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During pearl culture, the excess immune responses may induce nucleus

rejection and death of pearl oysters after transplantation. To better understand

the immune response and pearl formation, lipidomic analysis was applied to

investigate changes in the serum lipid profile of pearl oyster Pinctada fucata

martensii following transplantation. In total, 296 lipid species were identified by

absolute quantitation. During wound healing, the content of TG and DG initially

increased and then decreased after 3 days of transplantation with no significant

differences, while the level of C22:6 decreased significantly on days 1 and 3. In

the early stages of transplantation, sphingosine was upregulated, whereas PC

and PUFAs were downregulated in transplanted pearl oyster. PI was upregulated

during pearl sac development stages. GP and LC-PUFA levels were upregulated

during pearl formation stage. In order to identify enriched metabolic pathways,

pathway enrichment analysis was conducted. Five metabolic pathways were

found significantly enriched, namely glycosylphosphatidylinositol-anchor

biosynthesis, glycerophospholipid metabolism, alpha-linolenic acid

metabolism, linoleic acid metabolism and arachidonic acid metabolism.

Herein, results suggested that the lipids involved in immune response, pearl

sac maturation, and pearl formation in the host pearl oyster after transplantation,

which might lead to an improvement in the survival rate and pearl quality of

transplanted pearl oyster.
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Introduction

Pearl oyster (Pinctada fucatamartensii) is commonly found in

the equatorial zone between the Tropic of Cancer and the Tropic

of Capricorn of the Indo-Pacific and western Atlantic regions,

especially in China and Southeast Asia (1, 2). It is an aquatic

animal well known worldwide because it can yield high-quality

pearls, accounting for over 90% of pearl production from seawater

(3). Pearl production involves the step of transplantation or

grafting, which comprises the transplant of a small fragment

(approximately 4 mm2) of mantle tissue obtained from a donor

oyster together with the nucleus, i.e., a spherical bead of shell

material, into the host oyster gonad (4, 5). As epithelial cells grow,

the grafted tissue securely adheres to the pearl oyster gonad tissue,

which will eventually culminate in the formation of a pearl sac (6).

Typically, pearl sac development requires 1–4 weeks during which

a significant amount of matrix protein is secreted and deposited

by epidermal cells of the mature pearl sac (secretory epithelium),

which ultimately leads to the formation of a lustrous pearl (7).

Pearl production is constituted of two stages: i) the formation of

pearl sac following wound healing and oyster defense response

(early than one week after transplantation); and ii) pearl sac

maturation and organic matrix deposition on the bare nucleus

(after one week of transplantation) (7). Therefore, pearl sac

development is a crucial step for successful pearl production.

Nonetheless, little is known about the immune response occurring

in the donor pearl oyster mantle graft and in the host pearl oyster

after transplantation until pearl sac formation. Thus, investigating

the immune response in the host oyster following transplantation

would contribute to ameliorating the effectiveness of pearl

culture systems.

With the current advancements in cost effectiveness of high-

throughput sequencing technologies, the use of omics-based

research, including genomics, transcriptomics, proteomics, and

metabolomics, has become more frequent in different

aquaculture systems. In particular, multi-omics studies have

contributed to the understanding of responses related to nuclei

insertion in pearl oyster (8). Furthermore, research into the

mechanisms underlying the immune response following

transplanted pearl oyster revealed the involvement of key

genes, proteins, and metabolic pathways (9–11). In this

context, metabolomics is efficient for studying the complexity

of and exploring changes in different biological systems (12). As

a subfield of metabolomics, lipidomics has been widely used to

comprehensive study lipids within a specific biosystem (13, 14).

Lipids are the central structural membrane components of

organisms (15), act as an energy source (16) and precursors of

secondary messengers and transcription factors (17), as well as

are involved in reproduction and sexual maturation (18),

immunological responses (19), environmental adaptation (20)

and signaling (21). Lipidomics-based studies on bivalves have

been increasing steadily, particularly when applied to
Frontiers in Immunology 02
investigations on reproduction (22, 23), larval development

(24–26), as well as the impact of climate change (27, 28),

ocean acidification (29), and host–pathogen interactions (30–

32) on bivalve production.

Thus, in order to clarify the basis of the immune response

and pearl formation process, high-throughput lipidomics

analysis was applied to study the serum of pearl oyster

transplanted from P. f. martensii with the aim to identify key

lipids involved in pearl sac maturation and pearl formation. The

results discussed herein provide information to enlarge the

current understanding on the regulatory basis of the immune

response and pearl formation process in pearl oyster, thus

contributing for enhancing the pearl oyster survival rate and

pearl quality.
Materials and methods

Experimental design and
sample collection

Eighteen-month-old pearl oysters and with an average shell

length of 60.59 ± 4.86 mm were selected in this study. Nucleus

insertion was performed in pearl oysters after preoperative

conditioning. After surgical implantation, hemolymph samples

were collected at different sampling points, i.e., days 0, 1, 3, 7, 15,

and 30. Hemolymph was collected from blood sinus in the

adductor muscle of eight host pearl oysters, submitted to

centrifugation for 5 min (4°C) at 3500 rpm, and the

precipitates were separated for serum collection, and stored in

liquid nitrogen for subsequent analysis straightaway.
Metabolite extraction

Briefly, 60 mL of pearl oyster serum was diluted with water to

a final volume of 400 mL. Subsequently, 960 mL of MTBE:

methanol solution (5:1) with the internal standard (every 960

mL of solution contained 5 mL 100 mg/mL of d7-PE(15:0/18:1), 5

mL 100 mg/mL of d7-LPC(18:1) and 9 mL 100 mg/mL of d7-TG

(15:0/18:1/15:0)) was incorporated to diluted serum. After

homogenization for 30 s using a vortex, sonication was

performed for 10 min in an ice bath, followed by

centrifugation for 15 min at 3,000 rpm, 4 °C. Subsequently,

400 mL of the supernatant was collected, and the remainder part

was mixed with 400 mL of MTBE, followed by vortexing,

sonication and centrifugation, and then by a collection of the

newly obtained supernatant (400 mL); this procedure was

repeated once. Then, supernatants were pooled and vacuum-

dried at 37 °C. For analysis, 200 mL of 50% methanol diluted in

dichloromethane was used to reconstitute dried samples, which

were then centrifuged at 13,000 rpm for 15 min at 4 °C. For LC/
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MS analysis, 75 mL of the final resulting supernatant was used.

The control sample consisted of a mixture of equal amounts of

supernatants obtained for all serum samples.
LC-MS/MS

A 1290 Infinity series UHPLC system (Agilent Technologies,

Santa Clara, CA, USA) with a Kinetex C18 column (2.1 *

100 mm, 1.7 mm; Phenomenex, Torrance, CA, USA) was used

in LC-MS/MS analysis. The mobile phase A consisted of 40%

water, 60% acetonitrile, and 10 mmol/L ammonium formate.

The mobile phase B consisted of 10% acetonitrile and 90%

isopropanol, with 50 mL of 10 mmol/L ammonium formate per

liter of mixed solvent. UHPLC runs were carried out based on

the following elution gradient scheme: within the initial 12 min,

40–100% of mobile phase B; 12–13.5 min, 100% of mobile phase

B; 13.5–13.7 min, 100–40% of mobile phase B; and 13.7–18 min,

40% of mobile phase B. Additional parameters were: column

temperature, 45 °C; auto-sampler temperature, 4 °C; injection

volume, 6 mL (POS) or 6 mL (NEG), respectively.

A triple time-of-flight mass spectrometer was used to

generate MS/MS spectra on an IDA. Analyst TF 1.7 software

(AB Sciex, Framingham, MA, USA) was used for a continuous

evaluation of full MS scans as well as for collecting and acquiring

MS data and MS/MS spectra based on preselected criteria. In

each cycle, the 12 precursor ions with an intensity above 100

were chosen for MS/MS using 45 eV as the collision energy (12

MS/MS events with 50 msec of accumulation time each).

Electrospray ionization source conditions were as follows: gas

1, 60 psi; gas 2, 60 psi; curtain gas, 30 psi; source temperature,

600 °C; declustering potential, 100 V; ion spray voltage floating,

5000 V or -4500 V in the positive or negative mode, respectively.
Data analysis

LipidAnalyzer (ThermoQEHFX) was employed for automated

LC-MS/MS data analysis. Raw data files in.wiff format were

converted to mzXML format with ‘msconvert’ in ProteoWizard

(v.3.0.6150) prior to data processing in LipidAnalyzer. Peak

detection was conducted on MS1 data using CentWave algorithm

in XCMS. Based on MS/MS spectra, lipid identification was

performed via an in-house lipid spectral library, self-built by

Biotree Biotech Co., Ltd., (Shanghai, China), which containing

76,361 lipids and 181,300 MS/MS spectra in total. Absolute

quantitation of lipids was implemented by combining

information regarding peak area, SIL-IS and RF.

Data analysis was conducted following the procedure proposed

by Yang et al. (33). PCA was conducted to enable sample

distribution visualization and grouping. In addition, supervised

OPLS-DA was performed. VIP values of the first principal

components in OPLS-DA were determined for summarizing the
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contribution of each variable to the model. Lipids with VIP > 1 and

P < 0.05 (obtained with Student’s t-test) were considered as DLMs.

Pathway analysis was conducted based on the Kyoto Encyclopedia

of Genes and Genomes (KEGG; http://www.genome.jp/kegg/) and

MetaboAnalyst (http://www.metaboanalyst.ca/) databases.
Results

Lipidomics of transplanted pearl oyster

A total of 298 lipids were identified in pearl oyster serum on

different days after transplantation: 133 were in POS, and 165 were

in NEG. Among these, 296 lipid species were identified by absolute

quantitation and classified into three categories, namely, GP, SP,

and GL, which were further subdivided into 11 subclasses, as

follows: GP were divided into six subclasses, namely PC, PA, PG,

PE, PS, and PI; GL were categorized into two subclasses, namely TG

and DG; and SP were further divided into three subclasses, namely

sphingosine, Cer and SM (Figure 1A). The contents of different

lipids within the same subclass were considered to calculate their

proportions. The proportion of SM in pearl oyster serum samples

was the highest (37.57%), followed by PC, PI, PE, sphingosine, PA

and Cer, accounting for 28.26%, 11.92%, 6.78%, 5.23%, 4.77%, and

4.32%, respectively (Figure 1C).
Changes in lipid and fatty acids profiles
in transplanted pearl oyster

To determine changes in the lipid profile in the serum of

transplanted pearl oyster, the contents of lipids in each subclass

discussed above were compared. The contents of GL, TG, and

DG initially increased followed by a decrease, and the overall

change in their contents was not significant (P > 0.05; Table 1;

Figure 1B; Supplementary Figure 1). Similarly, total SP content

initially increased and then decreased, with a significant

difference on days 1, 3, 7, 15 and 30 compared to day 0 (P <

0.05; Table 1; Figure 1B; Supplementary Figure 1). Cer level on

day 15 was significantly higher compared to that on other

sampling times, whereas sphingosine content on day 3 was

significantly higher than that on day 0 (P < 0.05; Table 1).

Total GP content initially significantly decreased on days 1, 3

and 7, and then increased slightly (Table 1; Figure 1B;

Supplementary Figure 1). Compared to that on other sampling

points, PS content was significantly higher on day 7. PI level on

day 30 was significantly higher compared to that on other

sampling time points. PG content on day 3 was significantly

higher than that on day 0, whereas PE level on day 15 was

significantly higher than those on days 0 and 7. In contrast, PC

content on day 0 was significantly higher than those on days 1, 3,

and 30. Finally, PA content was significantly higher on day 3

than those on days 0 and 7 (P < 0.05; Table 1).
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Subsequently, by analyzing the molecular structures of 206 GP,

41 fatty acids were identified in total (Figure 2A). Highly abundant

fatty acids, including C18:0, C18:2, and C18:1, C16:0, C16:1, C20:4,

C20:5, C20:1, C22:5 and C22:6, accounted for approximately 81% of

total fatty acids among GP (Figure 1D). The levels of saturated fatty

acids initially significantly decreased and then increased after

transplantation, with only a low significant difference (P < 0.05)

on day 7 (Figure 2B). In contrast, the levels of MUFAs were
Frontiers in Immunology 04
significantly higher on days 15 and 30 after transplantation

(Figure 2C). In contrast, the levels of PUFAs were significantly

lower on days 3, 15 and 30 (Figure 2D). An initial decrease in C20:4

and C20:5 levels was observed which was followed by a subsequent

increase; specifically, a significantly low level of C20:4 was observed

(P < 0.05) on day 15 compared to days 0, 1 and 30 (Figure 2E;

Supplementary Table 1), whereas a significantly lower level of C20:5

was found (P < 0.05) on days 1 and 3 (Figure 2F; Supplementary
TABLE 1 Content of different lipid subclasses in pearl oyster serum after transplantation.

Compounds 0d 1d 3d 7d 15d 30d

Cer 0.0827 ± 0.0139b 0.0757 ± 0.0343b 0.0647 ± 0.0171b 0.0827 ± 0.0289b 0.1227 ± 0.0377a 0.0897 ± 0.0224b

SM 0.7629 ± 0.0369a 0.7709 ± 0.0438a 0.7499 ± 0.0885a 0.7618 ± 0.0459a 0.7128 ± 0.0371a 0.7500 ± 0.0410a

Sphingosine 0.0660 ± 0.0095b 0.0999 ± 0.0302ab 0.1439 ± 0.0973a 0.1121 ± 0.0215ab 0.1006 ± 0.0211ab 0.1050 ± 0.0268ab

SP 0.9166 ± 0.0283b 0.9465 ± 0.0178a 0.9586 ± 0.0071a 0.9565 ± 0.0071a 0.9362 ± 0.0162a 0.9446 ± 0.0120a

PA 0.0687 ± 0.0128b 0.1098 ± 0.0246ab 0.1292 ± 0.0572a 0.0819 ± 0.0631b 0.0918 ± 0.0320ab 0.0911 ± 0.0305ab

PC 0.6296 ± 0.0373a 0.5431 ± 0.0501b 0.5335 ± 0.0774b 0.5774 ± 0.0973ab 0.5711 ± 0.0614ab 0.5361 ± 0.0404b

PE 0.1295 ± 0.0085bc 0.1470 ± 0.0209ab 0.1325 ± 0.0213abc 0.1217 ± 0.0187c 0.1515 ± 0.0163a 0.1317 ± 0.0223abc

PG 0.0044 ± 0.0010b 0.0071 ± 0.0019ab 0.0076 ± 0.0038a 0.0063 ± 0.0041ab 0.0061 ± 0.0017ab 0.0060 ± 0.0018ab

PI 0.2402 ± 0.0274b 0.2292 ± 0.0195b 0.2213 ± 0.0257b 0.2386 ± 0.0289b 0.2274 ± 0.0182b 0.2742 ± 0.0427a

PS 0.0002 ± 0.0002b 0.0006 ± 0.0007b 0.0008 ± 0.0008b 0.0023 ± 0.0035a 0.0002 ± 0.0002b 0.0006 ± 0.0006b

GP 1.0726 ± 0.0287a 1.0368 ± 0.0177bc 1.0249 ± 0.0080c 1.0282 ± 0.00075c 1.0480 ± 0.0167b 1.0397 ± 0.0126bc

DG 0.0126 ± 0.0013a 0.0134 ± 0.0012a 0.0133 ± 0.0020a 0.0123 ± 0.0019a 0.0127 ± 0.0014a 0.0126 ± 0.0021a

TG 0.0032 ± 0.0004a 0.0033 ± 0.0004a 0.0031 ± 0.0006a 0.0030 ± 0.0004a 0.0031 ± 0.0002a 0.0031 ± 0.0005a

GL 0.0158 ± 0.0016a 0.0167 ± 0.00015a 0.0165 ± 0.0024a 0.00153 ± 0.0020a 0.0158 ± 0.0014a 0.0157 ± 0.0023a
Values are mean ± standard deviation (n = 8). Values in the same line with different small letters are significantly different (P < 0.05).
A B

DC

FIGURE 1

(A) Lipids identified in pearl oyster P. f. martensii after transplantation. (B) Changing trends of clustered lipid classes throughout different
transplantation periods. (C) Relative proportions of different lipid subclasses in transplanted pearl oyster. (D) Mass percentages of membrane-
esterified fatty acids in GP identified in transplanted pearl oyster.
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Table 1). An initial decrease in C22:6 level was observed, which was

followed by a subsequent increase and then a decrease, which was

considered significantly lower (P < 0.05) on days 1, 3, 15, and 30

(Figure 2G; Supplementary Table 1).
DLMs in transplanted pearl oyster

Findings revealed good stability and no overfitting when using

the OPLS-DA model (Supplementary Figures 2–4). Therefore, it is

suitable for further extension of the study. TheOPLS-DAmodel was

drawnbasedonnormalizeddata, andDLMs(VIP>1andP<0.05) in

transplanted pearl oyster were determined. Up- and down-regulated

DLMs in transplanted pearl oyster were determined based on five

comparison groups established for pairwise comparing different

transplantation periods as follows: (A) days 0 vs. 1; (B) days 1 vs. 3;

(C) days 3 vs. 7; (D) days 7 vs. 15; and (E) days 15 vs. 30.
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A total of 132 DLMs (the highest number of DLMs) were

identified in comparison group A, of which 35 were up-regulated

and 97 were down-regulated (Figure 3A). GL (including TG and

DG) clustered together, thus indicating a gradually increasing trend

in pearl oyster after transplantation. Most GP, including PC, PE,

and PI, clustered together, showing a gradually decreasing trend in

pearl oyster after transplantation; in contrast, PA and PG clustered

together and showed a gradual increasing trend. SP including

sphingosine and several SM clustered together with an increasing

trend, while Cer grouped together with mostly a decreasing trend.

In comparison group B, 26 DLMs (the lowest number of DLMs)

were identified, of which 25 were up-regulated and 1 were down-

regulated (Figure 3B). Most DLMs, including PC, PE, PG, and SM,

grouped together and had a decreasing trend. However, only TG

(12:0/12:0/16:0) showed an increasing trend. In comparison group

C, 35 DLMs were identified, of which 18 were up-regulated and 17

were down-regulated (Figure 3C). GL (e.g., TG and DG) clustered
G

A

B D

E F

C

FIGURE 2

Changes in the content of membrane-esterified fatty acids in GP of transplanted pearl oyster P. f. martensii throughout different transplantation
periods. (A) Heatmap analysis of 41 membrane-esterified fatty acids in GP. The relative metabolite level is depicted according to the color scale. Red
and blue indicate upregulation and downregulation, respectively. (B) Changes in the content of membrane-esterified SFA in GP. (C) Changes in the
content of membrane-esterified MUFA in GP. (D) Changes in the content of membrane-esterified PUFA in GP. (E) Changes in the content of
membrane-esterified C20:4 in GP. (F) Changes in the content of membrane-esterified C20:5 in GP. (G) Changes in the content of membrane-
esterified C22:6 in GP. Different small letters indicate significant differences between different transplantation periods (P < 0.05).
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together and showed a gradually decreasing trend. In contrast, an

increasing trend was found for SP (including Cer) and GP (i.e., PC,

PE, and PI), whereas PA decreased. Considering comparison group

D, 83 DLMs were identified— 71 were up-regulated and 12 down-

regulated (Figure 3D). As expected, GL including TG were found

clustered showing a decreasing trend. Similarly, GP such as PA, PC,

PE, PG, and PI, as well as SP such as Cer and SM, grouped

separately, and whose changing trends were towards an increase.

Finally, in comparison group E 89DLMs were identified, 8 were up-

regulated and 81 down-regulated (Figure 3E). Most DLMs such as

Cer, PA, PC, PE, PG, PI, and TG were found clustered, and whose

changing trends were towards a gradual decrease. However, Cer

(t15:0/22:0), PC (16:1/0:0), PC(18:0/22:5), PC(24:4/20:4), SM(d14:0/

24:1), SM(d14:1/24:1), TG(12:0/16:1/16:1), and TG(16:1/16:1/18:2)

grouped together with a gradually increasing trend.
Differentially expressed lipid metabolic
pathways in transplanted pearl
oyster throughout different
transplantation periods

In order to identify enriched metabolic pathways in

transplanted pearl oyster, pathway enrichment analysis was

conducted on DLMs based on the KEGG database.
Frontiers in Immunology 06
MetaboAnalyst 5.0 was used for topological analysis of

enriched metabolic pathways. Five metabolic pathways were

found constantly enriched in all five pairwise comparison groups

discussed above (Figures 4A–E), namely glycosylphosphatidylinositol

(GPI)-anchor biosynthesis, glycerophospholipid metabolism, alpha-

linolenic acid metabolism, linoleic acid metabolism and arachidonic

acid metabolism. In addition, glycerolipid metabolism was enriched

in four comparison groups, i.e., Figures 4A, C, D and E. Similarly,

sphingolipid metabolism was found enriched in comparison groups

Figures 4A, C, and 4D.
Discussion

Lipids are vital and have very diversified roles in the

physiology of living organisms, from cellular membrane

building blocks to precursors of hormones and signaling

molecules. The current understanding on the lipidome has

been considerably enlarged by the advent of high-throughput

analytical techniques (34). In pearl oyster, the wound formed

after transplantation can heal or lead to cell death. In addition,

other physiological responses may occur, such as foreign object

rejection, disruption of the oxidative–antioxidative equilibrium,

and inflammation (8). Collectively, these responses can cause
A B

D

E

C

FIGURE 3

Differential lipid metabolites in transplanted pearl oyster P. f. martensii. The relative metabolite level is depicted according to the color scale.
Red and blue indicate upregulation and downregulation, respectively. (A) days 0 vs. 1; (B) days 1 vs. 3; (C) days 3 vs. 7; (D) days 7 vs. 15; and
(E) days 15 vs. 30.
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nucleus rejection, failure to form a pearl sac, and ultimately lead

to host pearl oyster death (35). Herein, lipidomics was applied to

investigate changes in lipid profiles in the serum of pearl oyster

Pinctada fucata martensii after transplantation.

Considering changes in lipid profiles, sphingosine levels

significantly increased on day 3 of transplantation. Sphingosine

controls a number of physiological processes, such as

angiogenesis, immune cell trafficking, blood vessel growth, and

cell survival (36), being also necessary for the synthesis of TNF-a-
induced cyclooxygenase 2 and PGE2 (37). Furthermore, it has

been demonstrated that intracellular sphingosine binds to and

activates TRAF2 E3-ligase, leading to the Lys-63-linked

polyubiquination of receptor interacting protein-1, which in

turn results in the IkK complex phosphorylation and NF-kB
activation, which is an important transcription factor involved in

inflammatory responses (38). Moreover, the anti-inflammatory

effects of sphingosine have also been described, which are related

to the transformation of pro-inflammatory M1 subtype

macrophage (39). In addition, sphingosine was shown to have a

role in inflammation in animal models, with higher levels of

sphingosine found in mice with colitis induced by dextran sulfate

(40). Additionally, higher sphingosine levels were found in

patients with inflammatory arthritis (41–43). Therefore,
Frontiers in Immunology 07
upregulated levels of sphingosine in transplanted pearl oyster

may indicate a quick response to transplantation by regulating

inflammatory responses.

The cholinergic system is implicated in innate immunity and

inflammation in bivalve mollusks (44–47). Additionally, it has

been described that the cholinergic system regulates the ability of

DNA damage repair, and apoptosis in transplanted pearl oyster

by affecting Ca2+, NF-kB, JAK/STAT, and MAPK signaling

pathways (48). In the cholinergic system, acetylcholine is a key

neurotransmitter in numerous physiological functions (49).

After binding to a 7 nAChR, acetylcholine produced by the

vague nerve suppresses NF-kB and JAK/STAT signaling

pathways, which in turn lowers the inflammatory response

(50). In addition, oysters treated with acetylcholine result in

down-regulation of lipopolysaccharide-induced immune

response by reducing the rate of hemocyte phagocytosis and

apoptosis (46). Herein, PC levels were found downregulated in

pearl oyster on days 1 and 3 after transplantation, which suggests

that acetylcholine may participate in the regulation of immune

and inflammatory responses in the early stages of grafting in

pearl oysters.

Numerous PUFAs have been shown to have benefits on the

health and resistance of aquatic animals. Long-chain n-3 PUFAs
A B

D

E

C

FIGURE 4

Differential expression of lipid metabolic pathways in transplanted pearl oyster P. f. martensii throughout different transplantation periods. The x-
and y-axes represent pathway enrichment and pathway impact, respectively. Large sizes and dark colors represent major pathway enrichment
and high pathway impact values, respectively. (A) days 0 vs. 1; (B) days 1 vs. 3; (C) days 3 vs. 7; (D) days 7 vs. 15; and (E) days 15 vs. 30.
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(DHA and EPA) have been shown to have anti-inflammatory

activity that might alleviate the symptoms of chronic

inflammatory diseases, allergic and trauma-enacted acute

systemic inflammation (51, 52). For instance, EPA and DHA

reduced interleukin-2 synthesis, mitogen-stimulation

proliferation, and human natural killer cell activity in mice

and human lymphocytes (52). Eicosanoids are second-class

signaling molecules of the immune system connecting PUFAs

to inflammatory and immunological responses (52). Eicosanoids

comprise PG, thromboxanes, leukotrienes, lipoxins, and

epoxyeicosatrienoic acids (53), and are synthesized from

PUFAs, especially ARA and EPA. He et al. (2020) suggested a

link between higher PUFA concentrations and immune system

regulation in pearl oysters following grafting (54). Herein, the

levels of PUFAs were downregulated on day 3 after

transplantation of pearl oysters, which suggests that PUFAs

may be also involved in the regulation of immune and

inflammatory responses in the early stages of grafting.

Conversely, energy-intensive activities have an impact on the

immunological response. PUFAs catabolism seems essential for

adaptation under stress (29) in several aquatic organisms, including

branchiopods (55), amphipods (56), copepods (57) and Japanese

horse mackerel (58). Herein, the level of C22:6 among identified GP

in transplanted pearl oyster decreased on days 1 and 3.

Interestingly, significantly lower levels of PUFAs, such as C22:6,

were found in marine copepods in response to environmental stress

(29). Chen et al. (2014) reported that lipid synthesis capacity is

increased in Pacific white shrimp Litopenaeus vannamei under salt

stress (59). In the present study, TG and DG levels were also

upregulated in pearl oyster on days 1 and 3 after transplantation,

which suggests an increased rate of triacylglycerol synthesis from

glyceric acid as a result of allograft-induced stress. Glyceric acid is

derived from GL and carbohydrate metabolism. Decreased

synthesis of glyceric acid implies that GL are mobilized as

energetic supply via b-oxidation (60, 61). Fatty acids are

degraded via b-oxidation, thus generating energy (12). As a

result, pearl oysters may quickly deplete large quantities of

glyceric acid, thus extra energy via fatty acid b-oxidation is likely

to occur during allograft-induced stress. Previous studies have

described upregulated metabolites involved in b-oxidation, which
are likely to indicate lipid catabolism for energy generation during

acclimation to cold stress, higher temperatures and lower pH

conditions (29, 62).

Mariom et al. (2019) proposed that the crucial time for pearl

sac maturation occurs during the late stages, i.e., one week to three

months after grafting, during which genes involved in proliferation

and differentiation are differentially expressed (7). PI is a lipid that

plays a key role in the signal transduction pathway of G-protein-

coupled receptors, in which extracellular signaling molecules bind

to G-protein-coupled receptors on the cell surface, causing the cell

to secrete, proliferate, and differentiate (63). Herein, up-regulation

of PI levels in pearl oyster from days 15 to 30 after transplantation

suggest that these molecules may induce cell proliferation and
Frontiers in Immunology 08
differentiation in different periods following transplantation. In

addition, PGE 2 has been shown to mediate the effects of TGF-b,
PDGF, and FGF in stimulating proliferation and differentiation

(64, 65). In the present study, lower levels of C20:4 in pearl oyster

from days 3 to 15 after transplantation may result from the

breakdown for PGE 2 production as well as be involved in

stimulating proliferation and differentiation. Hence, these lipids

may induce cell proliferation and differentiation to stimulate pearl

sac development.

Both living and extinct shells are known to contain fatty acids,

cholesterols, phytadienes and ketones (66). Lipids represent a

third of the organic matrix of calcareous biominerals. In sharp

contrast, proteins constitute approximately 90% of the shell

organic matrix; carbohydrates and lipids account for only 0.15–

0.29% and 0.8–2.9%, respectively (67). A variety of lipids are

found in the nacreous layer of Pinctada oysters, including

cholesterols, fatty acids, and triglycerides (68). Consequently,

lipids can be crucial for biomineralization and fossilization (69).

According to previous studies, the regulation of aberrant bone

metabolism depends chiefly on the metabolism of GP (70) and

pearl oyster biomineralization activity (71). Additionally, Isa and

Okazaki (1987) demonstrated in vitro that isolated phospholipids

could bind calcium ions (72). In addition, it has been described

that biomineralization-related genes involved in nacre formation

were initially down-regulated 1 week and then up-regulated again

after transplantation (7). Herein, GP levels were also down-

regulated in pearl oyster during the first week following

transplantation, and then increased. Thus, GP may be involved

in pearl oyster calcification and pearl mineralization. According to

a few studies in humans, LC-PUFAs can prevent bone loss, affect

peak bone mass during puberty, and stimulate bone formation

(33). Thus, considering that LC-PUFAs were up-regulated in pearl

oyster on day 15 after transplantation (after pearl sac maturation),

it can be suggested these may play a role in pearl mineralization.
Conclusion

A total of 296 lipid species were identified by absolute

quantitation, and dramatic changes were observed in serum

lipid profiles of pearl oyster after transplantation. During the

early stages of transplantation, sphingosine was found to be

upregulated, whereas PC and PUFAs were downregulated.

Interestingly, during pearl sac development stage, PI was

upregulated (in between days 15 and 30). Moreover, GP levels

were upregulated during pearl formation. Taken together, we

speculate that these lipids might participate in the regulation of

immune responses, inducing cel l proliferation and

differentiation and pearl mineralization in transplanted pearl

oyster. It described herein enlarge the current understanding of

the mechanisms underlying pearl sac maturation and pearl

formation. Thus, applying the useful information discussed

herein on the regulation of the immune response and pearl
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formation process might lead to an improvement in the survival

rate and pearl quality of transplanted pearl oyster. However,

more intensive investigations towards molecular mechanisms of

the lipid in the immune response of pearl oyster should be

performed in future studies.
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composition on the sexual maturation of Mytilus galloprovincialis: a hatchery
study. Aquaculture Nutr (2016) 22:202–16. doi: 10.1111/anu.12248

19. Astarita G, Kendall AC, Dennis EA, Nicolaou A. Targeted lipidomic
strategies for oxygenated metabolites of polyunsaturated fatty acids. Biochim
Biophys Acta (2015) 1851:456–68. doi: 10.1016/j.bbalip.2014.11.012

20. Ernst R, Ballweg S, Levental I. Cellular mechanisms of physicochemical
membrane homeostasis. Curr Opin Cell Biol (2018) 53:44–53. doi: 10.1016/
j.ceb.2018.04.013

21. Grunt TW. Interacting cancer machineries: cell signaling, lipid metabolism,
and epigenetics. Trends Endocrinol Metab (2018) 29:86–98. doi: 10.1016/
j.tem.2017.11.003

22. Chansela P, Goto-Inoue N, Zaima N, Hayasaka T, Sroyraya M, Kornthong
N, et al. Composition and localization of lipids in Penaeus merguiensis ovaries
during the ovarian maturation cycle as revealed by imaging mass spectrometry.
PLoS One (2012) 7:e33154. doi: 10.1371/journal.pone.0033154

23. Dagorn F, Couzinet-Mossion A, Kendel M, Beninger PG, Rabesaotra V,
Barnathan G, et al. Exploitable lipids and fatty acids in the invasive oyster
Crassostrea gigas on the French Atlantic coast. Mar Drugs (2016) 14:104. doi:
10.3390/md14060104
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Glossary

PUFAs polyunsaturated fatty acids

LC-PUFA long-chain polyunsaturated fatty acids

MUFAs monounsaturated fatty acids

ARA arachidonic acid

DHA docosahexaenoic acid

EPA eicosapentaenoic acid

SFA saturated fatty acid

MTBE methyl tert-butyl ether

LC/MS liquid chromatography-mass spectrometry

POS Positive

NEG negative

IDA information-dependent basis

PCA principle component analysis

OPLS-DA orthogonal projections to latent structures-discriminate analysis

SIL-IS stable isotope-labeled internal standard

RF response factor

VIP Variable importance in projection

DLMs differential lipid metabolites

GP glycerophospholipids

SP sphingolipids

GL glycerolipids

PC glycerophosphatidylcholine

PA glycerophosphatidic acid

PG glycerophosphatidylglycerol

PE glycerophosphatidylethanolamine

PS glycerophosphatidylserine

PI glycerophosphatidylinositol

TG triacylglycerol

DG diacylglycerol

Cer ceramide

SM sphingomyelin

PG prostaglandins

PGE2 prostaglandin E2

nAChR nicotinic acetylcholine receptor

NF-kB nuclear factor kappa B

JAK/STAT janus kinase/signal transducer and activator of transcription

MAPK mitogen-activated protein kinase

TNF tumor necrosis factor

TRAF tumor necrosis factor receptor-associated factor

TGF-b transforming growth factor-b

PDGF platelet derived growth factor

FGF fibroblast growth factor
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