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Agglomerative hierarchical clustering analysis (HCA) is a commonly used unsupervised
machine learning approach for identifying informative natural clusters of observations.
HCA is performed by calculating a pairwise dissimilarity matrix and then clustering similar
observations until all observations are grouped within a cluster. Verifying the empirical
clusters produced by HCA is complex and not well studied in biomedical applications.
Here, we demonstrate the comparability of a novel HCA technique with one that was
used in previous biomedical applications while applying both techniques to plasma
angiogenic (FGF, FLT, PIGF, Tie-2, VEGF, VEGF-D) and inflammatory (MMP1, MMP3,
MMP9, IL8, TNFα) protein data to identify informative subsets of individuals. Study
subjects were diagnosed with mild cognitive impairment due to cerebrovascular disease
(MCI-CVD). Through comparison of the two HCA techniques, we were able to identify
subsets of individuals, based on differences in VEGF (p < 0.001), MMP1 (p < 0.001),
and IL8 (p < 0.001) levels. These profiles provide novel insights into angiogenic and
inflammatory pathologies that may contribute to VCID.

Keywords: hierarchical clustering analysis, vascular cognitive impairment and dementia, mild cognitive
impairment, VEGF, MMP1, IL8

INTRODUCTION

Vascular cognitive impairment and dementia (VCID) is an active area in dementia research
(Murphy et al., 2016) and is described as “encompassing all the cognitive disorders associated with
cerebrovascular disease (CVD), from dementia to mild cognitive deficits” (Gorelick et al., 2011).
VCID is estimated to occur in roughly 20% of the cases of dementia; however, the exact prevalence
in the population is unknown with varying estimates in the literature (Rizzi et al., 2014; Corriveau
et al., 2016). Much of the uncertainty in assessing the prevalence of VCID is due to varied diagnostic
criteria (Harrison et al., 2016). In addition, there is substantial overlap in cognitive manifestations
of cerebrovascular and neurodegenerative pathologies [such as Alzheimer’s disease (AD)] that
can culminate in clinical dementia (Kapasi and Schneider, 2016), which further complicates our
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understanding of VCID. Further, both pathologies commonly co-
exist in the same individual, yet some autopsy studies suggest that
there is a significant increase in dementia risk due to vascular
factors when Alzheimer pathology is low (Abner et al., 2017;
Dodge et al., 2017).

Currently, magnetic resonance imaging (MRI) and
cerebrospinal fluid (CSF) biomarkers are used to differentiate
VCID from AD and monitor the progression of VCID (Cipollini
et al., 2019; Wardlaw et al., 2019). Plasma biomarkers are
currently being investigated as a lower cost and less invasive
alternative approach. The current study is focused on exploring
the potential clustering of plasma biomarkers using hierarchical
clustering analysis (HCA) in participants with VCID who have
mild cognitive impairment (MCI) due to CVD (MCI-CVD) to
identify unique plasma profiles of disease (Winblad et al., 2004).
Persons with MCI-CVD are of particular interest as they are at an
increased risk of developing dementia and already have cognitive
decline (Petersen et al., 1999). We evaluated angiogenic (FGF,
FLT, PIGF, Tie-2, VEGF, VEGF-D) and inflammatory (MMP1,
MMP3, MMP9, IL8, TNFα) protein plasma biomarkers in these
participants using the highly sensitive meso-scale discoveries
(MSD) platform. Angiogenic and inflammatory markers are of
particular interest due to their roles in endothelial dysfunction,
which has been shown to play a role in the pathogenesis of CVD
(Poggesi et al., 2016; Mahoney et al., 2019). Presently, studies
have demonstrated mixed results in the association of angiogenic
and inflammatory biomarkers with VCID; however, it is
suspected that this is due to the inconsistency in both the patient
populations and the analytical measures (Cipollini et al., 2019).

Agglomerative HCA is an unsupervised machine learning
technique commonly used to determine similar subsets within a
larger population (Xu and Wunsch, 2010). HCA can be used to
identify subsets within a variety of different patient populations.
The accuracy of this technique is difficult to quantify, as most
studies rely on post hoc analysis of the clusters produced by HCA
to determine their validity. We propose a unique methodology
for validating clusters produced by HCA. This method relies on
using two unique HCA models on the same dataset and evaluates
congruencies between the two models by comparing a novel HCA
model to one that is widely used (Wallin et al., 2010; Damian
et al., 2013; Nettiksimmons et al., 2014; Racine et al., 2016). Before
applying both HCA models to our dataset, we tested the accuracy
of each model on various distributions of data and compared
them to each other using the adjusted rand index (ARI). After
demonstrating the interchangeability of the two HCA models in
the simulated data distribution comparable to our dataset, we
tested both models on our dataset and compared the underlying
components of each cluster produced by the HCA models.

MATERIALS AND METHODS

Participants
Plasma samples were collected from a cohort of adult research
volunteers enrolled in a randomized behavioral intervention
study for MCI-CVD (N = 80, NCT01924312). Inclusion
criteria for the parent study include age older than 55 years,

Montreal Cognitive Assessment score < 29, and at least
one uncontrolled vascular risk factor. Risk factors included
poorly controlled hypertension, poorly controlled cholesterol,
cardiomyopathy/CHF, diabetes with a fasting glucose > 110 or
HbA1c > 7%, homocysteine > 12, history of transient ischemic
attack, tobacco use > 30 pack-years, and BMI > 30. Potential
subjects were excluded from this cohort if they had dementia,
evidence of a non-CVD cause of cognitive decline, evidence of a
non-CVD neurologic disease, or any focal motor, sensory, visual,
or auditory deficits. For the current study, participants were also
excluded if they had an incomplete panel of markers as measured
via MSD assays as described below (n = 7).

Plasma Collection and Quantification
Plasma samples were collected by venous puncture using
10 mL EDTA Vacutainer tubes. Plasma was aliquot into cryo-
tubes at 500 mL volumes. Quantification of plasma samples
was accomplished using MSD Multi-Spot V-PLEX assays
[Angiogenesis Panel 1 (human) and Proinflammatory Panel 1
(human)] and Ultra-Sensitive assays (MMP 2-Plex and MMP 3-
Plex). Plasma did not undergo any freeze-thaw cycles after the
initial thawing of the aliquot. Assays were performed using plate
specific protocols as followed with analysis performed in the MSD
Discovery Workbench 4.0 software.

MMP 2-Plex and MMP 3-Plex
MMP plates were brought to room temperature for
approximately 30 min and then loaded with 25 µL of diluent,
covered (protect from light), and incubated at room temperature
for 30 min while shaking at 600 r/min. After incubation, plates
were removed from the shaker and 25 µL of calibrator was added
to the assigned wells in duplicate with 5 µL of undiluted sample
and 20 µL of diluent. Plates were covered and incubated at room
temperature while shaking at 600 r/min. After incubation, plates
were removed from the shaker and washed three times with
300 µL of wash buffer. Plates were turned upside down and
tapped against paper towels to ensure the removal of all wash
buffer from the wells. 25 µL of the antibody mix was loaded into
each well, covered (protect from light), and incubated at room
temperature for 2 h shaking at 600 r/min. After incubation, plates
were removed from the shaker and the wash steps were repeated
from above; 150 µL of read buffer was loaded into each well and
read on the MSD Quickplex SQ 120 machine.

Proinflammatory Panel 1
Proinflammatory plates were brought to room temperature for
approximately 30 min and washed three times with 300 µL
of wash buffer. Plates were turned upside down and tapped
against paper towels to ensure the removal of all wash buffer
from the wells; 50 µL of calibrator was added to the assigned
wells in duplicate with 50 µL of undiluted sample and covered
(protect from light). Plates were incubated at 4◦C overnight while
shaking at 600 r/min. In the morning, plates were removed from
4◦C and incubated at room temperature for 1 h while shaking
at 600 r/min. After incubation, plated were removed from the
shaker and the wash steps were repeated from above; 25 µL of
the antibody mix was added into each well, covered (protect
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from light), and incubated at room temperature for 2 h shaking
at 600 r/min. After incubation, plates were removed from the
shaker and wash steps were repeated from above; 150 µL of
read buffer was loaded into each well and read on the MSD
Quickplex SQ 120 machine.

Angiogenesis Panel 1
Angiogenesis plates were brought to room temperature for
approximately 30 min and then loaded with 150 µL of diluent,
covered (protect from light), and incubated at room temperature
for 1 h while shaking at 600 r/min. After incubation, plates were
removed from the shaker and washed three times with 300 µL of
wash buffer. Plates were turned upside down and tapped against
paper towels to ensure the removal of all wash buffer from the
wells; 50 µL of calibrator was added to the assigned wells in
duplicate with 25 µL of undiluted sample and 25 µL of diluent.
Plates were covered (protect from light) and incubated at 4◦C
overnight while shaking at 600 r/min. In the morning, plates were
removed from 4◦C and incubated at room temperature for one
hour while shaking at 600 r/min. After incubation, plates were
removed from the shaker and wash steps were repeated from
above; 25 µL of the antibody mix was added into each well,
covered (protect from light), and incubated at room temperature
for 2 h shaking at 600 r/min. After incubation, plates were
removed from the shaker and wash steps were repeated from
above; 150 µL of read buffer was loaded into each well and read
on the MSD Quickplex SQ 120 machine.

Samples were run in duplicate and three pooled control
samples were run on each plate to measure inter- and intra-
plate variability. MSD quantification was performed on a table
stabilizer in order to reduce error in MSD plate readings.

Plasma Sample Analysis
Protein markers measured through MSD assays were subjected
to intra- and inter-plate variability tests. Intra-plate variability
was assessed through two distinct methods. The first method
calculated the percentage of samples for each marker that had a
coefficient of variation, as determined by the duplicate runs for
each sample, greater than or equal to 0.25. Markers that contained
20% of samples above this threshold were removed from further
analysis. The second method ran three pooled control sample
twice on the same plate (two samples each run in duplicate)
to ensure consistency in final quantifications. The coefficient
of variation for each of the three controls measured for each
marker was then averaged together. Markers with an average
coefficient of variation greater than 0.25 were excluded from
the analysis. Markers that passed both criteria were included in
the final analysis. Inter-plate variability was accounted for using
the three pooled control samples run on each plate. Each plate
control value was divided by the control mean and all three of
these values for each marker were averaged together to provide
a plate-scaling factor. Each value was then divided by this factor
to adjust for inter-plate variability. The resulting measures were
log-transformed to scale each marker to a common order of
magnitude, which is required in clustering algorithms to provide
equal weighting of markers. Grubb’s test was lastly applied to
the data to remove outliers (Grubbs, 1950). Individual samples

containing one or more outliers in the measured markers were
excluded from further analysis (n = 7) due to their effects on
clustering techniques. The final dataset consisted of 66 patient
plasma samples, which were quantified for 11 plasma markers
(FGF, FLT, PLGF, Tie-2, VEGF, VEGFD, MMP1, MMP3, MMP9,
IL8, TNFα).

Hierarchical Clustering Analysis
All HCAs were performed using the Matlab Statistics and
Machine Learning Toolbox functions pdist, linkage, and cluster.
Previously described HCA models were comprised of three
different algorithms, distance, linkage, and clustering (Wallin
et al., 2010; Damian et al., 2013; Nettiksimmons et al., 2014;
Racine et al., 2016). The conventional HCA model consists of
a Euclidean distance algorithm, which calculates the distance
between two samples using the Euclidean distance formula (a
special case of the generalized Minkowski distance formula),
where the distance between observations s and t in a sample with
n markers equals dst :

dst =

√√√√ n∑
j=1

∣∣Xsj − Xtj
∣∣2

The linkage algorithm used was Ward’s Linkage, which
calculates the incremental increase in within-cluster sum of
squares and links samples one at a time until all samples are
combined into a single cluster (Xu and Wunsch, 2010). This
method combines similar samples until all samples fall within
one cluster (i.e., agglomerative hierarchical clustering). The final
algorithm in the conventional HCA model used a standard
agglomerative clustering approach (Racine et al., 2016).

The novel proposed HCA model uses consensus clustering
as presented by Fred and Jain (2002) to combine HCA models
with different distance and clustering algorithms. The distance
algorithms used the Minkowski distance formula with p ranging
from 0.1 to 2.0 in increments of 0.1. The distance between
observations s and t in a sample with n markers equals dst :

dst = p

√√√√ n∑
j=1

∣∣Xsj − Xtj
∣∣p

Each distance algorithm’s data were then used with the
weighted average linkage algorithm, which combines samples

TABLE 1 | Means ± standard deviation for age, MMSE, and MoCA for the
MCI-CVD cohort population in addition to percent of female participants.

Mean ± SDev Range

Age (years) 75.07 ± 8.14 (56.99–89.22)

MMSE 26.86 ± 2.95 (18–30)

MoCA 22.11 ± 3.74 (11–28)

Systolic blood pressure (mmHg) 141.33 ± 15.31 (102–185)

Hemoglobin A1c (%) 6.18 ± 1.31 (4.3–11.8)

LDL cholesterol (mg/dL) 97.44 ± 42.63 (22–299)

Sex 47% Female
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into clusters that have the smallest distance between them and
determines that distance using a recursive function which treats
the subset of linkages equally (Xu and Wunsch, 2010).

Lastly, data from each linkage algorithm were clustered
using an inconsistency clustering algorithm. This algorithm
calculates an inconsistency coefficient of a new linkage using
the mean and standard deviation of the linkage heights for a
specified depth (dep) of sub linkages within each new linkage.
Clusters were formed when the inconsistency coefficient for each
linkage and all sub linkages were less than a specified cutoff
(cut) value. Each linkage algorithm output was run through
multiple iterations of the inconsistency clustering algorithm
with values for depth (dep) from 2 to 6 in increments of
1, whereas cutoff (cut) values were adjusted from 1.0 to 3.0
in increments of 0.1. All iterations of depth and cutoff were
evaluated, and if only one cluster was formed, then that
iteration was not used in the consensus clustering model.
Once each clustering model was established, distances between
samples were calculated based on the percentage of models
in which two samples shared a cluster. Samples that shared
no clusters were given a distance of 1 and, samples that
were paired in the same cluster in each model were given a
distance of 0. Plots of each clustering model were created using
the dimensionality reduction function, t-distributed stochastic
neighbor embedding (t-sne), with a random number generation
seed of 10 to maintain reproducibility (Maaten, 2008). Clinical
data were excluded from the clustering algorithm to avoid
clusters based on clinical findings as this study sought to

identify clusters of participants based on a differential level of
fluid biomarkers.

Simulated Data Generation and Analysis
Simulated data generation was performed using the Matlab
Statistics and Machine Learning Toolbox function mvnrnd. Each
simulated data experiment was run with 35 trials and each
trial was initiated with a unique random number generation
seed to maintain reproducibility. Generated data contained 11
variables and 100 samples per group, obtained from known
distributions with the mean and sigma of each distribution
differing depending on the experiment. Supplementary Tables
S1–S3 detail the mean and sigma for each group within each
experiment. The ARI was used to evaluate the accuracy of
each clustering model by comparing each clustering result to
the known cluster assignment. The ARI has a maximum value
of 1 indicating that the clustering result matches perfectly to
the known cluster assignment. An ARI of 0 indicates that the
clustering model assigns observations to the correct cluster
assignment with an equal probability as random chance. An ARI
below 0 demonstrates that the clustering model is less effective
than random chance at assigning observations to the correct
cluster assignment (McComb, 2015).

Statistical Analysis
Statistical analysis was performed using the Matlab Statistics and
Machine Learning Toolbox and SPSS. A two-sample t-test using
the Matlab function ttest2 was conducted to compare the ARI

FIGURE 1 | Compares the combined HCA model to the Euclidean distance model in eight different datasets. Each dataset was produced using the mvnrnd. The
accuracy of each model was assessed using the adjusted rand index (ARI). Datasets used in A–D have identical means for each variable in each cluster. Datasets
used in E–H have the same means for the first six variables and means of opposite signs for the other five variables. Means and standard deviations for each dataset
are shown in Supplementary Table S1. Red horizontal lines indicate means for each model. Stars (*) indicate statistical significance between groups using an
independent samples t-test (p < 0.05).
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FIGURE 2 | Compares the combined HCA model to the Euclidean distance model in two predicted distributions. Each dataset was produced using mvnrnd. The
accuracy of each model was assessed using the adjusted rand index (ARI). Means and covariance matrix for each dataset are shown in Supplementary Tables S2,
S3. Red horizontal lines indicate means for each model. Stars (*) indicate statistical significance between groups using an independent samples t-test (p < 0.05).
(A) Shows estimated two cluster model, and (B) shows estimated three cluster model.

means of the two HCA models for all simulated data experiments.
SPSS was used for the remaining statistical tests to determine
differences between clusters for each log-transformed protein
marker. Levene’s test for equality of variances was performed
before each two-sample t-test, and Satterthwaite’s t-test was used
for any marker found to have significantly different variances.
Levene’s test for homogeneity of variances based on the mean
was also conducted before performing an ANOVA test for
each marker and a Welch’s test for equality of means was
performed for markers with non-homogeneous variances. Post
hoc analysis was then conducted on markers which had a
significant p-value for an ANOVA or Welch’s test. Tukey’s HSD
was used for significant ANOVA tests and Dunnett T3 was used
for significant Welch’s test.

RESULTS

Study Population Description
Demographic and neurocognitive evaluations were obtained in
65/66 participants within our MCI-CVD cohort (Table 1). The
mean age of the participants was 75.07 ± 8.14 with a female
population of 47%. MMSE scores ranged from 18 to 30 with a
mean of 26.86 ± 2.95, while MoCA scores ranged from 11 to
28 with a mean of 22.11 ± 3.74. Vascular risk factors including

systolic blood pressure, hemoglobin A1C, and LDL cholesterol
were also evaluated in our cohort (Table 1). Mean systolic blood
pressure was found to be 141.33± 15.31 mmHg, hemoglobin A1c
6.18± 1.31%, and LDL cholesterol 97.44± 42.63 mg/dL.

Simulated Data Analysis
To test the applicability of the novel combined HCA model,
we tested its accuracy in eight unique simulated datasets
(detailed in Supplementary Table S1). We tested the novel
model against an established HCA model using the ARI to
measure the accuracy of each model (Figure 1). In our first
experiment, we studied the accuracy of both models in a dataset
with two distant uniform clusters (Figure 1A). The established
HCA model using Euclidean distance showed no difference in
ARI compared to the novel combined HCA model (Euclidean:
0.9892 ± 0.0029, Novel: 0.9920 ± 0.0019, p = 0.413). A similar
result was found in a dataset with two distant variable clusters
(Euclidean: 0.9920 ± 0.0023, Novel: 0.9926 ± 0.0020, p = 0.857)
(Figure 1E). These results demonstrate that both models were
able to assign each distribution to its own cluster. Next, we tested
both models on a dataset with three distant uniform clusters
(Figure 1C) and three distant variable clusters (Figure 1G).
The established HCA model had a significantly increased ARI
over the novel HCA model in both of these experiments
(Euclidean: 0.6186 ± 0.0139, Novel: 0.4067 ± 0.0320, p < 0.001,
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FIGURE 3 | T-SNE dimensionality reduction plot of clustered data. Data were clustered using the Euclidean distance model (A) and the Combined HCA model (B).
The dataset was produced by measuring 11 inflammatory (MMP1, MMP3, MMP9, IL8, TNFα) and angiogenic proteins of interest (FGF, FLT, PIGF, Tie-2, VEGF,
VEGF-D) from 66 participant plasma samples.

FIGURE 4 | Compares clusters 1 and 2 produced from the Combined HCA model in each inflammatory and angiogenic protein measured. (A–K) Show mean and
scatter of FGF (A), FLt (B), PlGF (C), Tie-2 (D), VEGF (E), VEGF-D (F), MMP1 (G), MMP3 (H), MM9 (I), IL8 (J), and TNFa (K). Red horizontal lines indicate the
means for each cluster. Stars (*) indicate statistical significance between groups as calculated by the log transform of the data shown using an independent samples
t-test (p < 0.05). Means ± SEM are shown in Table 2.
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TABLE 2 | Means ± SEM for clusters 1 and 2 produced by the combined HCA
model.

Biomarker p-value Cluster 1 (pg/mL) Cluster 2 (pg/mL)

FGF <0.001 24.56 ± 2.39 12.27 ± 1.22

FLT 0.568 12.92 ± 1.35 11.87 ± 0.59

PIGF 0.093 3.52 ± 0.38 2.94 ± 0.11

Tie-2 0.013 500.55 ± 31.69 411.09 ± 14.77

VEGF <0.001 98.39 ± 17.46 43.55 ± 3.63

VEGFD 0.350 560.73 ± 52.17 515.59 ± 24.35

MMP1 <0.001 5244.74 ± 700.11 2292.86 ± 219.55

MMP3 0.005 17275.46 ± 3267.49 10547.71 ± 856.39

MMP9 <0.001 43561.18 ± 8177.19 19232.98 ± 1851.63

IL8 <0.001 4.20 ± 0.49 2.25 ± 0.11

TNFa 0.283 1.81 ± 0.15 1.63 ± 0.10

Statistical significance between groups was determined using the log transform of
the data shown in Figure 4 in an independent samples t-test (p < 0.05).

Figure 1C) (Euclidean: 0.5767± 0.0200, Novel: 0.4393± 0.0092,
p < 0.001, Figure 1G). These results show that the established
HCA model has a higher accuracy when separating three
distant clusters of normally distributed data. We then tested
if the models performed differently on distributions that
had more overlapping characteristics. The first experiments
of these distributions were with two close uniform clusters
(Figure 1B) and two close variable clusters (Figure 1F). In both
experiments, the established HCA model had a higher accuracy
compared to the novel HCA model (Euclidean: 0.6579 ± 0.0150,
Novel: 0.5482 ± 0.0237, p < 0.001, Figure 1B) (Euclidean:
0.6186 ± 0.0139, Novel: 0.4067, p < 0.001, Figure 1F). This
difference continued in the final set of experiments which used
three close uniform clusters (Euclidean: 0.2477 ± 0.0087, Novel:
0.2103± 0.0103, p< 0.007, Figure 1D) and three distant variable
clusters (Euclidean: 0.2370 ± 0.0080, Novel: 0.2023 ± 0.0078,
p < 0.003, Figure 1H). These experiments show that as the
distributions progressively overlap the accuracy for both models
decrease and the difference between the accuracy of the models
decreases as well.

Predicted Distribution Analysis
We hypothesized that clusters, if any, in our empirical dataset
would overlap more and thus be more difficult to differentiate
than those used in the previous experiments. To test the accuracy
of each model in this distribution, we generated simulated
data from predicted distributions based on analysis from our
collaborators (detailed in Supplementary Tables S2, S3). The
first experiment was based on a two-cluster model within our
sample population (Figure 2A). This experiment showed no
differences between the established Euclidean HCA model and
the novel HCA model (Euclidean: 0.1422 ± 0.0118, Novel:
0.1270 ± 0.0181, p = 0.486, Figure 2A). In addition, we tested
a three cluster model for our sample population and found
similar results with no differences between the two models in
this study (Euclidean: 0.0902 ± 0.0092, Novel: 0.0895 ± 0.0105,
p = 0.962, Figure 2B). The data from these two experiments
demonstrate the interchangeability of these two models when
studying datasets with extensive overlapping distributions.

Application of Models to Dataset
After validating the novel combined HCA model using predicted
distributions, we applied both HCA models to our 66 patient
sample (Figure 3). When the Euclidean distance HCA model
was applied to our dataset, four clusters emerged (Figure 3A).
Clusters 1, 3, and 4 appear to be more compact in the 2-D t-SNE
dimensionality reduction plot, while cluster 2 exists along the
periphery of the plot in a more scattered manner. We continued
this experiment and applied the novel combined HCA model
to the same dataset and uncovered two clusters (Figure 3B).
Cluster 1 contains 14 samples of which 12 also appear in
cluster 1 of the Euclidean distance HCA model. The other 52
samples appear in cluster 2, which is comprised of clusters
2–4 from the Euclidean distance HCA model. The similarity
of these two results emphasizes the underlying distributions
within this dataset.

Characterizing Cluster Differences
We proceeded to analyze the differences that drive cluster
differentiation. First, we examined the clusters produced by

TABLE 3 | Means ± SEM for clusters 1–4 produced by the Euclidean distance model.

Biomarker p-value Cluster 1 (pg/mL) Cluster 2 (pg/mL) Cluster 3 (pg/mL) Cluster 4 (pg/mL)

FGF <0.001 24.90 ± 2.78 5.16 ± 0.60 12.70 ± 1.37 20.11 ± 1.97

FLT 0.340 12.77 ± 1.56 13.08 ± 0.82 11.05 ± 1.44 11.42 ± 0.82

PIGF 0.342 3.53 ± 0.45 2.94 ± 0.17 2.79 ± 0.28 3.10 ± 0.16

Tie-2 0.040 512.42 ± 35.98 437.13 ± 25.44 384.29 ± 26.72 405.64 ± 21.72

VEGF <0.001 106.97 ± 19.29 49.97 ± 6.65 27.69 ± 4.39 48.56 ± 5.14

VEGFD 0.258 563.88 ± 60.58 579.18 ± 46.39 469.25 ± 36.56 487.25 ± 32.33

MMP1 <0.001 5605.20 ± 769.82 3061.39 ± 356.41 736.27 ± 71.84 2692.85 ± 285.62

MMP3 0.096 17517.09 ± 3822.29 10666.69 ± 1443.84 9646.52 ± 1192.19 11587.35 ± 1561.28

MMP9 <0.001 46055.29 ± 9378.94 25868.67 ± 3771.38 17474.83 ± 2787.13 14764.34 ± 1748.47

IL8 <0.001 4.49 ± 0.52 2.32 ± 0.18 1.78 ± 0.12 2.53 ± 0.18

TNFα 0.362 1.86 ± 0.16 1.52 ± 0.16 1.51 ± 0.10 1.83 ± 0.21

Statistical significance between groups was determined using the log transform of the data shown in Figure 5 in an ANOVA followed by Tukey’s HSD for post hoc analysis
(p < 0.05). Results of the ANOVA omnibus are shown in p-value.
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FIGURE 5 | Compares clusters 1–4 produced from the Euclidean distance model in each inflammatory and angiogenic protein measured. (A–K) Show mean and
scatter of FGF (A), FLt (B), PlGF (C), Tie-2 (D), VEGF (E), VEGF-D (F), MMP1 (G), MMP3 (H), MM9 (I), IL8 (J), and TNFa (K). Red horizontal lines indicate the
means for each cluster. Stars (*) indicate statistical significance between groups as calculated by the log transform of the data shown using ANOVA followed by
Tukey’s HSD for post hoc analysis (p < 0.05). Means ± SEM are shown in Table 3.

FIGURE 6 | Cluster comparison of VEGF (pg/mL), MMP1 (pg/mL), and IL8 (pg/mL) for data clustered using the Euclidean distance model (A) and the combined
HCA model (B) from 66 participant plasma samples.
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the novel HCA model (Figure 4), and found that cluster 1
was increased compared to cluster 2 in FGF (p < 0.001),
Tie-2 (p = 0.013), VEGF (p < 0.001), MMP1 (p < 0.001),
MMP3 (p = 0.005), MMP9 (p < 0.001), and IL8 (p < 0.001)
(Table 3). When the clusters produced from the Euclidean
distance HCA model were analyzed (Figure 5), we found a
similar pattern of clusters. In this model, cluster 1 was increased
compared to clusters 2–4 in VEGF (p = 0.006, p < 0.001,
p = 0.013), MMP1 (p = 0.003, p < 0.001, p = 0.001), and
IL8 (p < 0.001, p < 0.001, p < 0.001), respectively. Cluster 1
was also increased in FGF (p = 0.004), Tie-2 (p = 0.033), and
MMP9 (p = 0.003) compared to cluster 3. The elevated level
of these proteins in cluster 1 agrees with the characteristics of
cluster 1 established previously with both models demonstrating
a subset with significant increases in VEGF, MMP1, and
IL8 compared to the other subsets (Figure 6). However, the
Euclidean distance HCA model does show differences between
clusters 2 and 4, which were not seen in the novel HCA
model. Clusters 2 and 4 were similar in their makeup, both
increased over cluster 3 in MMP1 (p < 0.001 and p < 0.001)
and VEGF (p = 0.032 and p = 0.016), respectively, but
different levels of FGF (p < 0.001). These differences lead to
the possibility of four disease profiles within the MCI-CVD
patient population.

DISCUSSION

The results of this study provide evidence supporting the
use of the novel combined HCA model in datasets with
extensive overlapping distributions. The results of the first
set of experiments demonstrate that the Euclidean distance
HCA model outperforms the novel combined HCA model in
datasets with a moderate amount of overlapping distributions
(Figures 1B–D,F–H). This difference is reduced as the
distributions progressively increase in overlap and eventually
disappears entirely in our second set of experiments involving the
more complex datasets with predicted distributions (Figure 2).

It is important to note that the capacity of the two
HCA models to accurately cluster data into their known
distributions decreases as the datasets become more complex.
In our experiments involving two distant distributions of data,
both models were able to separate each distribution with an
ARI approximately equal to 1 (Figures 1A,E). In experiments
using our predicted distributions, the average ARI decreased
to approximately 0.13 and 0.09 for the two and three cluster
models, respectively (Figure 2). These findings demonstrate
the limits of reliability in both HCA models and provide
a measure to compare additional HCA models to in future
experiments. Accounting for this accuracy is crucial when
interpreting HCA results because clusters produced by the HCA
model may not correspond to any true unique distribution
and may simply be a subset within the normal variation of
a larger distribution. Therefore, it is important to compare
multiple HCA models on an unknown dataset in order to
elucidate which clusters are in fact unique distributions within
the dataset. Overall, results from our experiments support the

interchangeability of HCA models in datasets similar to those
shown in Supplementary Tables S2, S3, which allows for
the use of both models in assessing clustering distributions
within our dataset.

Both the Euclidean distance HCA model and the novel
combined HCA model resulted in similar disease profiles
within our cohort of MCI-CVD patients (Figure 3). In this
study, both models classified participants into a cluster that
had elevated levels of VEGF, MMP1, and IL8 compared
to the other clusters (Figures 4, 5). We suspect that this
disease profile seen in cluster 1 may be involved in a more
active VCID process resulting in increased pathology due to
the increased level of angiogenic and inflammatory markers.
Clusters 2–4 in the Euclidean distance HCA model may
also be clinically relevant in terms of disease pathology but
require future studies to understand how these profiles may
contribute to progression of VCID in a population of individuals
with MCI-CVD.

CONCLUSION

The usage of both the novel HCA model and a Euclidean distance
HCA model identified a novel subset of patients within the MCI-
CVD population. This study provides insight into a potential
underlying inflammatory and angiogenic profile of disease in
patients with VCID. Defining subsets of patients within this
population with different disease profiles continues to be a key
research objective. These profiles can provide a more complete
understanding of disease progression and allow physicians and
researchers to identify patients undergoing different rates of
pathologic change in a prospective cohort. In the future, we hope
to further clarify these profiles by combining plasma and MRI
imaging biomarkers that can also be used in clinical trials as key
outcome measures to determine the efficacy of novel therapeutics.
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