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Abstract: Gain-of-function mutations in PCSK9 (proprotein convertase subtilisin/kexin type 9)
lead to reduced uptake of LDL (low density lipoprotein) cholesterol and, therefore, increased
plasma LDL levels. However, the mechanism by which these mutants reduce LDL reuptake is
not fully understood. Here, we have used molecular dynamics simulations, MM/PBSA (Molecular
Mechanics/Poisson–Boltzmann Surface Area) binding affinity calculations, and residue interaction
networks, to investigate the protein–protein interaction (PPI) disruptive effects of two of PCSK9′s
gain-of-function mutations, Ser127Arg and Asp374Tyr on the PCSK9 and LDL receptor complex. In
addition to these PPI disruptive mutants, a third, non-interface mutation (Arg496Trp) is included as
a positive control. Our results indicate that Ser127Arg and Asp374Tyr confer significantly improved
binding affinity, as well as different binding modes, when compared to the wild-type. These
PPI disruptive mutations lie between the EGF(A) (epidermal growth factor precursor homology
domain A) of the LDL receptor and the catalytic domain of PCSK9 (Asp374Tyr) and between the
prodomain of PCSK9 and the β-propeller of the LDL receptor (Ser127Arg). The interactions involved
in these two interfaces result in an LDL receptor that is sterically inhibited from entering its closed
conformation. This could potentially implicate the prodomain as a target for small molecule inhibitors.

Keywords: PCSK9; LDLR; Molecular Dynamics; MM/PBSA; protein–protein interaction (PPI);
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1. Introduction

Cardiovascular disease is the number one killer in the United States; according to the Center
for Disease Control and Prevention, nearly 650,000 people died of heart disease in 2017, accounting
for roughly 1 in 4 deaths [1]. Autosomal dominant familial hypercholesterolemia (FH), defined by
elevated LDL (low density lipoprotein) levels in which 70–95% of cases result from mutations in one of
three genes (apolipoprotein B [APOB], low-density lipoprotein receptor [LDLR], proprotein convertase
subtilisin/kexin type 9 [PCSK9]) [2], is associated with a substantial increase in coronary heart disease
and atherosclerotic cardiovascular disease [3] and affects roughly 1 in 250 U.S. adults [4]. A recent
meta-analysis of nearly 200,000 patients in statin therapy trials determined a 21% reduction in major
vascular events for every 1.0 mmol/L reduction in LDL [5].

LDL has been shown to be the main driving force behind atherosclerotic cardiovascular disease [6,7].
Derived from VLDL (very low density lipoprotein) and IDL (intermediate density lipoprotein) particles,
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LDL carries the majority of circulating cholesterol [8]. Each LDL molecule has one apolipoprotein B
as its only protein component [9], enveloping the surface of LDL and providing a macromolecular
scaffold and structural integrity [7]. LDL clearance in the liver is mediated by the LDL receptor (LDLR).
Briefly, the LDL receptor binds to Apo B on the surface of the LDL via its ligand binding domains.
The LDLR/LDL complex is internalized into the cell via clathrin-mediated endocytosis. The LDL is
released in endosomes due to the lowered pH, leading to eventual lysosomal degradation. LDLR
enters a closed conformation and is recycled to the cell surface [10]. There are currently nearly 2000
reported variants in the LDLR gene [11], which are classified by the type of defect in the LDLR protein.
These defects include no LDLR synthesis, no LDLR transport, no LDL cholesterol binding, no LDL
cholesterol internalization, and no LDLR recycling [12]. These mutations are the most common cause
of FH, followed by mutations to APOB.

The link between FH and the gene encoding proprotein convertase subtilisin/kexin type 9 (PCSK9),
thereby establishing a third locus in FH, was first made in 2003 [13]. Patients in a French cohort
with PCSK9 mutations displayed elevated LDL cholesterol levels. Shortly after, the binding site for
PCSK9 to the EGF(A) (epidermal growth factor precursor homology domain A) domain of LDLR was
determined [14], with evidence that the interaction rerouted LDLR to lysosomes for degradation as
opposed to being recycled to the cell surface; crystal structures of the interaction [15,16] followed
shortly thereafter. Within a few years, the crystal structures of the PCSK9/LDLR interaction including
the entire EGFPH (epidermal growth factor precursor homology domain, consisting of EGF(A), EGF(B),
the β-propeller, and EGF(C)) region of LDLR were solved [17], as well as a structure including nearly
all of L7 of the ligand binding domain (PDB ID: 3M0C). A weak interaction between Leu108 of the
prodomain of PCSK9 and Leu626 in the β-propeller of LDLR appears to stabilize the receptor in an open
conformation, though the interface was described as making a marginal contribution to the interaction.

The initial study [13] identified two mutations, Ser127Arg and Phe216Leu, as disease-causing.
Another mutation, Asp374Tyr, was discovered shortly thereafter [18,19]. The Ser127Arg and Asp374Tyr
mutations have been shown to have a higher binding affinity for LDLR [20], while the Phe216Leu
mutation has shown to be protective against deactivation by furin cleavage [21]. A fourth mutation,
Arg496Trp, was found in another patient with elevated cholesterol [22]. A recent preprint suggests this
mutation is unable to be bound by LDL cholesterol, thereby increasing the circulating PCSK9 available
to bind LDLR [23].

The exact mechanism for the higher binding affinity in the Asp374Tyr and Ser127Arg mutants
has yet to be elucidated. As these two mutations are implicated in a significant increase in circulating
cholesterol, the mechanism by which these mutations increase the degradation of LDLR could be a target
for therapeutic interventions for cardiovascular disease. Additionally, both are surface mutations
on PCSK9 and are potentially implicated in perturbed protein–protein interactions. Here, we use
molecular dynamics (MD) simulations, binding affinity calculations, and residue interaction network
analysis to determine how these two gain-of-function (Figure 1a) mutations in PCSK9 influence the
protein–protein interaction network effect with LDLR.
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Figure 1. Depiction of the studied mutants. (a) Domain composition of proprotein convertase 
subtilisin/kexin type 9 (PCSK9). The prodomain (residues 31-152) is autocleaved and remains non-
covalently bound to the catalytic domain. (b) Domain composition of low-density lipoprotein 
receptor (LDLR). The ligand binding domain is composed of seven (L1-L7) repeats, each roughly 40 
amino acids in length. The epidermal growth factor precursor homology domain (EGFPH) is 
composed of epidermal growth factor precursor homology domain A (EGF(A)), the β-propeller, 
EGF(B), and EGF(C), and followed by a transmembrane region. (c) Root-mean-squared deviation 
(RMSD) plot for each trajectory over each 500-nanosecond production run. Wild-type is in purple, 
Ser127Arg is green, Asp374Tyr is yellow, and Arg496Trp is red. (d) Crystal structure of the 
PCSK9/LDLR complex (PDB ID: 3M0C). Clinically relevant mutations investigated in this study are 
depicted as spheres. Insets indicate the protein–protein interactions incident at positions 127 and 374. 

2. Results 

2.1. RMSD/RMSF Analysis of PPI Disruptive Mutations on PCSK9 and LDLR Complex 

Early in the MD simulation of the wild-type system of PCSK9 complexed to LDLR, the β-
propeller moves away from the prodomain of PCSK9 because of the flexible nature of the LDL 
receptor’s EGF(A) and EGF(B) domains, causing an immediate spike in the overall root-mean-square 
deviation (RMSD). A slight contraction over the length of the EGF domains occurs shortly after, and 
the β-propeller comes in contact with a loop over residues 70–75 in the prodomain of PCSK9. Another 
spike in the RMSD occurs at roughly 260 nanoseconds; at this point in the simulation, the β-propeller 
rotates toward the C-terminal domain of PCSK9, rotating back shortly after and settling into its final 
conformation. The Asp374Tyr mutant engages the β-propeller very early in the simulation, affording 
a much lower overall RMSD, but otherwise has a similar interaction in this region. 

The Ser127Arg mutation affords significantly higher stability early (as well as late) in the MD 
simulation. The interaction between the mutated residue and the β-propeller is immediate and 
present throughout the simulation. Between 130–165 nanoseconds of the simulation, there is a slight 
shift in this interaction, which then re-stabilizes and remains nearly constant throughout the 
remainder of the simulation. The Arg496Trp mutation similarly has a more marked deviation 
throughout the first ~325 nanoseconds of the simulation, at which point it settles into its final 
conformation. Early in the trajectory the β-propeller moves away from the prodomain of PCSK9, but 
the EGF(B) loop does not change conformations along with this movement, keeping this portion of 
the β-propeller presented to the prodomain. Interestingly, and in contrast to the wild-type and 

Figure 1. Depiction of the studied mutants. (a) Domain composition of proprotein convertase
subtilisin/kexin type 9 (PCSK9). The prodomain (residues 31-152) is autocleaved and remains
non-covalently bound to the catalytic domain. (b) Domain composition of low-density lipoprotein
receptor (LDLR). The ligand binding domain is composed of seven (L1-L7) repeats, each roughly
40 amino acids in length. The epidermal growth factor precursor homology domain (EGFPH) is
composed of epidermal growth factor precursor homology domain A (EGF(A)), the β-propeller, EGF(B),
and EGF(C), and followed by a transmembrane region. (c) Root-mean-squared deviation (RMSD) plot
for each trajectory over each 500-nanosecond production run. Wild-type is in purple, Ser127Arg is
green, Asp374Tyr is yellow, and Arg496Trp is red. (d) Crystal structure of the PCSK9/LDLR complex
(PDB ID: 3M0C). Clinically relevant mutations investigated in this study are depicted as spheres. Insets
indicate the protein–protein interactions incident at positions 127 and 374.

2. Results

2.1. RMSD/RMSF Analysis of PPI Disruptive Mutations on PCSK9 and LDLR Complex

Early in the MD simulation of the wild-type system of PCSK9 complexed to LDLR, the β-propeller
moves away from the prodomain of PCSK9 because of the flexible nature of the LDL receptor’s EGF(A)
and EGF(B) domains, causing an immediate spike in the overall root-mean-square deviation (RMSD).
A slight contraction over the length of the EGF domains occurs shortly after, and the β-propeller comes
in contact with a loop over residues 70–75 in the prodomain of PCSK9. Another spike in the RMSD
occurs at roughly 260 nanoseconds; at this point in the simulation, the β-propeller rotates toward
the C-terminal domain of PCSK9, rotating back shortly after and settling into its final conformation.
The Asp374Tyr mutant engages the β-propeller very early in the simulation, affording a much lower
overall RMSD, but otherwise has a similar interaction in this region.

The Ser127Arg mutation affords significantly higher stability early (as well as late) in the MD
simulation. The interaction between the mutated residue and the β-propeller is immediate and present
throughout the simulation. Between 130–165 nanoseconds of the simulation, there is a slight shift in
this interaction, which then re-stabilizes and remains nearly constant throughout the remainder of
the simulation. The Arg496Trp mutation similarly has a more marked deviation throughout the first
~325 nanoseconds of the simulation, at which point it settles into its final conformation. Early in the
trajectory the β-propeller moves away from the prodomain of PCSK9, but the EGF(B) loop does not
change conformations along with this movement, keeping this portion of the β-propeller presented
to the prodomain. Interestingly, and in contrast to the wild-type and Asp374Tyr mutants, the region
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surrounding residue 127 interacts strongly with the β-propeller of LDLR in this mutant after moving
back in contact with the prodomain.

The interface centered around the EGF(A) domain of LDLR remains consistent throughout all
four simulations. An investigation of the RMSF of PCSK9 (Supplementary Figure S1a) shows higher
fluctuations in this interface (centered around residue 374) in both the wild-type and Ser127Arg mutant
when compared to the Asp374Tyr mutant, indicating a slight stabilization in this area due to the
mutation. In both the wild-type and Asp374Tyr mutant, the L7 domain of LDLR (N-terminal in this
structure) interacts with a loop between residues 165 and 180 on PCSK9, leading to a stabilization in
these regions (Supplemental Figure S1b) when compared to the Ser127Arg mutant, for which this
interaction does not occur. As previously reported, residues in the ligand binding domains of LDLR
could potentially be important for PCSK9 binding [24]; however, due to the flexible nature of the ligand
binding domains, our simulations cannot conclusively determine the significance of the interaction
between L7 and PCSK9. Similarly, the loop between residues 210 and 220 have more flexibility in the
wild-type than both mutants. Again, the simulations are inconclusive regarding differences in this loop
because the loop is missing density in the crystal structure and is, therefore, modeled into the structure.

Due to the fluctuations in RMSD early in the trajectories (as a result of the high flexibility of
the EGF domains of LDLR), the root-mean-square fluctuation (RMSF) is also constructed for the
final 200 nanoseconds of simulation (data not shown). The overall RMSF drops significantly for the
wild-type over this portion of the trajectory, indicating the stabilization of the interaction also leads to
a stabilization of the residues. Interestingly, the entire complex has less fluctuation in the wild-type
over this portion of the trajectory than any of the mutants. The Asp374Tyr mutant displays marked
flexibility in the EGF(B) domain, which is stabilized in the wild-type and Ser127Arg mutants due the
loop folding back toward the β-propeller. While the C-terminus of LDLR, which would interface with
a membrane surface, is stabilized by curling onto itself in the wild-type, Asp374Tyr, and Ser127Arg
mutants, this region maintains an extended conformation in the Arg496Trp mutant, resulting in higher
fluctuations. Overall, no significant changes in the RMSF are noted as being concomitant with each
simulation attaining a stable conformation, and the overall decrease in RMSF from residues in loops is
expected for such a stable structure.

2.2. Ser127Arg/Asp374Tyr Improve the PCSK9-LDLR Interaction by MM/PBSA Analysis

The final 50 ns of each simulation were used for each analysis. Each system was sampled every
500 ps, resulting in 101 frames being used. The resulting binding affinities qualitatively match binding
data from previous in vitro studies with immobilized LDLR [20] (Table 1), which indicate an increase in
binding affinity for both Ser127Arg and Asp374Tyr mutants over wild-type. Furthermore, the affinity
for the Asp374Tyr mutant is higher than the Ser127Arg mutant, matching the previous assay. As
a positive control, the Arg496Trp mutant was included in the MM/PBSA calculations. We did not
anticipate any conformational change to occur related to this mutation; however, it is a clinically
relevant mutation which would allow us to further understand the impact changing the charge
distribution (replacing a positive residue with a neutral residue) could have on the binding affinity.
While the difference in the binding affinity between the wild-type and the Arg496Trp mutant is not as
great as for the PPI disruptive mutations, the binding affinity still increases over the wild-type. To
determine why, we decomposed the affinity by interaction type, domain, and by residue. It should be
noted that a per-residue decomposition of the polar and non-polar solvation energies will not add
up to the respective total energies, but the differences do not impact the qualitative nature of the
MM/PBSA calculations.

While the contribution to the binding affinity from the molecular mechanics energy decreases in
the Ser127Arg mutant versus wild-type (van der Waals plus electrostatic), the polar solvation energy
contribution to the binding increases (smaller positive number = better binding). In the Asp374Tyr
mutant, the polar and non-polar solvation energies contribute slightly less to the binding affinity
than the wild-type, but the total molecular mechanics energy contribution increases significantly.
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Interestingly, the total molecular mechanics binding was lowest for the Arg496Trp mutant, while also
having the most favorable value for polar solvation.

Table 1. Decomposition of the MM/PBSA energies by interaction type (uncertainty in parentheses).

(kJ/mol) Wild-type Asp374Tyr Arg496Trp Ser127Arg

van der Waals −738.7 (3.78) −544.8 (4.62) −495.0 (2.97) −495.8 (3.49)
Electrostatic −227.6 (18.5) -851.6 (23.3) 133.5 (16.5) −391.1 (15.4)

Polar Solvation 1562.6 (24.1) 1615.5 (26.9) 878.4 (18.6) 1138.7 (17.3)
Non-polar −89.7 (0.593) −76.8 (0.723) −64.0 (0.507) −64.2 (0.525)

Total 506.5 (18.7) 143.0 (12.0) 453.3 (13.5) 187.4 (14.2)

2.3. A direct Contribution by Ser127Arg and Asp374Tyr to the PCSK9-LDLR Interaction by the Domain
Decomposition of MM/PBSA

As a second qualitative measure, the binding affinity was separated for the domains of each
protein to further identify how the affinity changes due to mutation (Table 2, Supplementary Figure S2).
Furthermore, the interactions can be combined as PCSK9 prodomain with the LDLR β-propeller and
PCSK9 catalytic/C-terminal domain (catalytic) with the EGF(A), EGF(B), and L7 domains (loop) of
LDLR. A comparison of the prodomain/β-propeller interactions reveals the wild-type and Asp374Tyr
mutant have a similar affinity in this region, while the affinity in the Arg496Trp mutant is improved over
wild-type, and the Ser127Arg mutant’s interaction in this region is even further enhanced. Similarly,
the interaction between the loop and catalytic domain in the Asp374Tyr mutant is much higher than in
the wild-type, and even further enhanced when compared to the Ser127Arg mutant. The Arg496Trp
mutant is the least favorable interactor in this region. The difference between the Ser127Arg mutant
and wild-type can be attributed to the L7 domain of the wild-type system interacting with PCSK9,
while in the Ser127Arg mutant this terminal loop remains away from PCSK9, as in the crystal structure.
This interaction is present in the Asp374Tyr mutant as well; however, this does not explain the large
discrepancy with the Arg496Trp mutant.

Table 2. A per-residue decomposition of the binding affinities grouped by domain and interaction.

(kJ/mol) Wild-type Asp374Tyr Arg496Trp Ser127Arg

PCSK9 Prodomain −147.5 −124.3 −281.9 −417.2
PCSK9 Catalytic 375.7 185.9 506.4 438.1

Loop 248.9 93.9 290.6 250.6
LDLR β-propeller 4.6 −41.2 −77.9 −106.4

Prodomain/β-propeller −143.0 −165.5 −359.8 −523.6
Catalytic/Loop 624.6 279.8 797.0 688.7

Looking into the impact the difference in the total charge of the systems has on the binding lends
some clarity to some of the values. For instance, the C-terminal domain of PCSK9 (residues 450–682 in
this crystal structure) do not have any interaction with the LDL receptor. Because of this, it would be
expected that these residues would have little to no impact on the binding affinity. However, there is
a contribution made due to long-range electrostatic interactions and the lack of a cut-off to the vacuum
molecular mechanics interaction energy in MM/PBSA calculations. The Asp374Tyr and Ser127Arg
mutants, which have the lowest overall system charge, have the highest contribution to the binding
affinity (−91 and −95 kJ/mol, respectively). The wild-type system has one fewer positively charged
residue than each of these mutants with a contribution of −78 kJ/mol from the C-terminal domain.
The Arg496Trp mutation removes a positively charged arginine in the C-terminal domain, replacing it
with a neutral tryptophan. This results in a drop in the contribution from the C-terminal domain to
−37 kJ/mol. To further our understanding of the mechanism behind the PPI disruptive interactions, we
turned to residue interaction networks.



Int. J. Mol. Sci. 2020, 21, 1550 6 of 14

2.4. Residue Interaction Network Analysis Indicates Improved PCSK9/LDLR Binding by Ser127Arg and
Asp374Tyr

Residue interaction networks (RINs) were implemented in an effort to determine how these point
mutations impacted the local interaction networks between PCSK9 and LDLR. The networks used here
are generated from 251 frames over the final 50 ns of simulation (every 200 picoseconds). Residues are
considered to be in contact with each other if the sum of the van der Waals radii of each atom minus
the distance between the atoms is greater than −0.4 angstroms (Å):

overlapij = rVDWi + rVDWj − dij (1)

The residue interaction network between each set of proteins paints a clear picture as to the nature
of the differential interaction. In the crystal structure, only one residue (LEU108) in the prodomain of
PCSK9 is within four angstroms of any part of the LDL receptor. Over the final 50 ns of simulation,
the wild-type PCSK9 has slightly more interaction than the Asp374Tyr substitution in the prodomain,
though neither has any interaction surrounding residue 108 (Figure 2a). The degree differences in the
prodomain/ β-propeller interaction can be attributed to Gln453 in the β-propeller of the LDL receptor.
While this residue has four edges (interactions) in the wild-type, it only has one in the Asp374Tyr
mutant. While care should be taken when comparing the impact of singular residues on the binding
affinity using MM/PBSA, the contribution from Gln453 is higher in the wild-type than in the Asp374Tyr
mutant (−10.31 kJ/mol vs. 0.79 kJ/mol, respectively).
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Residue 108 has very important interactions in the Arg496Trp mutant (Figure 2d) although the 
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Figure 2. Contacting residues in the prodomain of PCSK9. (a) Number of contacts. (degree) in the
prodomain of PCSK9 in each system. No residues in the crystal structure met the contact criteria
used. Residue interaction network between the prodomain of PCSK9 and LDLR in the (b) wild-type,
(c) Arg496Trp, and (d) Ser127Arg systems. Edge weight indicates strength of interaction, and node size
indicates number. of interactions (connectivity or degree in residue-residue networks).
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The mutation of Ser127, however, leads to a different conformation for the prodomain/β-propeller
interaction, thereby revealing a significantly different RIN (Figure 2b). While Pro71 in the prodomain of
PCSK9 makes a number of contacts with LDLR in the wild-type and Asp374Tyr mutant, the interaction
is not present in the Ser127Arg mutant. The MM/PBSA energies reflect this with a value of 0.11 kJ/mol
for the Ser127Arg mutant −14.16 kJ/mol for wild-type. Instead, we see a number of interactions
centered around the mutated residue, whereas the wild-type (Figure 2c) and Asp374Tyr (not shown)
simulations without mutations at Ser127 have no interactions at all. While the Ser127 residues of
the wild-type and Asp374Tyr mutant do make a small contribution (−1.28 kJ/mol and -2.02 kJ/mol,
respectively) to the binding affinity due to the Lennard-Jones and Coulombic interactions, the mutation
to arginine leads to a significant, direct contribution (−141.75 kJ/mol) based on binding affinity and
number of interacting partners.

Residue 108 has very important interactions in the Arg496Trp mutant (Figure 2d) although the
interactions surrounding residue 108 are not present in the wild-type and Asp374Tyr mutants. While
the residues in the prodomain contributing most to the PCSK9/LDLR interaction in the wild-type and
Asp374Tyr mutant have zero contact in Arg496Trp, Leu108 makes three contacts. Interestingly, Ser127
makes four contacts with LDLR; this affirms that even when the interaction surrounding residue 127 is
maintained, the mutation to arginine directly impacts the strength of interaction; the contribution to
the binding affinity in Ser127 is on par with the wild-type and Asp374Tyr substitution (−1.44 kJ/mol).
The region directly surrounding residue 127 in the wild-type (Figure 3a) has nearly no interaction,
while in the Arg496Trp (Figure 3b) and Ser127Arg (Figure 3c) mutants this region interacts with LDLR.
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Figure 3. Interface surrounding residue 127 in the (a) wild-type, (b) Arg496Trp, and (c) Ser127Arg
systems at the end of 500 nanoseconds of simulation.

Although the difference in the networks is less pronounced in the Asp374Tyr mutant compared to
the Ser127Arg mutant, there is still clear evidence for the importance of the mutant to the interaction
(Figure 4a). Both the wild-type (Figure 4b) and Ser127Arg (not shown) mutant lose the interactions
present in the crystal structure at residue 374, while the Arg496Trp mutant maintains a single contact
(not shown); however, the mutation to Tyr allows for three interactions with the LDL receptor (Figure 4c).
Most importantly, a tight (~1.94 Å) hydrogen bond is between the phenyl oxygen on Tyr374 and the
imidazole ring of the nearby His306 on the LDL receptor, whereas the wild-type structure has no
interaction partners (Figure 5a,b). The mutation causes a slight shift in the RIN, where Leu318 in LDLR
no longer interacts with Cys378 in PCSK9 (instead interacting with Tyr374), though the remainder of
the RINs are similar.
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2.5. Alternative Conformations for the PCSK9/LDLR Interaction

In replicate simulations, we were able to find a second conformation for the PCSK9/LDLR
interaction which did not involve the prodomain/β-propeller interaction. This second conformation
results in a lower overall affinity between PCSK9 and LDLR (data not shown) compared to the
simulations including the prodomain/β-propeller interaction. While in the Arg496Trp mutant
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simulation the LDLR remains in an extended conformation (Supplemental Figure S2), a replicate of
the Asp374Tyr mutant results in the β-propeller curling back into the EGF domains (Supplemental
Figure S3), which would be an unlikely result in the presence of a membrane surface. However,
this does provide some evidence that it is possible for PCSK9 to bind LDLR without preventing
a closed conformation. A mapping of the crystal structure of LDLR in its closed conformation (PDB ID:
1N7D [10]) indicates that the interaction between the β-propeller and the ligand binding domains is
not sterically inhibited in this conformation, though a rotation in EGF(B) would be required.

3. Discussion

Here we have proposed a plausible mechanism behind the disease-causing PPI disruptive
mutations Ser127Arg and Asp374Tyr on PCSK9 and LDLR complex. Both of these mutations
directly impact the protein–protein interaction upon which they lie in the number/type of interactions
made and the concomitant improvement to binding affinity in the region. The interaction in the
Ser127Arg mutation could have clinical relevance; as this interaction (prodomain of PCSK9 and
β-propeller of LDLR) appears to be the driving force behind preventing LDLR from entering a closed
conformation [10], it seems there could be potential for targeting this region with therapeutics inhibitory
of the protein–protein interaction here.

Although the Asp374Tyr mutant does not directly improve the binding affinity with theβ-propeller
of the LDL receptor, it is clear that the mutation improves the interaction with the EGF(A) domain
of LDLR. This significant improvement to the binding affinity would lead to more PCSK9-LDLR
interacting partners, increasing the chances of a secondary interaction in the β-propeller occurring.
Conversely, while the Ser127Arg mutation does not improve the interaction with EGF(A), there is
a clear increase in affinity between the prodomain of PCSK9 (where the mutant lies) and the β-propeller,
improving the chance of preventing the receptor from entering a closed conformation.

Caution must be exercised when interpreting the results of MM/PBSA for such large,
electrostatically heterogeneous systems. Charged residues (arginine, lysine, aspartic acid, glutamic
acid) will have a disproportionate impact on the binding affinity, regardless of if the residue is on the
protein–protein interface or nanometers away. We expected the overall binding affinity calculations to
result in positive values based on the overall charge of each protein, and the method for calculating the
interaction energy, with PCSK9 carrying a −3 charge (−2 in Ser127Arg and Asp374Tyr mutants and −4
in Arg496Trp mutant) and LDLR having −14 charge. Further, decomposing the affinity inherent in
PCSK9 based on domain (prodomain vs. catalytic/C-terminal) would result in a large negative value
for the prodomain (+3 in Ser127Arg mutant, +2 in all others) and large positive value for the remainder
of the protein, as presented here. While a more quantitative value for binding affinity would surely be
preferred, the computational barrier to such a calculation is quite high, without necessarily leading to
more accurate results.

As noted above, we must also take care when evaluating contributions to the binding affinity
on a per-residue basis. For a typical protein-ligand complex, especially for an uncharged ligand,
it is expected that all non-interface residues will have an interaction energy near zero. However,
the introduction of charged particles, and in our case numerous charged residues can cause a significant
obfuscation of results. The high number of negatively charged residues at biological pH in the
LDL receptor causes all arginine and lysine residues to have a much higher binding affinity than
would be expected, even for residues not on the interface. This is coupled with a large positive
value for all aspartic and glutamic acid residues. As examples, Arg659 and Asp660 in the PCSK9
C-terminal domain, which has no interaction with LDLR, both have near zero contributions due to polar
and non-polar interactions. However, their molecular mechanics (van Der Waals and electrostatics
combined) contributions are −64.3 kJ/mol and 72.7 kJ/mol, respectively. Conversely, while those
residues in LDLR closest to the catalytic domain (EGF(B), EGF(A), L7) experience the same extreme
values, residues in the β-propeller have an inversion of sign in the residues mentioned above; this
is due to the overall slight positive charge on the prodomain. Despite these challenges, we have
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demonstrated the impact these PPI disruptive mutations (Ser127Arg and Asp374Tyr) have on the
interaction between PCSK9 and LDLR.

While it is clear that these mutations directly impact the binding affinity in these regions, it
has yet to be demonstrated if both interactions (catalytic domain of PCSK9/EFG(A) of LDLR and
prodomain/β-propeller) are necessary to induce the degradation of the LDL receptor. Through our
replicated simulations, we found that conformations where the prodomain/β-propeller interaction did
not exist were possible; however, simulation studies are not enough to determine if preventing this
interaction is sufficient to prevent LDLR degradation by PCSK9. Further functional studies would
be required to determine if interference of this interaction could potentially rescue the phenotype,
especially in those with the Ser127Arg mutation.

4. Materials and Methods

4.1. Selection of Disease-Causing Mutations

To determine a set of disease-causing mutations for study, a literature search was carried out. From
our search, the Ser127Arg and Asp374Tyr mutants were found to be in numerous cohorts, and also fit
our requirement of PPI disruptive mutations. A third mutation was chosen to be a positive control;
at the time of running the simulations, the mechanism for the increased LDLR degradation from the
Arg496Trp mutant had yet to be elucidated. Since the “gain-of-function” mechanism for the Phe216Leu
mutation was known (reduced furin cleavage), we chose the Arg496Trp mutant.

4.2. System Construction

The crystal structure (PDB: 3M0C) was accessed from the RCSB PDB protein data bank [25]. This
structure was chosen in an attempt to not bias the results for the Ser127Arg mutant; the distance
between the prodomain of PCSK9 and the β-propeller of LDLR is slightly higher in this structure when
compared to other co-crystallized structures available from RCSB. Co-crystalized calcium ions were
retained from the structure, and were not involved in the protein–protein interaction. Non-terminal
missing loops were reconstructed using Modeller9.18 [26] within UCSF Chimera [27]. Protonation
states for charged residues were determined at neutral pH using PROPKA 2.0 [28]. Mutations and
preparation of the system for molecular dynamics simulation were accomplished using the quick MD
simulator module of CHARMM-GUI [29,30]. Following a processing step, including adding hydrogens
and patching the terminal regions, a water box using TIP3P water molecules with edges at least 12 Å
from the protein was added. The system was neutralized to an NaCl concentration of 150 mM. Each
system was composed of roughly 350,000 atoms. The Arg496Trp and Asp374Tyr systems were both
simulated twice while all other systems were simulated once; the initial simulations did not result in
an interaction between the β-propeller of LDLR and the A domain of PCSK9, and so were repeated to
obtain more comparable results.

4.3. Simulation Parameters

MD simulations were carried out using GROMACS 2018.2 [31] with the CHARMM36m force
field [32] on the Pitzer computing cluster at the Ohio Supercomputer Center. Initial minimizations
of the systems were carried out using steepest descent until the energy of the system reached
machine precision. Following minimization, an NVT equilibration step with positional restraints
of 400 kJ mol−1 nm−2 on backbone atoms and 40 kJ mol−1 nm−2 on side chain atoms was run using
a timestep of 2 fs for 500,000 steps, yielding 1 ns of equilibration. Finally, NPT dynamics were run with
no positional restraints for 500 ns using the same 2 fs timestep from equilibration.

Hydrogen atoms were constrained using the LINCS [33] algorithm. Temperature coupling to
310.15 K was done separately for the protein and the water/ions using a Nose-Hoover thermostat [34]
and a 1 ps coupling constant. For the NPT dynamics simulation, isotropic pressure coupling to 1 bar
was done using a Parrinello-Rahman barostat [35] with a coupling constant of 5.0 ps and compressibility
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of 4.5e-05 bar−1. The pair-list cutoff was constructed using the Verlet scheme [36], updated every 20
evaluations with a cutoff distance of 1.2 nm. Particle mesh Ewald [37] electrostatics were chosen to
describe coulombic interactions using the same cutoff as in the pair-list. van der Waals forces were
smoothly switched to zero between 1.0 and 1.2 nm using a force-switch modifier to the cut-off scheme.

4.4. System Analysis

All four systems (wild-type, Ser127Arg, Asp374Tyr, Arg496Trp) were minimized and equilibrated
as described in the methods section, then submitted to the Ohio Supercomputer Center for simulation.
Simulations were run in 5 separate 100 ns increments, totaling 500 nanoseconds for each system.
Standard GROMACS tools were used for all post-processing, including concatenation of the trajectories
and re-centering of the system in the periodic box. Analyses of the RMSD (Figure 1b) and RMSF
(Supplemental Figure S1a,b) were carried out using GROMACS tools. RMSD was calculated over all
backbone atoms after least-squares fitting to the same, while the RMSF was calculated per residue and
separated by protein after least-squares fitting to backbone atoms.

MM/PBSA energies were calculated on 101 frames over the final 50 ns of each simulation using
g_mmpbsa 1.6 [38], which uses APBS 1.3 [39] to determine the polar and non-polar contributions to
the binding energy. Briefly, the binding free energy can be expressed as

∆Gbinding = Gcomplex −
(
Gprotein1 + Gprotein2

)
(2)

where complex refers to the protein–protein complex, and protein 1 and protein 2 the respective
proteins in the complex. The individual free energies for each component above are determined by

Gx = EMM + Gsolvation − TS (3)

where EMM is the vacuum molecular mechanics energy, Gsolvation the solvation energy, and TS the
entropic contribution. Entropic contributions were not included owing to computational cost and
evidence that the inclusion of the entropy term does not always improve the accuracy of the
calculations [40]. The molecular mechanics energy and solvation energy can be further broken
down into their component energies:

EMM = Ebonded + Enonbonded = Ebonded + EvdW + Eelec (4)

Gsolvation = Gpolar + Gnonpolar (5)

Here, Ebonded is zero, since we have used the single trajectory approach. EvdW and Eelec are the van
der Waals and electrostatic contributions to the vacuum binding, respectively, while Gpolar and Gnonpolar
are the electrostatic and non-electrostatic contributions to the solvation energy. The solute dielectric
constant was set to 2 for all systems.

Graphics were generated using Chimera 1.13.1 and data plots in ggplot2. Residue interaction
networks were generated using the StructureViz2 [41] addon within Cytoscape 3.7 [42], which allows
us to visualize the results generated by Chimera (Supplemental Tables S1 and S2).

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/5/1550/
s1. Figure S1: RMSF plots of (a) PCSK9 and (b) LDLR. Wild-type is colored in purple, Ser127Arg in green,
Asp374Tyr in yellow, and Arg496Trp in red. Figure S2. Decomposition of domains studied for domain-domain
interaction. PCSK9 prodomain and catalytic domain are colored in light and dark purple, respectively; the LDLR
loop and β-propeller are light and dark blue, respectively. Figure S3. A replicate simulation of the Arg496Trp
mutant in which the PCSK9/LDLR interaction does not involve the prodomain/β-propeller interface, but instead
maintains an extended conformation. Table S1. Data used to generate the heatmap for the prodomain of
PCSK9/LDLR interface region. No residues from the PDB met the criteria for contact used. Table S2. Data used to
generate the heatmap for the crystallized interaction between PCSK9 and LDLR.
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EGFPH Epidermal growth factor precursor homology domain
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MD Molecular dynamics
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