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Abstract

The recent emergence of targeted nucleases has opened up new opportunities for performing 

genetic modifications with human pluripotent stem cells (hPSCs). These modifications can range 

from the creation of a routine knock-out to the more challenging single point-mutation. For both 

the new and established user, deciding on the best approach for the specific modification of 

interest can be an arduous task, as new and improved technologies are rapidly and continuously 

being developed. The choices between the reagents and methodologies depends entirely on the 

end-goal of the experiments and the locus to be modified. Investigators need to decide on the best 

nuclease to use for each experiment from among Zinc-Finger Nucleases (ZFNs), Transcription 

Activator-Like Effector Nucleases (TALENs) and Clustered Regularly Interspaced Short 

Palindromic Repeats (CRISPR)/Cas9 that would result in the highest likelihood of success with 

the fewest pitfalls. Furthermore, there have been significant improvements over the first-

generation nucleases, such as the development of the dimeric CRISPR RNA-guided Fok1 

nucleases (RFNs, marketed as NextGEN™ CRISPR) that reduces the “off-target” mutation rate, 

providing further options for investigators. Should researchers need to perform a point mutation, 

then considerations must be made between using single-stranded oligo-deoxynucleotides (ssODN) 

as the donor for homology-directed repair or utilizing a selection cassette within a donor vector in 

combination with an excision-only piggyBac™ transposase to leave a seamless edit. In this 

review, we will provide a general overview of the current technologies, along with methodologies 

for generating point mutations, while considering both their pros and cons.
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Introduction

Human pluripotent stem cells (hPSCs) have become a preferred cell type for disease-

modeling studies and research examining fundamental genetic and developmental biology 

questions[1]. This is largely due to their unlimited proliferative capacity, along with their 

ability to grow in fully-defined media preventing their differentiation. Moreover, by 

manipulating the signaling networks that maintain pluripotency[2], hPSCs may be specified 

to progenitors for each of the three germ layers, the mesoderm, endoderm and ectoderm 

lineages, and subsequently to a large variety of terminally-differentiated cell-types useful for 

disease-modeling. Importantly, the use of defined media for self-renewal and differentiation 

significantly helps to overcome the obstacles associated with heterogeneity, which is 

common during self-renewal and embryoid body differentiation[3,4], and may increase 

differentiation efficiencies to >95%.

Over the past decade, site-specific nucleases such as Zinc Finger Nucleases (ZFNs), 

Transcription Activator-Like Effector Nucleases (TALENs) and Clustered Regularly 

Interspaced Short Palindromic Repeats (CRISPR)/Cas9 have emerged as a powerful method 

to perform genetic modifications in human cells[5]. Using these site-specific nucleases in 

hPSCs for performing genetic modifications, whether adding or deleting sequence has 

become a critical component for disease modelling and basic biological studies. Site-specific 

nucleases can be used to knock-out a gene by creating an indel (insertion or deletion) or 

excise genetic elements, such as enhancers altogether[6,7]. Another major utility of site-

specific nucleases in hPSCs is to create a reporter knock-in into a developmental gene[8], 

which permits the use of these cells in lineage-tracing experiments that have become 

commonplace for animal studies. Perhaps the most compelling use for site-specific 

nucleases in hPSCs is to create point mutations to model genetic diseases[8]. This can 

include creating a mutation that has previously been suggested to correlate with a disease, or 

to correct a mutation in a patient-derived induced pluripotent stem cell (iPSC).

In this review, we will provide a general overview of the site-specific nucleases and how 

they function, discussing their known advantages and disadvantages. For further 

descriptions of these nucleases, more detailed reviews may be examined[5]. Finally, we will 

compare the two most prevalent methods for developing point mutations in hPSCs; that 

being, the single-stranded oligo-deoxynucleotide (ssODN) method and the seamless 

selection method with the piggyBac™ transposon system.

Site-Specific Nucleases

Zinc-Finger Nucleases (ZFNs)

ZFNs consist of a fusion between the DNA-binding domain of a zinc-finger protein and the 

nuclease domain of the FokI restriction endonuclease. Two ZFN monomers combine to form 

a heterodimer that is catalytically active, cleaving DNA to create a double-stranded break[5]. 

A tandem-array of 3-6 zinc-fingers are used to create each monomer that binds 9-18 

nucleotide base-pairs, respectively. The half-site for each ZFN monomer is separated by a 

spacer of 5-7 DNA base-pairs. ZFNs have been used to modify the genomes of numerous 

cell types in vitro and in vivo, and are currently being examined in clinical studies[9]. In 
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general, ZFNs have become less popular than the more recently developed site-specific 

nucleases (TALENs and CRISPR/Cas9), as there are number of drawbacks to this 

technology, including its high cost and complexity of building the reagents (Table 1). It 

should be noted, however, that one advantage of this system over the other nucleases, is that 

each monomer is much smaller in size than other nucleases, which allows for increased 

transfection efficiencies and packaging into viruses that can only permit small genomes, 

such as the adeno-associated virus[9].

The ZFN technology has been demonstrated to work effectively in hPSCs[10,11]. This 

technology has also been used in combination with the piggyBac™ system for seamless 

editing[12]. Specifically, ZFNs were used to bi allelically correct a mutation (E342K) for α1-

antitrypsin deficiency in iPSCs. This work was the first example of using site-specific 

nuclease to correct a mutation in iPSCs, therefore opening the door for disease-modelling 

and autologous cell-based therapies. Other studies have also utilized ZFN technology to 

generate a point mutation in PSCs[13,14]. However, these studies relied on Cre recombinase 

to remove the donor vector and upon excision an unwanted loxP site is left behind in the 

genome, therefore resulting in a stem cell line that has additional changes to the sequence. It 

should also be noted that the Cre-mediated recombination can have a number of non-specific 

effects including cytotoxicity and chromosome deletion[15-17], which can preclude this 

technology from being useful in research and clinical settings.

Transcription Activator-Like Effector Nucleases (TALENs)

The structure of TALENs are largely similar to ZFNs in that they are composed of 

heterodimers of a DNA binding domain and the nuclease of the FokI restriction 

endonuclease. However, instead of using a zinc-finger protein for DNA binding, they use 

Transcription Activator-Like Effector (TALEs), which were originally identified in plant 

pathogenic bacteria[5]. TALEs consist of tandem repeats of 33-35 amino acids, of which 

each binds to a single DNA base-pair. Genome editing with TALENs has become more 

prevalent than the use of ZFNs, as they overcome a number of obstacles such as decreased 

cytotoxicity and the ability to target nearly any DNA sequence (Table 1). Some studies also 

indicate that they have reduced off-target mutation rates and mediate higher homology-

directed repair compared to other site-specific nucleases, including CRISPR/Cas9[5,18].

There have been a number of studies that have successfully utilized TALEN technology in 

hPSCs[8,19]. Like ZFNs, this technology has also been used in combination with the 

piggyBac™ system to facilitate seamless removal of the donor cassette[18,20,21]. TALENs 

have also been used in combination with single-stranded oligodeoxynucleotides (ssODNs) 

to create point mutations in the genome[22]. This technology continues to be a popular 

choice for gene editing in hPSCs, because unlike ZFNs or CRISPR/Cas9, TALENs can bind 

to nearly any DNA sequence. This therefore provides a clear advantage for nuclease-design 

strategies.

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9

The CRISPR/Cas9 system was originally identified in bacteria as an adaptive immune 

response to defend itself against bacteriophage. The system was re-appropriated for use as a 
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gene-editing tool only a few years ago, and has had demonstrated success in bacteria, 

zebrafish embryos and mammalian cells[5]. The CRISPR/Cas9 system consists of the Cas9 

RNA-guided nuclease along with the crRNA and a tracrRNA, which can be linked together 

to serve as the guideRNA (gRNA)[5]. The largest advantage of the CRISPR/Cas9 system 

over the TALENs and ZFNs is its ease in design (Table 1). Unlike TALENs and ZFNs 

which rely on protein-DNA interactions for targeting, CRISPR/ Cas9 relies on gRNA-DNA 

interactions for targeting. As such, the gRNA sequence can be easily manipulated in vitro to 

allow for rapid design to target a sequence of interest. The only limitation for gRNA design 

is that it must bind next to the protospacer adjacent motif (PAM), which is typically a 5’-

NGG, which can reduce the number of potential target sites.

Due to its ease of use and lower cost, the CRISPR/Cas9 system is rapidly becoming the 

prevalent system for genetic manipulation of hPSCs. Numerous studies have demonstrated 

its efficacy in creating knockouts, deletions and mutations[6,23,24]. Several studies have also 

utilized CRISPR/Cas9 technology with the piggyBac™ transposon system in a seamless 

manner[21,25,26]. Overall, the CRISPR/Cas9 system has proven to be a powerful system for 

gene editing in hPSCs.

Perhaps the largest drawback of the CRISPR/Cas9 system is the high “off-target” mutation 

rate. Numerous design algorithms have been developed to circumvent this obstacle, but 

without full-genome sequencing for numerous clones, the identification of a modified line 

with little to no non-specific mutations is largely unavoidable[27]. This obstacle, however, 

has been largely overcome by advances in the CRISPR/Cas9 system and specifically the 

development of dimeric CRISPR RNA-guided FokI nucleases (RFNs, marketed as 

NextGENTM CRISPR by Transposagen)[28,29]. In this system the dimerization-dependent 

FokI endonucleases are fused to an inactive Cas9 (dCas9), and two gRNAs are needed 

facilitate the binding of each dCas9-FokI monomer to their respective half sites. Upon 

binding of each monomer a catalytically-active dimer forms that creates the double-stranded 

break. Since two gRNAs are needed for the binding of their respective monomers, this 

greatly increases the specificity and reduces the “off-target” mutation rate[28,29]. Therefore, 

this system provides all the advantages of the CRISPR/Cas9 and TALEN systems, and none 

of their drawbacks.

Designing a Strategy for Generating hPSCs with a Point-Mutation

Two major methods have been utilized for creation of point mutations in hPSCs, the ssODN 

method and the donor-excision method, and here we will consider their advantages and 

disadvantages (Table 2). Both of these methods rely on the use of an exogenous donor to 

facilitate homology-directed repair. The first method uses a single-stranded 

oligodeoxynucleotide (ssODN) to serve as the donor[30], while the second method relies on 

the removal of the donor template, following homology-directed repair, either with a Cre 

recombinase or a piggyBac™ transposase. The piggyBac™ transposase is the preferred 

method, as this can be used for scarless removal of the donor cassette and therefore results in 

a truly seamless alteration of the genome. Moreover, as discussed above, Cre recombinase 

leaves unwanted genetic sequences behind upon donor excision and may have additional 

detrimental effects on the genome and/or the cells[15-17].
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For the first method, an ssODNis built with 60 basepairs flanking each side of the mutation 

site. To prevent the re-cutting of nuclease, a few base-pair mutations are built into the 

TALEN or gRNA binding site, such as the PAM sequence. Ideally, these mutations are 

silent or in intronic regions. It should therefore be noted that since this approach requires 

sequence changes, and depending on the end-goals of the experiment, this may not be the 

ideal choice. Following the creation of the ssODN, it is co-transfected with the TALENs or 

Cas9/gRNA plasmids. Next, the hPSCs may be single-cell cloned or manually isolated by 

picking individual colonies, and subsequently screened for the mutation of interest. In this 

method there is no system for selection, so the experimental success is entirely dependent 

upon the cutting and repair efficiency, which is largely locus-dependent. Typically 1000 or 

more clones should be screened to identify a correct mutation with no “off-targets”. The 

major advantage of this system is the rapid timeline. Since there is no lag time needed to 

create a donor with homology arms, nor any need for selection, a cell line containing the 

mutation of interest can be developed in as little as 3-4 months.

For the second method, donor-excision, we will specifically consider seamless gene editing 

using the piggyBac™ system, as this system has clear advantages over Cre recombinase. In 

this system, a donor plasmid is developed containing 1-2 kb arms for homologous 

recombination that flank a drug-resistance gene, such as puromycin, followed by thymidine 

kinase (TK). The drug-resistance gene provides positive selection for homology-directed 

repair. The thymidine kinase, on the other hand, provides negative selection to isolate those 

cells in which the donor fragment has been successfully removed following the 

identification of a modified clone. Typically, the mutation of interest is contained within the 

donor arms. Also a‘TTAA’ sequence should be present within 200 base-pairs from the 

mutation site, to allow for excision by the transposase. Once the donor plasmid is prepared, 

it is transfected along with the nuclease and for CRISPR, the gRNA plasmids. The hPSCs 

are then selected for approximately 1 week, from which they can then be single-cell cloned 

or manually isolated, and screened for the mutation of interest. Once an appropriate clone is 

identified, the donor fragment can be removed using a piggyBac™ transposase with 

ganciclovir (for TK selection). One problem with this approach can be the potential for 

random re-integration of the donor following its initial removal. This has been largely 

overcome by the development of an ‘excision-only piggyBac™ transposase’[31]. This 

transposase is excision-competent, but integration-defective thereby providing the ideal tool 

for seamless editing. Recent work in iPSCs has confirmed that the excision-only 

piggyBac™ transposase outperforms both the wildtype and super piggyBac™ transposases 

for donor removal[26]. The only major limitation with this method is that it contains a longer 

timeline of 4-5 months due the time required for donor creation, along with positive and 

negative selection. However, the hands-on time required for this approach is generally less 

as only about 100 clones need to be screened to identify a clone with the modification of 

interest. Currently this approach is the only system that can be used for developing 

genetically edited cell lines that are modified in a seamless manner.

Conclusion

In this review we have provided a general framework of the different site-specific nucleases, 

along with the advantages and disadvantages, so that investigators can make the best choice 
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for their independent experimental needs. We have described the two most common 

methods for performing point-mutations in PSCs, both of which have their advantages and 

disadvantages. From our experience, we find that the most optimal system for generating 

point-mutations in PSCs is to use either RFNs or TALENs to integrate a selection cassette 

which can later be seamlessly excised. This provides the highest efficiency, fewest off-target 

mutations and leaves no unwanted genetic mutations in the modified PSC clone. In sum, the 

development of site-specific nucleases has opened up many new opportunities for examining 

disease models and basic biology questions using PSCs. When chosen correctly, the right 

modification strategies can significantly aide investigators as they pursue their research 

goals.
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Table 1

A comparison of site-specific nucleases that can be used for gene editing, range from low (+) to high (+++++).

ZFNs TALENs CRISPR/Cas9 RFNs

Cost +++++ +++ ++ ++

Reagent design limitations +++ + ++ +++

Reagent development difficulty +++ +++ + ++

Efficiency +++ ++++ ++++ +++

Off-target effects ++ ++ +++++ +

Abbreviations: ZFNs, Zinc-Finger Nucleases; TALENs, Transcription Activator-Like Effector Nucleases; CRISPR, Clustered Regularly 
Interspaced Short Palindromic Repeats; RFNs, dimeric CRISPR RNA-guided FokI nucleases.
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Table 2

A comparison of the methods used to create point-mutations in PSCs.

ssODNs Seamless Gene Editing

Cost Moderate Moderate

Timeline 3-4 months 4-5 months

Reagent design difficulty Low Moderate

Recommended number of clones for screening 1000-2000 100-200

Positive Selection No Yes

Negative Selection No Yes

Additional mutations remaining near target site Yes No

“Hands-on” time High Low
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