated effector
Frontiers in Immunology 06
memory T-cell (TEMRA) autoimmune lymphoproliferative

syndrome (27, 28). CD8 is a coreceptor for the antigen-

presenting process when activating T cells, and its

downregulation on tissue-resident T cells has been postulated

as a natural desensitization mechanism for prolonged antigen

activation (29), which is common in the context of MG per se

and its comorbidity with other autoimmune diseases (30).

Higher CD8 expression levels on terminally differentiated CD8

+ T cells represent an inert activated status. These inert CD8+ T

cells are less likely to be activated by MG-related autoantigens,

hence a less likely inclination to develop MG.

The second protective trait is a higher proportion of CD4+

Tregs, which is in accordance with previous studies. Previous

GWASs on MG have identified the correlations between variants

in genes (e.g., CTLA4 and PTPN22) with MG risk, which

directly modulates the proportion or function of CD4+ Tregs

(9, 11). Biological evidence from experimental autoimmune MG

(EAMG) models has explained the potential mechanisms in

which CD4+ Tregs suppressed the abnormal proliferation of T

effector cells in response to MG-related antigens (31, 32). Our

MR analysis validated the causality between CD4+ Tregs and

MG, which supported the hypothesis that individuals with more

CD4+ Tregs would be less likely to develop MG.

Interestingly, the third protective trait is the higher HVEM

expression on various T-cell subtypes. HVEM, which belongs to

the tumor necrosis factor receptor (TNFR) superfamily, has been

recognized as a novel immune checkpoint in recent years (33).

HVEM is expressed primarily on immune cells and functions as

a ligand to activate the B- and T-lymphocyte attenuator (BTLA)
FIGURE 3

MR result in secondary analysis (FIN and UK Biobanks). Before P value adjustment, only the first ranked exposure “CD8 on terminally
differentiated CD8+ T cell” barely showed significance in the UK biobank dataset. However, after FDR adjustment, no exposures reach
significance, but the tendencies of which are basically in accordance with the primary analysis (as protective factors). This can be explained by
the low powers in all analysis due to paucity in patients.
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on other immune cells (34). Two categories of BTLA are CTLA-

4/CD28/CD80/CD86 (function at the early phase of T-cell

activation) and PD-1/PD-L1/PD-L2 (control the effector phase

of the immune response in peripheral tissues) (35). The former

(CTLA-4) expression has been found lower in MG patients, and

the latter (PD-1) has been linked with immune checkpoint

inhibitor-related myasthenia gravis (36, 37). As an immune

inhibiting ligand, higher HVEM expression on T cells may be

a protective factor for MG. The other function of HVEM is that

it mediates the entry of herpes simplex virus type 1 (HSV-1) and

HSV-2 into cells, which do not include other subtypes such as

Epstein–Barr (EB) virus and varicella zoster virus (VZV) (38).

We think that this might explain why fewer HSV-infected MG

patient cases were reported than those EB and VZV cases in

clinical settings (39, 40). However, studies with larger sample

size and stringent design are needed to validate this in future.

Noted that MG is a rare neuromuscular disease; the sample

size derived from now available GWAS datasets is still not
Frontiers in Immunology 07
satisfactory for data-driven analysis. However, we attempted to

replicate the findings in another two independent biobanks. In

the replication process, only similar protective tendencies, albeit

not significant, were found in these exposures, which is

restrained by the small power due to paucity in patients. Given

that our results can explain the potential biological mechanism

underlying T cells in MG genesis, this MR analysis basically

satisfied the required assumptions in MR studies (relevance,

independence, and exclusion restriction) (25).

There are several limitations in this study: 1) The primary

results were derived from AChR+ MG patients, and the secondary

results derived fromMGwith unknown subtypes. Hence, caution is

needed to interpret the results. 2) There is insufficient validation in

large exposure and outcome datasets. 3) The participants of the FIN

and UK biobanks were enrolled by self-reported results, which may

introduce biases in the results. 4) Horizontal pleiotropy was found

in selected SNPs with other autoimmune diseases, which may

interfere with MG pathogenesis by other immunological
TABLE 3 Detailed MR result in the secondary analysis (FIN biobank).

Exposure Method SNP
N

OR r2.exposure r2.outcome P value
(adjusted)

Power F statistic Correct
causal

direction

Steiger
pval

CD8 on terminally
differentiated CD8+ T cell

Inverse variance
weighted

2 0.76 4.21E-02 7.75E-05 6.96E-01 0.13 82.46 TRUE 4.58031E-
25

HVEM on naive CD4+ T cell Wald ratio 1 0.71 3.30E-02 2.28E-05 6.96E-01 0.15 128.21 TRUE 5.39004E-
10

HVEM on terminally
differentiated CD4+ T cell

Wald ratio 1 0.74 2.81E-02 1.67E-05 6.96E-01 0.12 108.40 TRUE 1.07591E-
08

HVEM on CD8+ T cell Wald ratio 1 0.76 3.41E-02 1.67E-05 6.96E-01 0.12 132.69 TRUE 2.30064E-
10

HVEM on effector memory
CD4+ T cell

Wald ratio 1 0.81 4.15E-02 1.23E-05 6.96E-01 0.10 162.47 TRUE 1.89862E-
12

CD4 regulatory T cell %T cell Wald ratio 1 0.81 1.00E-02 1.59E-06 8.18E-01 0.05 37.96 TRUE 2.82692E-
08

HVEM on effector memory
CD8+ T cell

Wald ratio 1 0.83 4.03E-02 9.47E-06 6.96E-01 0.08 157.55 TRUE 3.68938E-
12

HVEM on central memory
CD4+ T cell

Wald ratio 1 0.83 4.25E-02 9.47E-06 6.96E-01 0.09 166.83 TRUE 8.65081E-
13

HVEM on CD45RA- CD4+ T
cell

Wald ratio 1 0.83 4.58E-02 9.47E-06 6.96E-01 0.09 180.31 TRUE 1.0565E-
13

HVEM on T cell Wald ratio 1 0.83 4.06E-02 9.47E-06 6.96E-01 0.08 158.78 TRUE 3.0409E-
12

HVEM on CD4+ T cell Wald ratio 1 0.83 4.44E-02 9.47E-06 6.96E-01 0.09 174.38 TRUE 2.66275E-
13

HVEM on central memory
CD8+ T cell

Wald ratio 1 0.84 4.93E-02 9.47E-06 6.96E-01 0.09 194.87 TRUE 1.09886E-
14

CD4 regulatory T cell %CD4+
T cell

Inverse variance
weighted

2 0.86 2.35E-02 2.17E-06 8.18E-01 0.05 45.13 TRUE 1.04689E-
17

CD4 on HLA DR+ CD4+ T
cell

Inverse variance
weighted

2 2.34 2.47E-02 2.76E-04 6.96E-01 0.53 47.52 TRUE 5.01601E-
14

Effector memory CD8+ T cell
%T cell

Inverse variance
weighted

2 1.05 2.65E-02 7.35E-06 8.18E-01 0.03 51.15 TRUE 1.54993E-
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pathways, not only through T cells. 5) The ancestry of GWAS data

used in this study is mainly of European origin, and further GWASs

from other races are needed to validate the results.

Conclusions

In conclusion, we found three T-cell-related traits as

potential protective factors for the risk of MG in the primary

analysis: 1) CD8 on terminally differentiated CD8+ T cells, 2)

CD4+ regulatory T cell% T cells, and 3) HVEM on overall T cells.

In the future, these factors may serve as biomarkers for

forecasting MG development and provide new insights into

the underlying mechanism.
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TABLE 4 Detailed MR result in the secondary analysis (UK biobank).

Exposure Method SNP
N

OR r2.exposure r2.outcome P value
(adjusted)

Power F statistic Correct
causal

direction

Steiger
pval

CD8 on terminally
differentiated CD8+ T cell

Inverse variance
weighted

2 0.61 4.21E-02 1.09E-05 7.52E-01 0.24 82.46 TRUE 3.72264E-
28

HVEM on naive CD4+ T cell Wald ratio 1 0.75 3.30E-02 1.52E-06 9.96E-01 0.10 128.21 TRUE 1.30105E-
10

HVEM on terminally
differentiated CD4+ T cell

Wald ratio 1 0.83 2.81E-02 5.54E-07 9.96E-01 0.06 108.40 TRUE 3.14977E-
09

HVEM on CD8+ T cell Wald ratio 1 0.84 3.41E-02 5.54E-07 9.96E-01 0.06 132.69 TRUE 5.56983E-
11

HVEM on effector memory
CD4+ T cell

Wald ratio 1 0.82 4.15E-02 9.42E-07 9.96E-01 0.07 162.47 TRUE 4.52695E-
13

CD4 regulatory T cell %T cell Wald ratio 1 1.05 1.00E-02 1.36E-08 9.96E-01 0.03 37.96 TRUE 4.94225E-
09

HVEM on effector memory
CD8+ T cell

Wald ratio 1 1.00 4.03E-02 5.05E-11 9.96E-01 0.03 157.55 TRUE 7.87879E-
13

HVEM on central memory
CD4+ T cell

Wald ratio 1 1.00 4.25E-02 5.05E-11 9.96E-01 0.03 166.83 TRUE 1.72983E-
13

HVEM on CD45RA- CD4+ T
cell

Wald ratio 1 1.00 4.58E-02 5.05E-11 9.96E-01 0.03 180.31 TRUE 1.92226E-
14

HVEM on T cell Wald ratio 1 1.00 4.06E-02 5.05E-11 9.96E-01 0.03 158.78 TRUE 6.43707E-
13

HVEM on CD4+ T cell Wald ratio 1 1.00 4.44E-02 5.05E-11 9.96E-01 0.03 174.38 TRUE 5.04944E-
14

HVEM on central memory
CD8+ T cell

Wald ratio 1 1.00 4.93E-02 5.05E-11 9.96E-01 0.03 194.87 TRUE 1.80808E-
15

CD4 regulatory T cell %CD4+
T cell

Inverse variance
weighted

2 0.77 2.35E-02 2.81E-06 9.96E-01 0.07 45.13 TRUE 4.98314E-
19

CD4 on HLA DR+ CD4+ T
cell

Inverse variance
weighted

2 0.96 2.47E-02 1.11E-05 9.96E-01 0.03 47.52 TRUE 1.3121E-
17

Effector memory CD8+ T cell
%T cell

Inverse variance
weighted

2 0.83 2.65E-02 9.55E-06 9.96E-01 0.06 51.15 TRUE 5.80203E-
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