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Abstract

In Pavlovian delay eyeblink conditioning, the cerebellum represents the passage-of-time (POT) between onsets of conditioned and
unconditioned stimuli (CS and US, respectively). To study possible computational mechanisms of the POT representation we built a
large-scale spiking network model of the cerebellum. Consistent with our previous rate-coding model, we found two conditions
necessary for the present model to represent the POT with a dynamic population of active granule cells: (i) long temporal integration
of input signals; and (ii) random recurrent connections between granule and Golgi cells. When these conditions were satisfied, a
nonrecurrent sequence of active granule cell populations was generated in response to a CS and, conversely, the POT from the CS
onset was able to be read out from the sequence. Specifically, simulated N-methyl-D-aspartate (NMDA) channels with a long decay
time constant at granule and Golgi cells were responsible for the long temporal integration. Thus, blocking the NMDA channels or
ablating Golgi cells impaired the POT representation. Simulated glomerulus structure made POT representation robust against noise
in mossy fibre inputs. Long-term potentiation induced at mossy fibre synapses on granule cells also served to enhance the
robustness. We reproduced some experimental results of Pavlovian delay eyeblink conditioning using the present model. These
results suggest that the recurrent network in the granular layer and NMDA channels in granule and Golgi cells play an essential role in
the timing mechanisms in the cerebellum, whereas the glomerulus serves to realize a robust representation of time.

Introduction

The cerebellum plays an essential role in motor learning and control.
One function of the cerebellum is to represent the passage of time
(POT) over a range of tens to hundreds of milliseconds, a function
essential for organising movements of different body parts into a
coordinated action (Ivry & Spencer, 2004). The POT representation in
the cerebellum has been studied in depth using Pavlovian delay
eyeblink conditioning (see Mauk & Donegan, 1997 and Christian &
Thompson, 2003, for review), in which an animal receives repeated
paired presentations of a tone (conditioned stimulus; CS) and an
airpuff (unconditioned stimulus; US). The animal becomes condi-
tioned to close its eyes with a delay equal to the interstimulus interval
(ISI) between the CS and US onsets (conditioned response; CR) in
response to the tone. Thus, the animal learns the POT between the CS
and US onsets. How then is the POT represented in the cerebellum?

One hypothetical way to represent the POT is to assign one neuron
or one neuron population to one time interval from the CS onset. If
active neurons or neuron populations are sequentially generated in the
order of interval lengths and one neuron or population exclusively
corresponds to only one time interval, then we regard the sequence of
these neurons or populations as the POT from the CS onset. Based on

this hypothesis, several artificial models have been proposed to
account for the POT representation (Fujita, 1982; Moore et al., 1989;
Gluck et al., 1990; Chapeau-Blondeau & Chauvet, 1991; Bullock
et al., 1994; Fiala et al., 1996). Buonomano & Mauk (1994) and
Medina et al. (2000) questioned the biological plausibility of these
models and built a realistic cerebellar model. They demonstrated that a
POT representation based on a time-varying population of granule
cells emerged naturally from the realistic model. The computational
mechanism to generate such a sequence of active populations of
granule cells, however, remained unclear. To understand the compu-
tational mechanism, we previously developed a rate-coding model of
the cerebellar granular layer and analysed its dynamics theoretically
(Yamazaki & Tanaka, 2005a). We have shown that when the CS is
given, granule cells exhibit random repetition of transitions between
active and inactive states and that different granule cells show different
transition patterns. The activity pattern of granule cells evolved with
time, and the sequence of active granule cell populations did not recur
for a sufficiently long time. This indicates that there is a one-to-one
correspondence between an active granule cell population and a time
step. Two conditions were needed for the generation of a nonrecurrent
sequence of active granule cell populations. One is a temporal
integration of input signals over long time, which enabled active or
inactive states of individual granule cells to be sustained. The other is
random recurrent connections, which enabled granule cells to undergo
random transitions between active and inactive states. The rate-coding
model is free from actual time scales. Construction of an elaborated
model is therefore desired for quantitative comparison with a
biological system.
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In the present study, we built a large-scale spiking network model of
the cerebellum and examined how the POT is represented in the
elaborated model. We also studied the robustness of the POT
representation against noise in mossy fibre (MF) inputs. Finally, we
conducted simulation of Pavlovian delay eyeblink conditioning to test
whether the model reproduced experimental results. Preliminary
results have been reported in an abstract (Yamazaki & Tanaka, 2005b).

Materials and Methods

Overview of the present model

Network structure

Figure 1A is a schematic of cell types and synaptic connections
incorporated in the present model with the flow diagram of neural
signals of the CS, US and CR. The neural signal of the CS is conveyed
through MFs, from the precerebellar nucleus (PN) to the cerebellar
nucleus (CN). The CN neuron fires spikes representing the motor
command for an eyeblink. On the other hand, the CS signal is also sent
to Purkinje cells relayed by the granule cells in the granular layer
through parallel fibres (PFs), and then Purkinje cells inhibit the CN. In
this way, the CN receives direct excitatory inputs and indirect
inhibitory inputs from the PN. The granular layer contains Golgi cells
as well as granule cells. Golgi cells receive excitatory inputs from
granule cells and recurrently inhibit granule cells. The neural signal of
the US comes from the inferior olive (IO) through the climbing fibre
(CF) to Purkinje cells. The CN neuron inhibits the IO. The CR is
represented by the spikes fired by the CN neuron after eyeblink
conditioning.
Figure 1B is a schematic of the model granular layer composed of

model Golgi cells, glomeruli and granule cells. Our artificial
cerebellum modelled as a 1 mm2 virtual sheet composed of a square
lattice arrangement of 1024 (32 · 32) model Golgi cells with a
constant spacing of 32 lm. This virtual sheet also contains 320 · 320
model granule cells and 32 · 32 model glomeruli, all of which are
arranged in a square lattice, so the nearest neighbour spacing of
glomeruli is the same as that of Golgi cells.
Figure 1C illustrates connections between model granule cells and

glomeruli. A model granule cell has four dendrites and receives
excitatory inputs from MFs and inhibitory inputs from model Golgi

cells via glomeruli. We assumed that a model granule cell contacts the
four nearest glomeruli. This leads to a nested structure of the granular
layer due to the square arrangement of granule cells: 10 · 10 granule
cells contact commonly the same glomeruli, which we call ‘granule-
cell clusters’. Thus, 100 granule cells in a cluster share the same
excitatory and inhibitory inputs.
A glomerulus is assumed to receive inhibitory inputs from 9 · 9

nearby model Golgi cells with a connection probability of P ¼ 0.025,
so that the average number of Golgi cell axons innervating a
glomerulus is � 2.0 (9 · 9 · 0.025). Hence, a granule cell receives,
on average, 8.1 inhibitory inputs through four dendrites. A glomerulus
also receives an excitatory MF input, so that granule cells contacting
the same glomerulus should receive a common excitatory signal.
However, to simulate the stochastic variability of synaptic transmis-
sion from a glomerulus to granule cells, we modelled individual
granule cells contacting a glomerulus to receive different Poisson
spikes with the same firing rate (see ‘Stimulus’ section for details).
A model Golgi cell is assumed to be able to receive inputs from

700 · 700 model granule cells, namely 7 · 7 granule cell clusters.
Connections from a granule-cell cluster to a Golgi cell are made with
probability P ¼ 0.5, where individual granule cells belonging to a
common granule-cell cluster have the same connection. We also
examined two other configurations: (i) a Golgi cell receives inputs
from 7 · 7 granule-cell clusters with probability P ¼ 1.0; (ii) a Golgi
cell receives inputs from only 10 · 10 granule cells in the nearest
cluster with P ¼ 1.0. In both cases, the POTwas still represented (data
not shown).
The above-mentioned structural parameters of our model are

selected on the basis of the following anatomical observations. The
Golgi cell density in the cat granular layer is � 1000 ⁄ mm3 (Palkovits
et al., 1971b; Lange, 1974). We projected this volume into a 1-mm2

virtual sheet which contained almost the same number of model Golgi
cells. In the same volume, there are 1000· more granule cells than
Golgi cells in cats (Palkovits et al., 1971b). Because it is impossible to
perform a computer simulation with 1 million model neurons due to
the power of our computers, in the present model we reduced the
number of granule cells to 320 · 320, which is � 1 ⁄ 10 of the actual
number of granule cells. The number of glomeruli was also reduced so
that the average distance between nearest neighbour glomeruli was
32 lm; the distance in cats is reported to be 18.4 lm (Palkovits et al.,

Fig. 1. (A) Schematic of cell types and synaptic connections incorporated into the present model with the flow diagram of neural signals of the CS, US and CR.
(B) Spatial arrangement of model Golgi cells (circles), glomeruli (hexagons) and granule cells (dots). Shaded rectangles in pale and dark grey represent,
respectively, the dendritic and the axonal arborization of the model Golgi cell at the centre. (C) Spatial arrangement of model glomeruli (hexagons) and granule cells
(dots) in detail. The rectangle in pale grey represents the dendritic arborization of the model granule cell at the near centre (white dot). For example, 100 granule cells
in the grey box (black dots) contact the four glomeruli surrounding these granule cells (filled hexagons).
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1972). We assumed that individual granule cells contacted the four
nearest glomeruli. This seems reasonable when we consider that in
cats the average length of granule cell dendrites is 13.59 lm
(Palkovits et al., 1972), which is shorter than 18.4 lm of the average
distance between neighbouring glomeruli (Palkovits et al., 1972). It
has been reported that the size of maximal axonal arborization of a
Golgi cell is 300 · 300lm2 (Dieudonné, 1998). This range of the
arborization covers 9 · 9 model Golgi cells, where the model Golgi
cell spacing was assumed to be 32 lm. This justifies a glomerulus
receiving inhibitory inputs from 9 · 9 nearby model Golgi cells.
When we determined that connections from granule cells to Golgi
cells ranged over 7 · 7 granule-cell clusters, we relied on the
following experimental findings: (i) the average size of the dendritic
arborization of a Golgi cell is 200 · 200lm2 (Dieudonné, 1998), and
(ii) Golgi cell inhibition produced by a parallel fibre volley extends
transversely no farther than 200 lm (Eccles et al., 1967). The area
200 · 200lm2 contains 7 · 7 granule-cell clusters in our model.

In cats, 330 Purkinje cells are contained in 1 mm2 of tissue of the
cerebellar cortex (Palkovits et al., 1971a). We assumed that in the
model cerebellar cortex of 1 mm2, 16 model Purkinje cells were
aligned sagittally with a cell spacing of 64 lm. The average size of the
dendritic arborization of Purkinje cells is 292 lm (Palkovits et al.,
1971a), whereas PFs elongate 1 mm in the present model. Thus, a
model Purkinje cell receives inputs from model granule cells within
292 · 1000 lm2. Because the distance between two nearby granule-
cell clusters was set at 32 lm, the model Purkinje cell receives inputs
from 9 · 32 granule-cell clusters (292 lm � 9 · 32 lm). Finally,
each granule-cell cluster contains 10 · 10 granule cells, so the
Purkinje cell receives inputs from 90 · 320 granule cells. All model
Purkinje cells also received CF inputs from the model IO. We
considered only one neuron in the model CN as an output neuron of
the system; it received excitatory MF inputs and inhibitory inputs from
all model Purkinje cells. This model CN neuron was assumed to
inhibit the IO neuron effectively. This simplification was justified by
the presence of inhibitory neurons in the CN sending axons to the IO
neurons (De Zeeuw & Berrebi, 1995). We also assumed one neuron in
the model IO which transmits the US signal.

Thus, we built a minimal model of the cerebellar cortex which was
able to represent and learn the POT. Therefore, we omitted all the other
types of neurons such as basket, stellate, Lugaro and unipolar brush
cells. We also omitted trigeminal inputs to the CN given directly and
indirectly via the IO. We confirmed that, in the simulation of eyeblink
conditioning, the peristimulus time histogram (PSTH) of the CN
neuron in the model with the IO input did not differ from that in the
model without the IO input except that within 50 ms immediately after
the US onset the firing rate of the CN neuron transiently increased.

Neuron models

Neurons were modelled as conductance-based, leaky integrate-and-fire
units.

C
dV ðtÞ
dt
¼ gleakðEleak � V ðtÞÞ þ gex:AMPAðtÞðEex � V ðtÞÞ

þ gex:NMDAðtÞðEex � V ðtÞÞ þ ginhðtÞðEinh � V ðtÞÞ
þ gahpðt � t̂ÞðEahp � V ðtÞÞ; ð1Þ

where V(t) and C are the membrane potential at time t and the
capacitance, respectively, and t̂ is the last firing time of the neuron.
The membrane potential was determined by five types of currents
specified by the right-hand side of equation 1, namely, leak, a-amino-
3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-

mediated, N-methyl-D-aspartate receptor (NMDAR)-mediated and
c-aminobutyric acid type A receptor (GABAAR)-mediated currents,
and the current for emulation of the after-hyperpolarization. For each
type C (where subscript c 2 {leak, ex:AMPA, ex:NMDA, inh, ahp}),
the current was calculated from the conductance gc and reversal
potential Ec. A conductance was calculated from the convolution of
the alpha function a(t) and the spike event dj(t) of presynaptic neuron
j at time t as follows:

gcðtÞ ¼ �gc

X
j

wj

Z t

�1
aðt � sÞdjðsÞds; ð2Þ

where �gc represents the maximum conductance and wj the synaptic
weight from the presynaptic neuron j. The alpha functions were
defined for each current and each neuron type with different time
constants. When the membrane potential of a neuron exceeded the
threshold h the neuron was deemed to fire a spike, followed by the
after-hyperpolarization that determined the refractory period. The
conductance for the after-hyperpolarization was given by

gahpðt � t̂Þ ¼ expð�ðt � t̂Þ=sahpÞ; ð3Þ

wheresahp represents the time constant of the after-hyperpolarization
and t̂ is the last firing time of the neuron (Gerstner & Kistler, 2002).
Parameter values were adopted from known physiological data as
shown in Tables 1 and 2. Neurons of the same type were assumed to
be identical: cell parameters were the same among these neurons. We
found that the POT is represented robustly because the network
dynamics was not sensitive to the choice of cell parameters within a
physiologically appropriate range. Thus, exact values of parameters
and their variability among individual neurons were not important in
the present model.

Synaptic weights

Granule cells fire 25 spikes ⁄ s when two dendrites are repetitively
stimulated at 50 Hz under Eleak ¼ )60 mV (D’Angelo et al., 1995).
Two simultaneous spikes on different dendrites are necessary for a
granule cell to produce a spike (Gabbiani et al., 1994). Golgi cells in
the cat cerebellum fire up to 100 spikes ⁄ s while the cat is walking

Table 1. Summary of cell parameters

Cell parameters

Neuron type

GR GO PKJ CN IO

h (mV) )35.0 )52.0 )55.0 )38.8 )50.0
C (pF) 3.1 28.0 107.0 122.3 10.0
gleak (nS) 0.43 2.3 2.32 1.63 0.67
Eleak (mV) )58.0 )55.0 )68.0 )56.0 )60.0
�gex:AMPA (nS) 0.18 45.5 0.7 50.0 1.0
�gex:NMDA (nS) 0.025 30.0 – 25.8 –
Eex (mV) 0 0 0 0 0
�ginh (nS) 0.028 – – 30.0 0.18
Einh (mV) )82.0 – – )88.0 )75.0
�gahp (nS) 1.0 20.0 0.1 50.0 1.0
Eahp (mV) )82.0 )72.7 )70.0 )70.0 )75.0
sahp (ms) 5.0 5.0 5.0 2.5 10.0

GR, granule cell (D’Angelo et al., 1995; Brickley et al., 1999); GO, Golgi cell
(Midtgaard, 1992; Maex and De Schutter, 1998; Dieudonné, 1998); PKJ,
Purkinje cell (Puia et al., 1994; De Schutter and Bower, 1994); CN, cerebellar
nucleus neuron (Czubayko et al., 2001; Mouginot and Gähwiler, 1995); IO,
inferior olivary neuron (Bal and McCormick, 1997; Schweighofer et al., 1999;
Llinás and Yarom, 1981); –, nonexistent.
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(Edgley & Lidierth, 1987). During the eyeblink conditioning exper-
iments, Purkinje cells fire up to 100 spikes ⁄ s when the CS is presented
(Kotani et al., 2003). Neurons in the CN also produce up to, on
average, 100 spikes ⁄ s when the CS is presented (Delgado-Garc’a &
Gruart, 2002). We determined synaptic weights so that the firing rates
of model neurons were similar to these experimental data.

Stimulus

A model granule cell receives four excitatory inputs from four nearby
glomeruli, so that 100 model granule cells in a cluster receive the same
excitatory inputs. Because cell parameters and synaptic weights are
identical at individual cells, these granule cell must produce identical
responses under this setting. On the other hand, real granule cells
exhibit a variety of response patterns across cells and trials because of
individual variability of cell parameters and synaptic weights,
stochasticity in channel dynamics and action potential generation,
and so on. For example, the decay time constant of excitatory
postsynaptic potentials (EPSPs) of granule cells is known to be
74.0 ± 33.8 ms (D’Angelo et al., 1995), indicating that the deviation
is almost 50% of the mean value. Such variability and stochasticity
jitter the onset of EPSPs and spike timing at individual granule cells,
which could be effectively simulated by random shift of the spike
timing of MFs. Thus, although model granule cells in a cluster contact
the same four glomeruli, excitatory signal fed into individual granule
cells via glomeruli were assumed to be independent for each cell.
Eventually, we attempted to model MF signals as four independent
Poisson spikes fed into each granule cell without any other variability.
The spontaneous activity level of the pontine nuclei of adult rats is
� 5 Hz (Freeman & Muckler, 2003). The neural signal of the CS
consists of transient and sustained components (Aitkin & Boyd, 1978;
Freeman & Muckler, 2003). The ratio of the transient to the sustained
units is almost 1 : 1 (Freeman & Muckler, 2003). The firing rate of the
sustained component is � 30 Hz (Freeman & Muckler, 2003).
According to these experimental findings, first we fed 5-Hz Poisson
spikes into MFs for 1 s prior to the CS presentation in order to set the
network activity to a steady state. Then, at t ¼ 0, we fed the CS signal
consisting of transient and sustained components. The sustained
component was modelled as 30-Hz Poisson spikes for 1 s. The
transient component was modelled as 200-Hz Poisson spikes for the
first 5 ms followed by 5-Hz Poisson spikes. Thus, in the first 5 ms, on
average one spike was elicited. Each granule cell received two
transient and two sustained components of the CS signals through four
dendrites. Figure 2 illustrates firing patterns of sustained and transient

components. The first 50 firing patterns are of sustained components
whereas the rest are of transient components, where the CS onset was
set at t ¼ 0. The model CN neuron, on the other hand, received one
transient and one sustained components of the CS signals. The US
signal, which was a transient current strong enough to elicit a spike,
was given to the IO neuron. The CS signal was sustained for 1 s even
after the US arrival in order to confirm that the present model elicited
the CR only around the US presentation. This differs from delay
eyeblink conditioning experiments, in which the CS coterminates with
the US.

Synaptic plasticity

We simulated long-term depression (LTD) and long-term potentiation
(LTP) at PF synapses on Purkinje cells according to experimental
findings (LTD: Ito, 1989, 2001, 2002; LTP: Lev-Ram et al., 2003;
Coesmans et al., 2004). For simulated LTP, the synaptic weight of PF
j at Purkinje cell i denoted by wPKJi ‹ PFj was updated at each time t as
follows:

wPKJi PFj  wPKJi PFj þ 0:0001ðwinit � wPKJi PFjÞPFjðtÞ; ð4Þ

where PFj(t) ¼ 1 if PF j fires a spike at t, and 0 otherwise, and winit

denotes the initial PF synaptic weight set at 1. The simulated LTP
amplifies the active PF synaptic weight by 0.0001. For simulated LTD,
wPKJi ‹ PFj was updated at the end of the CS as follows:

wPKJi PFj  wPKJi PFj � 0:08wPKJi PFj

X50
Dt¼0

CFðtÞPFjðt � DtÞ; ð5Þ

where CF(t) ¼ 1 if the IO fires a spike at time t and 0 otherwise. This
simulated LTD reduces the synaptic weight of PF j that is active at
0–50 ms before the CF input by a factor of 0.08.
Plasticity at MF synapses on the CN neuron has also been

reported (Racine et al., 1986; Caria et al., 2001). This plasticity
seems to be related to the representation of the amplitude of the
CR, not the timing of the CR. Kleim et al. (2002) have reported
that synapse formation on CN neurons is associated with memory
storage. Boyden et al. (2004) have suggested that the CN is
more important for storing information about the response strength
whereas the cerebellar cortex stores timing-related information.
Shutoh et al. (2006) have shown that memory of the learned
response is first formed in the cerebellar cortex and then only
memory of the response amplitude is transferred to and consoli-
dated at the CN. Because we focused on how the timing of the CR

Table 2. Summary of alpha functions

Neuron type Alpha function

GR aex:AMPA (t) ¼ e–t ⁄ 1.2

aex:NMDA (t) ¼ e–t ⁄ 52.0

ainh (t) ¼ 0.43e–t ⁄ 7.0 + 0.57e–t ⁄ 59.0

GO aex:AMPA (t) ¼ e–t ⁄ 1.5

aex:NMDA (t) ¼ 0.33e–t ⁄ 31.0 + 0.67e–t ⁄ 170.0

PKJ aex:AMPA (t) ¼ e–t ⁄ 8.3

CN aex:AMPA (t) ¼ e–t ⁄ 9.9

aex:NMDA (t) ¼ e–t ⁄ 30.6

ainh (t) ¼ e–t ⁄ 42.3

IO aex:AMPA (t) ¼ e–t ⁄ 10.0

ainh (t) ¼ e–t ⁄ 10.0

GR, granule cell (Silver et al., 1992; Puia et al., 1994; D’Angelo et al., 1995;
Brickley et al., 1999); GO, Golgi cell (Dieudonné, 1998); PKJ, Purkinje cell
(Llano et al., 1991); CN, cerebellar nucleus neuron (Audinat et al., 1992;
Mouginot & Gähwiler, 1995); IO, inferior olivary neuron, defined arbitrarily.

Fig. 2. Spike patterns of the sustained and transient components of MF input
signals. The first 50 examples are of sustained components whereas the rest are
of transient components. When t < 0, both components were set to be 5-Hz
Poisson spikes. The CS onset was set at t ¼ 0. The sustained component was
30-Hz Poisson spikes for 1 s. The transient component consisted of 200-Hz
Poisson spikes for the first 5 ms followed by 5-Hz Poisson spikes. In the 5-ms
interval immediately after the CS onset, on average one spike was elicited.
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is learned rather than the consolidation of the CR amplitude, we
fixed synaptic weights of MF inputs to the model CN neuron.

Simulation tools

The simulation program was written in C programming language.
Differential equations were numerically solved using the 4th order
Runge–Kutta method with a fixed step size of 1 ms.

Data analysis

Let zi(t) be the population average activity of a granule-cell cluster i,
defined as the total amount of AMPAR-mediated EPSPs to Purkinje
cells divided by the number of granule cells in a cluster, as follows:

ziðtÞ ¼
1

sPKJ

Xt

s¼0
expð�ðt � sÞ=sPKJÞ

1

NGR per cluster

X
j

djðsÞ
 !

; ð6Þ

where dj(s) represents the spike elicited in model granule cell j in the
cluster, NGR per cluster is the number of granule cells in a cluster
(namely, 100) and sPKJ is the decay time constant of AMPAR-
mediated EPSPs at Purkinje cells, which was set at 8.3 ms.

We studied how the activity pattern of granule cell clusters evolved
over time. To do this, first we defined the autocorrelation of the
activity pattern at times t and t + Dt as follows:

Cðt; t þ DtÞ ¼
P

i ziðtÞziðt þ DtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i z2i ðtÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i z2i ðt þ DtÞ

p ð7Þ

The numerator represents the inner product of activity pattern vectors
at time t and t + Dt, and the denominator normalizes the vector
lengths. Because zi(t) takes only positive values the correlation takes a
value between 0 and 1. It would be 1 if the activity pattern vectors at
time t and t + Dt are identical, and it would be 0 if the vectors are
orthogonal, indicating that the activity patterns have no overlap.

We then defined the similarity index S(Dt) as follows:

SðDtÞ ¼ 1

T

XT

t¼0
Cðt; t þ DtÞ; ð8Þ

where T represents the duration of the CS signal (namely, 1 s). This is
the average of equation 7 with respect to t. This index represents how
two activity patterns separated by Dt are correlated, on average. If the
similarity index decreased as Dt increased, it indicates that an activity
pattern evolved with time into uncorrelated patterns. We defined the
standard deviation of the similarity index as well:

rsðDtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T

XT

t¼0
ðCðt; t þ DtÞ � SðDtÞÞ2

vuut : ð9Þ

We also defined the reproducibility index R(t) as follows:

RðtÞ ¼
P

i zð1Þi ðtÞz
ð2Þ
i ðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i zð1Þ2i ðtÞ
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i zð2Þ2i ðtÞ
q : ð10Þ

zð1Þi ðtÞand zð2Þi ðtÞ are activity patterns of granule-cell cluster i at time t
for two different input signals (e.g. input signals with different noise).
The reproducibility index represents how two activity patterns for
different input signals differ from each other as time elapses.

Simulation of delay eyeblink conditioning

In the simulation of delay eyeblink conditioning, we tested three ISIs:
250, 500 and 750 ms. For each ISI, paired presentation of the CS and
the US was given 100 times and the PSTH of the model CN neuron
was calculated.
In experiments, a PSTH is calculated using data obtained from CS-

alone trials to avoid contamination from the strong influence of US
signals. On the other hand, in this study, neither complex spike
generation at Purkinje cells induced by CF signals nor excitatory
connections from the IO to the CN were modelled. Moreover, update
of PF synaptic weights by simulated LTD was made at the end of each
trial. Taken together, the US input via CF had no influence on the
network dynamics. Therefore, we did not distinguish CS-alone trials
from CS–US trials and used spike data of the CN neuron during CS–
US trials to obtain the PSTH.

Results

POT representation by sparse granule-cell populations

The simulated network was given 5-Hz Poisson spikes that represent
average spontaneous activity of neurons in the precerebellar nucleus
(Freeman & Muckler, 2003) for 1 s prior to the presentation of the CS,
which led to steady-state activity of the network. In this steady state,
granule and Golgi cells fired spikes randomly. The average firing rate
of granule cells was � 5 Hz. In contrast, Maex & De Schutter (1998)
have reported that granule and Golgi cells fire spikes synchronously at
20 Hz in the steady state in their granular layer model. The
synchronized activity, however, was not retained at 5 Hz. We
examined whether granule and Golgi cells in the present model
undergo synchronization at a higher frequency by increasing the firing
rate of Poisson spikes fed into the network. However, we did not
observe such synchronization.
The simulated CS was presented to the network at t ¼ 0. Figure 3A

shows the spike patterns of 50 out of 100 granule cells in a cluster.
These granule cells contact the same MF terminals and share common
inhibitory inputs from the same Golgi cells. In spite of the stochastic
spike trains conveyed by MFs, the granule cells exhibited similar spike
patterns, in which they tended to fire spikes from 0 to 100 ms and
from 800 to 1000 ms. Figure 3B and C shows the spike patterns of 50
granule cells in two different clusters. Granule cells in cluster 2 fired
spikes frequently from 250 to 500 ms, whereas granule cells in
cluster 3 quite probably generated spikes from 500 to 1000 ms. Again,
the spike patterns were similar across granule cells in the same cluster.
Such a similarity of spike activities of granule cells suggests that a
granule-cell cluster behaves as a functional unit that represents
information robustly against stochastic fluctuation inherent in the CS.
This result also demonstrates that granule cells belonging to different
clusters exhibited different temporal activity patterns.
The top panel in Fig. 4A shows the spike patterns of 50 granule

cells that were randomly chosen from each granule-cell cluster. As
mentioned above, these granule cells chosen from different clusters
revealed different temporal activity patterns. Specifically, they under-
went random repetition of transitions between burst and silent states.
The burst state was sustained for tens to hundreds of milliseconds. On
the other hand, Golgi cells fired spikes rather regularly as shown by
the bottom panel. Figure 4B shows the similarity index of the activity
pattern against the time shift Dt. This figure indicates that the
population of active granule cells changed gradually with time and
that no active granule-cell populations appeared more than once.
These properties guarantee the one-to-one correspondence between
the active granule-cell population and the POT from the CS onset. The
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matrix describing random inhibitory connections from Golgi to
granule cells maps a population of active granule cells into another,
dissimilar, population of active granule cells. This computation is a

kind of ‘random projection’. This random projection was repeated
during the CS presentation and the random sequence of active granule
cell populations was generated. The simulation demonstrated that, on
average, only 0.65% of granule cells (� 650 cells) fired spikes for the
time interval of 1 ms. In other words, the POT from the CS onset can
be represented by a gradually changing active granule-cell population
in a scheme of sparse coding.
Information representation in a sparse coding scheme seems

vulnerable to the noise inherent in the external input signal. In our
network, how robustly can temporally changing active granule-cell
populations represent POT? We conducted two simulations using
different Poisson spike trains fed into MFs, comparing the granule cell
activity patterns obtained from the two simulations. As shown in
Fig. 4C, two activity patterns generated by different Poisson spike
trains with the same mean firing rate were almost identical at the
beginning of the stimulation but gradually became dissimilar, retaining
a high reproducibility. As shown in Fig. 5, we confirmed this property
by plotting spike patterns of identical granule cells for 50 different
Poisson spike trains with the same mean firing rate, where three
granule cells were taken from the three clusters that are shown in
Fig. 3. In cluster 1 (Fig. 5A), the granule cell tended to fire spikes at
high frequency from 0 to 100 ms across different trials of stimulation,
whereas the cell probably fired spikes sparsely after 800 ms for one-
third of the trials. In clusters 2 and 3 (Fig. 5B and C), similar spike
patterns were observed across different trials and the patterns became
more variable with time. The high reproducibility indicates that the
random structure of alternating transitions between burst and silent
states at granule cells was not due to the temporal jitter of Poisson
spikes fed into MFs. More importantly, the spike patterns of a single
granule cell in a cluster across different trials shown in Fig. 5 were
quite similar to those of different granule cells in the same cluster in a
single trial shown in Fig. 3. This observation implies that the trial
average activity of a single granule cell in a cluster is almost identical
to the population average activity of many granule cells in the same
cluster in a single trial. A Purkinje cell receives signals from many PFs
and hence its membrane potential is computed by the population
average activity of granule cells. Based on this property of spatial
integration and the equivalence between the population average and
the trial average, it is thought that a Purkinje cell computes the trial
average activity of granule cells. Thus, Purkinje cells represent timing

Fig. 3. (A) Spike patterns of 50 out of 100 granule cells chosen randomly in a
granule-cell cluster. Abscissa and ordinate represent time and neuron index,
respectively. The CS onset was set at t ¼ 0. Because they received the same
inhibitory inputs they exhibited similar spike trains, although individual spike
timing varied from cell to cell. This indicates that these granule cells behaved as
a functional unit as a whole. (B and C) Spike patterns of 50 granule cells in two
other clusters. The granule cells in each cluster exhibited similar spike patterns
whereas spike patterns were quite different among different clusters.

Fig. 4. (A) Spike patterns of 50 granule cells (GR; top) and Golgi cells (GO; bottom). Granule cells undergwent random repetition of transitions between burst and
silent states. Different granule cells exhibited different temporal spike patterns. Golgi cells fired spikes rather regularly. All conventions are as in Fig. 3.
(B) The similarity index S(Dt) defined in equation 8 is plotted with a solid line and the standard deviation rs(Dt) defined in equation 9 is represented by the grey
region. The similarity index monotonically decreased from 1 at Dt ¼ 0 as Dt increased. This indicates that the population of active granule cells changed gradually
with time, and no population appeared more than once for 1 s. (C) The reproducibility index defined by equation 10. Abscissa and ordinate represent the time from
the CS onset and the index, respectively. The reproducibility was highest at the beginning and decreased gradually with time, retaining a high value, suggesting that
two sequences of active granule cell populations generated by two different Poisson spike trains were almost identical at the beginning of the stimulation, and then
they gradually became dissimilar with time, retaining a high reproducibility. The minimum similarity and reproducibility indices were 0.72 and 0.64, respectively.
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information robustly in spite of the variability of signals in the CS
across different trials.

Effects of blocking NMDA channels on POT representation

As shown in Fig. 4A, the burst periods of granule cells sustained for
several tens to hundreds of milliseconds. This raises the question of
whether particular synaptic channels are involved in determining the
duration of a burst state and a silent state. Experiments using granule
cell slices indicate that temporal summation of input signals is mainly
determined by the NMDAR-mediated EPSPs; there is a larger decay
time constant of NMDAR-mediated EPSPs (52.0 ms) than that of
AMPAR-mediated EPSPs (1.2 ms; Silver et al., 1992). It is quite
likely that simulated NMDAR-mediated current maintained the burst
states. To test this possibility, we carried out simulation of the network
dynamics blocking NMDA channels, in which the conductance of
NMDA channels was set to 0 at either granule cells or Golgi cells.

Figure 6A shows the spike patterns of 50 granule cells under the
blockade of NMDA channels at granule cells. The maximum firing
rate decreased from 79 to 17 spikes ⁄ s. This drastic reduction in firing
rate was attributed to the failure of temporal integration of MF signals
over a long time at granule cells in the absence of NMDAR-mediated
current. Figure 6B represents the spike patterns under the blockade of
NMDA channels at Golgi cells. The maximum firing rate of Golgi
cells decreased from 47 to 16 spikes ⁄ s due to the absence of
NMDAR-mediated current to Golgi cells. On the other hand, the
maximum firing rate of granule cells reached as high as 90 spikes ⁄ s.

The enhanced firing rate of granule cells was attributed to the
reduction in inhibition from the less active Golgi cells. As expected, in
both cases granule cells no longer showed clear alternating transitions
between burst states and silent states, but rather fired spikes at almost
constant frequencies. As there was no temporal structure in the activity
patterns, similarity indices for both cases became flat, as shown in
Fig. 6C. This indicates the disruption of the POT representation.
Consequently, temporal integration of input signals based on long-
lasting depolarization induced by NMDAR-mediated current gener-
ated a random sequence of transitions between burst states and silent
states.

Enhancement of robustness in POT representation

As shown in Fig. 4C, the POT representation was robust against
temporal jitter of MF spikes. We questioned which mechanisms

Fig. 5. Spike patterns of a granule cell chosen randomly in the same three
clusters as Fig. 3 for 50 trials. Ordinate represents the trial number; the other
conventions are as in Fig. 3. Across trials, these three granule cells exhibited
similar temporal spike patterns. Variability of spike patterns across trials seems
similar to that of spike patterns across cells shown in Fig. 3.

Fig. 6. (A) Spike patterns of 50 granule cells when NMDA channels of
granule cells were blocked. Each neuron was chosen randomly from 50
different granule-cell clusters. Because of the failure of temporal integration of
MF signals at granule cells over a long time in the absence of NMDAR-
mediated current they fired spikes sparsely and did not exhibit burst- and silent-
state transitions. (B) Spike patterns of 50 granule cells when NMDA channels
at Golgi cells were blocked. Golgi cells decreased their firing rate due to the
absence of NMDAR-mediated current. In turn, reduced inhibition made granule
cells fire spikes vigorously. Again, they did not exhibit burst- and silent-state
transitions. All conventions are as in Fig. 3. (C) Similarity indices when
NMDA channels of granule cells were blocked (GR, dotted line) and when
those of Golgi cells were blocked (GO, dashed line). In both cases, the plot of
similarity indices is flat except the obvious similarity around t � 0, indicating
that there was no temporal structure in granule cells’ activity patterns. The solid
line is the similarity index under the normal condition, which is the same as in
Fig. 4.
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support this robustness. First, we examined whether the huge number
of granule cells in the cerebellum makes the POT representation
robust. We conducted simulation with 100, 10 or 1 granule cells per
cluster. Figure 7A shows the plot of the reproducibility index for each
case. The lower bounds of values of the reproducibility index were
0.64, 0.50 and 0.28 for 100, 10 and 1 granule cells per cluster,
respectively. As the number of granule cells decreased, the reproduc-
ibility became worse. This suggests that, in the cerebellum, redun-
dancy in information representation of input signals due to the huge
number of granule cells serves to achieve the robust representation of
POT. Because the number of granule cells in the cerebellum is 10·
larger than that assumed in the present model (Palkovits et al., 1971b;
Ito, 1984), the POT representation in the real cerebellum should be
more robust than that in the present model.
Second, we examined the effect of the MF synaptic weight at

granule cells on the robustness of the POT representation. We carried
out simulations for different strengths of the synaptic weight. As
shown in Fig. 7B, the reproducibility increased as the synaptic weight
increased. The lower bounds of values of the reproducibility index
were 0.57, 0.61, 0.64 and 0.67 for )20, )10, 0 and 10% changes in the
synaptic weight, respectively. Taken together with the findings of LTP
induced at MF synapses on granule cells (D’Angelo et al., 1999;
Armano et al., 2000; Hansel et al., 2001), this LTP may contribute to
enhancement of the robustness in the POT representation.

Representation of multiple time passages

How does the model work when different patterns of input signals are
fed into MFs? We conducted simulations in which only half of the
granule-cell clusters that were randomly chosen were stimulated by
the CS signal while the rest were exposed to the 5-Hz background
activity. Then we reversed the set of CS-stimulated granule cells and
the set of granule cells exposed to the background activity and
conducted the simulation again. The maximum value of the
reproducibility index between the two stimulation conditions was
found to be < 0.1. This low reproducibility suggests that different
activity patterns were generated when MFs were stimulated with
different patterns of CS signals. We also confirmed that the activity
pattern of granule cells under each simulation condition can represent
a POT specified by the input signal. These results suggest that the
representation of multiple POTs can be embedded into the same
granule–Golgi cell circuit, and the information on individual POTs can
be read out separately for different CS signals.

Learned timing by Purkinje cells

Next, we conducted simulations of the network to show how model
Purkinje cells learn and represent the ISI between the CS onset and the
timing of US presentation. In the simulation, we repeatedly presented
the same CS–US pair 100 times. While a spatiotemporal activity
pattern of granule cells generated by the CS signal input was sent to
Purkinje cells through PFs, the US signal was fed into the IO 500 ms
after the onset of the CS. In order to confirm that the present model
elicited the CR only around the US presentation, we continued the CS
presentation for 1 s even after the US presentation, although the CS
typically coterminates with the end of the US in standard eyeblink
conditioning protocols.
The top panels in Fig. 8 show membrane potentials of a Purkinje

cell at the first, 18th and 19th trials of the conditioning. At the first
trial, the cell exhibited a constant high-frequency spike train at
94 spikes ⁄ s. As conditioning was repeated, the firing rate decreased,
particularly around the time of the US presentation. As shown above
in POT representation by sparse granule-cell populations, a nonre-
current sequence of active granule cell populations was generated
during the CS presentation and the sequence generation was
reproducible across trials. Thus, the population of active granule cells
at the time of the US presentation was uniquely determined across
trials, and only their PF synapses were depressed. Therefore, the net
input to the Purkinje cell decreased around the US presentation. On the
other hand, long before and after the US presentation the net input did
not change because LTD was not induced at synapses due to the lack
of coincidence between the CS and the US. The temporally localized
reduction in the net input to a Purkinje cell around the US presentation
decreased the firing rate of the Purkinje cell. Such a decrease in the
Purkinje cell firing rate has been found experimentally (Berthier &
Moore, 1986; Hesslow & Ivarsson, 1994; Kotani et al., 2003; Jirenhed
et al., 2007). Moreover, the simulation showed that the overall firing
rate of the Purkinje cell decreased trial-by-trial. This decrease was due
to the fact that some granule cells that were active when the US was
presented could be active again at the other times and the LTD of
synapses of these granule cells contributed to the reduction in the net
input to the Purkinje cell. The tendency toward reduction in the firing
rate over the course of conditioning has been observed in a recent
experiment (Kotani et al., 2006).
The bottom panels in Fig. 8 show membrane potentials of the CN

neuron in the first, 18th and 19th conditioning trials. In the first trial,
the neuron was not able to fire spikes because it was strongly inhibited
by Purkinje cells. In the 18th trial, the CN neuron fired a few spikes
because Purkinje cell inhibition became weaker around the US
presentation. It should be noted, however, that the first spike was
elicited after the US presentation. At the 19th trial the neuron fired
more spikes, representing a vigorous CR. Moreover, the first spike
appeared at � 380 ms, which is earlier than the US presentation. This
may represent the so-called anticipatory CR (Ohyama et al., 2003).
After the 19th trial, the CN neuron inhibited the IO neuron earlier

than the US presentation due to the anticipatory spike output of the
CN neuron. Therefore, the IO neuron failed to fire spikes necessary for
the induction of LTD at Purkinje cells. This suppressed further
induction of LTD, which may serve to avoid over-learning.

Simulation of delay eyeblink conditioning

In the simulation of delay eyeblink conditioning, the ISI was set at
250, 500 or 750 ms and, for each ISI, paired presentation of the CS
and the US was given 100 times. The PSTH of the model CN neuron
was plotted in Fig. 9. For any ISI, the CN neuron did not produce

Fig. 7. (A) Reproducibility indices for different numbers of granule cells in a
cluster: 1, 10 and 100. A larger number of granule cells per cluster enhanced
reproducibility of the sequence generation of active granule cell populations.
(B) Reproducibility indices for different weights of MF synapses on granule
cells: 80, 90, 100 and 110%. Larger synaptic weights enhanced the
reproducibility. All conventions are as in Fig. 4C.
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spikes for a while after the CS onset because the neuron was strongly
inhibited by Purkinje cells. After the silent period of the CN neuron,
the firing rate steadily increased with time and reached a maximum at
the same time as the ISI. This is consistent with experimental findings
(McCormick & Thompson, 1984a; McCormick & Thompson, 1984b;
Berthier & Moore, 1990). After that, the firing rate sharply decreased
in spite of sustained presentation of the CS. Moreover, the maximal
firing rate slightly decreased and the width of the histogram increased
as the ISI increased. Such ISI-dependent behaviour seems to correlate

with experimental results in which the amplitude of eyelid closure, as
measured by electromyography (EMG), decreased while the eyelid
response trace became broader as the ISI increased (Mauk & Ruiz,
1992).

Effects of Golgi cell ablation on eyeblink conditioning

Watanabe et al. (1998) have studied the role of Golgi cells in motor
coordination in mice by selectively ablating Golgi cells using an
immunotoxin-mediated cell targeting technique. They found that the
Golgi cell ablation caused severe acute motor disorders. They also
found that elimination of Golgi cells not only reduced GABAR-
mediated inhibition but also attenuated the NMDAR-mediated current
to granule cells. The attenuation of NMDAR-mediated current may
compensate for the reduction in inhibition from Golgi cells, by which
the balance between the excitation and inhibition acting on granule
cells may be achieved. This possibility is partially supported by the
tendency of Golgi cell-ablated mice to show gradual recovery (Hirano
et al., 2002). We tested whether the present model can reproduce the
above findings.
We carried out simulation of eyeblink conditioning, randomly

eliminating 80% of Golgi cells in the network. The PSTH illustrated in
Fig. 10A shows that the time of peak firing rate was advanced (for ISI
750 ms) or delayed (for ISI 250 ms), whereas the maximal firing rate
decreased by 10% (ISI 250 ms) or > 30% (ISIs of 500 and 750 ms).
Moreover, the neuron tended to continue producing spikes long after
the US presentation. The similarity index in this case became almost
flat and its minimum value was 0.95. These results imply a failure of
the POT representation as well as a failure of conditioning.
Next, we conducted simulation of eyeblink conditioning, reducing

the peak conductance of NMDA channels on granule cells by 40% in

Fig. 8. Membrane potentials of a Purkinje cell (top panels) and the CN neuron (bottom panels) at the first, 18th and 19th trials (from left to right). Spikes are
marked by vertical lines. Abscissa and ordinate in each panel represent the time from the CS onset and the membrane potential, respectively. PKJ, Purkinje cell.
Because the US was given at 500 ms, Purkinje cells learned to stop firing at � 500 ms as conditioning trials were repeated. On the other hand, the CN neuron
disinhibited by Purkinje cells began to fire spikes at � 500 ms. This indicates the generation of the CR. Note that the first spike of the CN neuron was elicited slightly
earlier than the US onset.

Fig. 9. PSTH of the CN neuron for 100 trials of the conditioning simulation.
The ISIs were set at 250, 500 and 750 ms. The firing rate reached a maximum
at the same time as the ISI. As the ISI increased, the maximum firing rate
slightly decreased while the width of the histogram increased. Abscissa and
ordinate represent the time from the CS onset and the firing rate of the CN
neuron, respectively.
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addition to the 80% elimination of Golgi cells. The simulated PSTH in
Fig. 10B shows that the maximal firing rate increased and the temporal
localization of spike activity was restored again. In particular, the
maximal firing rate for an ISI of 250 ms exceeded that in the normal
case. On the other hand, the time of peak firing rate was delayed when
the ISI was set at either 250 or 750 ms. Moreover, the width of the
PSTH was still broader than that in the normal conditioning case. This
suggests that the suppression of NMDAR-mediated current into
granule cells tends to restore the learning capability that has been lost
by the ablation of Golgi cells. However, the broadening of the PSTH
implies that the performance of CRs is still worse than that in the
normal conditioning case. Thus, the experimental finding of gradual
recovery of CRs was successfully reproduced by the simulations of
our network model under the elimination of Golgi cells combined with
the reduction in the peak conductance of NMDA channels.

Effect of blocking NMDA channels on eyeblink conditioning

Finally, we examined how the blockade of NMDA channels on
granule or Golgi cells affected the conditioning. Figure 11A shows the
PSTH of the CN neuron for 100 trials when the peak conductance of

NMDA channels on granule cells was set at 0. The PSTH peak
appeared at the corresponding ISIs. However, the CN neuron started to
produce spikes earlier and did not stop firing after the US presentation.
Moreover, the overall firing rate significantly decreased. Thus, the
PSTH became almost flat around and after the US presentation. This
property suggests uncertainty in the CR even after the conditioning
under the blockade of NMDA channels. NMDAR subunits consist of
two classes: NR1 and NR2 (NR2A–NR2D). Granule cells express
both NR2A and NR2C; in particular, the mRNA for NR2C is
expressed only in granule cells in the cerebellum (Watanabe et al.,
1994). NMDAR-mediated EPSPs in granule cells characterized by a
long time constant are nearly abolished in knockout mice lacking both
NR2A and NR2C, and these mice fail to stay on a rotating rod,
indicating severe motor dyscoordination (Kadotani et al., 1996). These
results suggest that NMDAR-mediated EPSPs are indispensable for
precise motor control. We found that 51 trials were necessary for the
CN neuron to start eliciting a vigorous CR that completely suppressed
spike generation by the IO neuron, whereas 19 trials were sufficient in
the normal case. These simulation results predict that learning in
animals without the function of NMDARs on granule cells proceeds
much more slowly than that in normal animals. This prediction is
consistent with the experiment by Kishimoto et al. (1997), demon-
strating that mutant mice lacking both NR2A and NR2C showed
slower acquisition of the CR by 400 trials of the conditioning, whereas
140 trials were sufficient in wild-type mice.
On the other hand, the blockade of NMDA channels on Golgi cells

completely impaired the conditioning, as shown in Fig. 11B. The CN
neuron fired spikes at high frequencies immediately after the CS was
given, and then the firing rate monotonically decreased with time. We
examined the firing pattern of Purkinje cells and found that they fired
isolated spikes synchronously over all Purkinje cells shortly after the
CS onset. The CN neuron could produce spikes during the intervals
between the successive Purkinje spikes due to the release of the CN
neuron from the Purkinje cells’ synchronized inhibition. This induced
high-frequency spike activity immediately after the CS onset. Spikes
fired by the Purkinje cells, however, became gradually desynchronized
with time. This desynchronization led to continuous inhibition of the
CN neuron by Purkinje cells. Therefore, the PSTH of the CN neuron
decreased as time elapsed.

Discussion

POT representation in the model cerebellar granular layer

Accumulating evidence seems to support the hypothesis that the
cerebellar cortex represents the POT (Perrett et al., 1993; Garcia &
Mauk, 1998; Ohyama & Mauk, 2001; Bao et al., 2002), but the
mechanism is still a matter of debate. Several models have been
proposed (Fujita, 1982; Moore et al., 1989; Gluck et al., 1990;
Chapeau-Blondeau & Chauvet, 1991; Bullock et al., 1994; Buono-
mano & Mauk, 1994; Fiala et al., 1996; Medina et al., 2000). Among
them, representation of the POT using a recurrent network composed
of granule and Golgi cells was first studied by Buonomano & Mauk
(1994). The model was later elaborated more realistically by the same
group (Medina et al., 2000) and their simulation reproduced some
features of CRs in eyeblink conditioning experiments. However, the
mechanism by which a population of active granule cells could
represent the POT was not clear. Focusing on that mechanism, we
studied the dynamics of a simplified rate-coding model of a granule
and Golgi cell circuit (Yamazaki & Tanaka, 2005a) and found two
necessary conditions for the POT representation: long temporal
integration of input signals and random connections between granule

Fig. 10. PSTH of the CN neuron for 100 trials of the conditioning simulation
under (A) Golgi cell ablation and under (B)Golgi cell ablation and reduction
in the NMDA channel conductance on granule cells. The ISIs were set at 250,
500 and 750 ms. Thin lines show PSTH in the normal case. Ablating Golgi
cells caused the time of peak firing rate to shifts, and the firing rate did not
return to 0 after the US presentation. Successive reduction in the NMDA
channel conductance of granule cells rescued the timed peak of the firing rate
although slightly shifted, whereas the sustained firing after the US presentation
was still preserved. All conventions are as in Fig. 9.

Fig. 11. PSTH of the CN neuron for 100 trials of the conditioning simulation
under the blockade of NMDA channels on (A) granule cells and
(B) Golgi cells. The ISI was set at 250, 500 and 750 ms. Thin lines show
PSTH in the normal case. Blocking NMDA channels on granule cells caused
the CN neuron to start to fire spikes earlier than in the normal case, and it did
not stop firing after the US presentation. Hence, the peak firing rate at the
corresponding ISI is not observed clearly. On the other hand, blocking NMDA
channels on Golgi cells abolished the timed peak of the firing rate completely.
All conventions are as in Fig. 9.
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and Golgi cells. The simplified model is advantageous in elucidating
principal mechanisms qualitatively, owing to its mathematical tracta-
bility. On the other hand, it is unlikely to be useful for quantitative
argument in comparison with a real system. In the present study, we
built a spiking network model of the cerebellar circuit using integrate-
and-fire units as model neurons, and examined to what extent the
computational mechanism found in the simplified model is valid for a
spiking network model. We found several important properties of the
network underlying the POT representation in the cerebellum.

First, time-varying inhibition from Golgi cells to granule cells
through random recurrent connections shaped a spatiotemporal
structure in the activity patterns of granule cells. Granule cells
exhibited random repetition of transitions between burst and silent
states, and different granule cells showed different firing patterns.
Thus, no population of active granule cells appeared more than once.
Because the active granule cell population changed with time, the
spatiotemporal pattern represented the POT. Several lines of evidence
suggest that the recurrent inhibition shapes the spatiotemporal
neuronal activity patterns in the brain. For example, in the olfactory
bulb, mitral cells receive odour signals and excite granule cells, which
in turn inhibit mitral cells. Mitral cells exhibit complex spatiotemporal
activity patterns when odours are presented (Laurent et al., 2001), and
the spatiotemporal patterns are shaped by inhibition (Wilson &
Laurent, 2005). In the prefrontal cortex, excitatory neurons show a
variety of temporal discharge patterns triggered by a sensory cue
stimulus during a delay interval in delayed-response tasks (Niki &
Watanabe, 1979; Kojima & Goldman-Rakic, 1982; Compte et al.,
2003). The temporally irregular persistent activity is caused by
inhibition (Constantinidis et al., 2002).

Second, NMDAR-mediated EPSPs that have a large decay time
constant made granule and Golgi cells integrate input signals over a
long time, and so their spiking periods were sustained up to hundreds
of milliseconds. Because of the slow dynamics, the active granule cell
population changed gradually over time and represented the POT.
Blocking of simulated NMDA channels on granule and Golgi cells
disabled the sustained spike generation and hence the POT represen-
tation was disrupted. This result also explains why the model of
Medina et al. (2000) represents the POT: they assumed a long decay
time constant of PSPs (75 ms from MFs to granule cells and 50 ms
from Golgi cells to granule cells). Experimental evidence of the
involvement of NMDAR-mediated EPSPs in delayed and ⁄ or sus-
tained responses has been reported. For example, Imamura et al.
(2000) have found that electrical stimulation to the white matter of
cerebellar slices induces postsynaptic long-lasting depolarization in
the granular layer, but the depolarization disappeared when an NMDA
antagonist 2-amino-5-phosphonovalerate (APV) was applied. Buon-
omano (2003) has demonstrated the induction of reliably timed action
potentials with a delay as long as 300 ms after a single-pulse
stimulation to cortical slices. The delayed responses were caused by
the retention of activity by the network dynamics. The activity
retention was found to be mediated mainly by NMDAR activation
because the delayed responses disappeared when APV was applied to
the slices. These studies suggest that the large decay time constant of
NMDAR-mediated EPSPs is necessary for the recurrent circuit to
retain the activity.

Third, the simulated glomerulus provided 100 nearby granule cells
with common inhibitory inputs. These granule cells exhibited similar
firing patterns in spite of noisy MF signals due to jittering of the spike
timing. Thus, they represented MF signals redundantly and assisted in
transmitting signals to Purkinje cells robustly. Firing patterns of a
single granule cell in a cluster across different trials (Fig. 5) were
similar to those across different granule cells in the same cluster in a

single trial (Fig. 3). This suggested that the averaged activity of a
single granule cell across different trials, which is constant across
trials, could be approximated by calculating the averaged activity of
many PFs at Purkinje cells. LTP at MF synapses on granule cells
increased the average firing rate of granule cells and thereby decreased
the variance of the interspike interval across different trials. The
smaller variance indicates less fluctuation of EPSPs at Purkinje cells.
Thus, these operations enhanced the reproducibility of the POT
representation across different trials.
Finally, oscillation in field potentials has been reported in the

granular layer of immobile animals (Edgley & Lidierth, 1987; Pellerin
& Lamarre, 1997; Hartmann & Bower, 1998). Maex & De Schutter
(1998) have built a model of the cerebellar granular layer using the
Hodgkin–Huxley neuron model and observed synchronization of
granule and Golgi cell firing. Their model did not represent the POT
because of the absence of NMDA channels at Golgi cells whereas ours
did not exhibit synchronization; this may be due to the absence of
Hodgkin–Huxley-type channel dynamics in our model neurons. In a
related study, we attempted to switch the network dynamics between
synchronization and POT representation by changing the strength of
MF signals (Yamazaki & Tanaka, 2006).
The present model lacks several details, such as MF input to Golgi

cells, voltage-dependency of NMDA receptors, tonic inhibition in
glomeruli, unipolar brush cells and so on. In this respect, the present
model is still far from the real cerebellum. We would like to emphasize
that our model is devoted to providing a minimal cerebellar model for
the POT representation.

Simulation of eyeblink conditioning

Our model successfully reproduced some experimental observations in
Pavlovian delay eyeblink conditioning. Purkinje cells learned to stop
firing around the time of US presentation through LTD at PF synapses,
and the CN neuron was thereby released from inhibition to elicit the
CR. Once robust CR was established, the CN neuron inhibited the IO.
This inhibition to the IO suppressed over-learning, resulted in a longer
duration of the silent period of Purkinje cells and was beneficial for
retaining the representation of precise timing. At the same time, LTP
overtook LTD; this cancelled out accidentally occurring LTD and
stabilized the PF synaptic weights (Kenyon et al., 1998).
In Fig. 9, the width of the PSTH is seen to increase as the ISI

increased; this emerged from the ISI-dependent reduction in repro-
ducibility of granule cell activity patterns (Fig. 4C). Chen &
Thompson (1995) found that the induction level of LTD at PF
synapses on Purkinje cells depends on the time interval between PF
and CF stimulation. Kotaleski et al. (2002) have demonstrated that the
elevation in intracellular Ca2+ concentration is also ISI-dependent,
using a detailed model Purkinje cell. Thus, multiple mechanisms may
participate in the ISI dependency.

Computational power of cerebellar cortex

In the Marr–Albus–Ito theory of cerebellar computation (Marr, 1969;
Albus, 1971; Ito, 1984), the cerebellum is considered to be a
perceptron (Rosenblatt, 1958) in which granule and Purkinje cells
constitute the input and output layers, respectively, and PF synapses
are able to learn under the instruction of CF signals. The spatial pattern
of MF input signals is encoded by a combination of active granule
cells; this is called codon representation (Marr, 1969) or expansion
recoding (Albus, 1971). In our model, as described in Results in
Representation of multiple time passages, a combination of active
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granule-cell clusters, not individual granule cells, represents the spatial
pattern of MF signals. Moreover, the POT from the stimulus onset is
also represented in the same combinatorial coding. In this sense, we
naturally extend the conventional idea of combinatorial representation
in the granular layer to the spatiotemporal domain.
On the other hand, the cerebellum may not be a biological

counterpart of a perceptron because the computational power of a
perceptron is so limited while the cerebellum must have universal
computational capability to form internal models (Wolpert et al., 1998).
Recently, a liquid state machine (LSM) has been proposed as a new
framework for neural computation (Maass et al., 2002). A recurrent
circuit of neurons generates spatiotemporal activity patterns called
liquid states; readout neurons receive the liquid states and external
instruction signals, and learn to extract time-varying information. For
computational power, an LSM is better than a perceptron. We have
noticed that the structure of the present model fits an LSM (Yamazaki
& Tanaka, 2007): the spatiotemporal activity pattern of model granule
cells, model Purkinje cells and CF signals can be regarded as cerebellar
counterparts of liquid states, readout neurons and instruction signals to
readouts. The contemporary view of the cerebellar circuitry may be
more analogous to an LSM than a perceptron. Our model provides
a theoretical tool for exploring the computational power of the
cerebellum from the viewpoint of the LSM.
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