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Interleukin- (IL-) 10, anti-inflammatory cytokine, is known to inhibit the protective immune responses against malaria parasites
and to be involved in exacerbating parasitemia during Plasmodium infection. In contrast, IL-10 is regarded as necessary for
suppressing severe pathology during Plasmodium infection. Here, we summarize the role of IL-10 during murine malaria infection,
focusing especially on coinfection with lethal and nonlethal strains of malaria parasites. Recent studies have demonstrated that the
major sources of IL-10 are subpopulations of CD4+ T cells in humans and mice infected with Plasmodium. We also discuss the
influence of innate immunity on the induction of CD4+ T cells during murine malaria coinfection.

1. Introduction

Malaria, caused by protozoan parasites of the genus Plas-
modium, is the major parasitic disease in tropical and
subtropical regions, including parts of the Americas, Asia,
and Africa. With more than 200–300 million clinical cases
globally and approximately 1 million deaths per year, malaria
represents the most important infectious disease worldwide.
Four species of Plasmodium infect humans: P. falciparum, P.
vivax, P. malariae, and P. ovale.

Human malarial parasites develop through two stages in
humans: a liver stage and a blood stage. The asexual blood
stage of the parasite is the cause of malarial pathologies.
Therefore, it is important to prevent the replication of this
stage of parasite. Particularly, P. falciparum causes severe
pathologies such as cerebral malaria, severe anemia, and
respiratory injury in the blood stage. It is necessary to
understand the mechanism of protective immunity against
the blood stage of the parasite during malaria infection.
Nevertheless, it is difficult to investigate the human in vivo
immune response against malaria parasite for many reasons.
Consequently, murine malaria models with P. berghei, P.
yoelii, and P. chabaudi have been used to elucidate the
immune interaction in hosts and to demonstrate many
factors associated with malarial defense mechanisms [1].

2. Parasite Killing: The Role of
Proinflammatory Cytokines during Human
and Murine Malaria Infection

Interferon- (IFN-) γ and Interleukin- (IL-) 12 play a cru-
cial role in the clearance of intracellular pathogens [2–
5]. Low levels of IFN-γ and IL-12 production have been
observed in young African children with severe anemia
during infection with P. falciparum [6]. The IFN-γ-mediated
responses have been shown to be involved in protection
against infection with P. falciparum [7]. In murine malaria,
IFN-γ produced by CD4+ T cells has been shown to play
a pivotal role in protective immunity against P. chabaudi
(Pc) AS [8], nonlethal P. berghei (Pb) XAT [9], and P. yoelii
(Py) 17XNL [10] infection. Actually, IFN-γ-depleted mice
infected with murine malaria parasites show high levels of
parasitemia and eventually die. IL-12 is a necessary factor
for clearance of nonlethal Pc AS [11], Pb XAT [12], and
Py 17XNL [13], suggesting that IL-12 plays an important
role in protective immunity via IFN-γ production in murine
malaria. Production of IFN-γ and IL-12 is suppressed by
anti-inflammatory cytokines such as IL-10. It is possible that
enhancement of IL-10 production contributes to suppression
of parasite killing, considering that IL-10 plays a detrimental
role during P. falciparum infection.
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3. Source and Biological Effect of IL-10

IL-10, an anti-inflammatory cytokine, plays an important
role in regulating immune responses in hosts, as does TGF-
β. The major source of IL-10 is known to be T cell subsets
including Th1 cells, Th2 cells, Tr1 cells (CD25+Foxp3−),
and regulatory T (Treg) cells (CD25+Foxp3+). In antigen-
primed T cells, Th2 cells were originally believed to be
the major source of IL-10. Stimulation of Th1 cells with
IL-27 upregulates IL-10 production and enhances IFN-γ
expression slightly [14, 15]. Tr1 were identified as a subset
of CD4+ cells that produce high levels of IL-10, low levels of
IL-2, but not IL-4. They develop from naı̈ve T cells under the
influence of IL-27 [15–17]. IL-10 is also produced by natu-
rally occurring Treg cells [18]. TGF-β induces the expression
of IL-10 [19]. Moreover, IL-2, an important activator of
suppressive activity by Treg cells, enhances IL-10 production
[20, 21]. Today, it is known that the source of IL-10 is not
only T cell subsets but also almost all leukocytes [22–25].

Apparently, monocytes/macrophages are the main target
cells of inhibitory IL-10 effects [26]: IL-10 inhibits the
release of proinflammatory mediators from monocytes/
macrophages, and thereby inhibits the LPS- and IFN-γ-
induced secretion of TNF-α, IL-1β, IL-6, IL-8, G-CSF, and
GM-CSF [27, 28]. Furthermore, IL-10 inhibits the anti-
gen presentation of monocytes/macrophages. Moreover, the
IL-10-induced inhibition of IL-12 synthesis in antigen-
presenting cells results in reduced IFN-γ production in T
cells [29]. Actually, IL-10 inhibits both the proliferation and
the cytokine synthesis of CD4+ T cells, including the
production of IL-2 and IFN-γ by Th1 and of IL-4 and IL-5 by
Th2 [30, 31].

4. Detrimental Effect of IL-10 on the Outcome of
Human and Murine Malaria Infection

High levels of IL-10 and TNF in plasma have been character-
istic of young African children with malarial anemia and high
levels of parasitemia [32–39]. In common IL-10 promoter
variants, the -1082A/-819T/-592A (ATA) haplotype has been
associated with increased susceptibility to severe anemia
[39]. Their IL-10 : IL-12 ratio was higher than that in the
non-ATA haplotype. On the other hand, the -1082G/-819C/-
592C (GCC) haplotype has been associated with protection
against severe anemia [39]. The IL-10 : IL-12 ratio in the
GCC haplotype was lower than that in the ATA haplotype.
These findings suggest that a high IL-10 : IL-12 ratio is
associated with the downregulation of IFN-γ production
and that it causes development of severe anemia during P.
falciparum infection.

Lethal Py 17XL-infected mice show higher levels of IL-
10 and TGF-β production than nonlethal Py 17XNL-infected
mice early in infection [40, 41]. High levels of IL-10 and
TGF-β are associated with inhibition of proinflammatory
response, resulting in high levels of parasitemia, severe
anemia by which RBCs ruptured, causing parasite replication
and the death of infected mice. Depletion or deficiency of IL-
10 [40, 42], or the blockade of IL-10 receptor [41] regulates
parasitemia during lethal Py 17XL infection and prolongs

survival of infected mice. Couper et al. [42] reported that
the major source of IL-10 in lethal Py 17XL-infected mice
is CD4+ Tr1 cells, just as it is in toxoplasmosis [43] and
cutaneous leishmaniasis [44] (Figure 1).

In nonlethal Py 17XNL-infected mice, the production of
IL-10 and TGF-β is induced in the late phase of infection
[41]. The population of CD4+ Tr1 cells has been shown
to be the major source of IL-10 in nonlethal Py 17XNL as
well as lethal Py 17XL infection. Moreover, IL-10-deficient
mice show marked suppression of the replication of parasites
compared with that in wild-type mice [42] (Figure 1). These
findings suggest that enhanced-IL-10 production suppresses
inflammatory response against malaria parasites, resulting in
high levels of parasitemia and anemia by replication of par-
asites in infected mice. Results show that IL-10 plays a detri-
mental role during human and murine malaria infection.

5. Role of Anti-Inflammatory Cytokines during
Murine Malaria Infection

Reportedly, a low IL-10/TNF ratio is associated with severe
malarial anemia [36–38]. These results suggest that low levels
of IL-10 production are associated with enhancement of TNF
production, followed by increased IFN-γ production. The
enhancement of TNF production might be associated with
the aggravation of disease severity, such as severe anemia,
by which phagocytosis of uninfected RBC occurs [45], or
dyserythropoiesis [46]. Moreover, results obtained using
mouse models have suggested that IL-10 plays a protective
role in the host during murine malaria infection. Although
IL-10-deficient mice show lower levels of parasitemia than
wild-type mice do during murine malaria infection, they
indicate severe diseases such as hepatic pathology [42, 47, 48]
and cerebral pathology [49, 50]. Actually, inflammation,
which is involved in parasite killing, is upregulated in IL-
10-deficient mice, but excessive inflammation, such as the
increase of IFN-γ production, also presents the risk of
developing hepatic pathology and/or cerebral pathology.
Therefore, it seems that IL-10 might be necessary for
suppression of hepatic pathology and cerebral pathology in
the host during infection.

B6 mice infected with Pb NK65 display hepatic pathology
and die within 2 weeks. The development of severe hepatic
pathology is involved in IL-12 [11], IFN-γ, and CD8+ T cells
[9]. The IL-12 production is induced through a MyD88-
dependent pathway in DCs or macrophage and engen-
ders hepatic pathology in a perforin/granzyme-dependent
manner during Pb NK65 infection [51]. Coinfection with
nonlethal Pb XAT or Py 17XNL prevents the development of
hepatic pathology caused by Pb NK65 infection and prolongs
survival of mice [47]. In fact, IL-10 KO mice coinfected
with nonlethal Pb XAT or Py 17XNL showed severe hepatic
pathology, suggesting that IL-10 is involved in suppression
of disease severity during coinfection [47] (Figure 2(b)).
During lethal Py 17XL or nonlethal Py 17XNL infection, IL-
10, which is derived from CD4+ Tr1 cells, is also necessary
for the prevention of hepatic pathology [42]. Nevertheless,
it remains unclear whether IFN-γ and CD8+ T cells are
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Figure 1: Scheme of immune responses during lethal P. yoelii 17XL and nonlethal P. yoelii 17XL infection: DC: dendritic cell; Th: helper T
cell (CD4+ T cells); Tr1, IL-10-producing CD4+ T cells; Treg, regulatory T cells; CTL, cytotoxic T cells (CD8+ T cells). In a lethal P. yoelii 17XL
infection, Tr1 are induced. IL-10 inhibits proinflammatory cytokine production for parasite killing, producing high levels of parasitemia and
the death of mice. Tr1 are also induced in nonlethal Py 17XNL as well as lethal Py 17XL infection. However, parasite killing occurs during
nonlethal Py 17XNL infection. When IL-10 is ineffective (depletion or deficiency of IL-10 or the blockade of IL-10 receptor) in mice infected
with nonlethal Py 17XNL or lethal Py 17XL, excessive inflammation is induced in association with the development of hepatic pathology.

associated with development of hepatic pathology in mice
infected with Py 17XL or Py 17XNL (Figure 1).

Mice infected with Pb ANKA show similar features to
human cerebral malaria (CM) regarding neurologic signs
and histopathological findings, considering that Pb ANKA
infection in mice might be an experimental model of CM
(ECM) [52, 53]. Proinflammatory cytokines, such as IFN-
γ and lymphotoxin-α, are known to accelerate ECM devel-
opment [54] (Figure 2(c)). In contrast, anti-inflammatory
cytokines, such as IL-10, prevent ECM development [55, 56].
However, it remains unclear how IL-10 suppresses ECM
development, because high levels of IL-10 production were
observed in spleen [57] and plasma [58] of mice singly
infected with Pb ANKA.

The ECM development is suppressed by the simultane-
ous presence of murine AIDS during Pb ANKA infection
[55]. Results demonstrated that murine AIDS-mediated
protection of ECM is dependent on IL-10, which is produced
by splenic CD4+ T cells, with the use of anti-IL-10 mAb. It is
particularly interesting that coinfection with parasites such
as nonlethal Pb XAT [50] or Filaria [59] has also been shown
to prevent ECM development. The suppressive effect of

coinfection with nonlethal Pb XAT or Filaria on ECM during
Pb ANKA infection was abrogated in IL-10 KO mice [50, 59],
suggesting that IL-10 plays a crucial role in the suppression of
ECM during coinfection with other parasites (Figure 2(b)).

In contrast to coinfection with nonlethal Pb XAT, the
suppressive effect of coinfection with nonlethal Py 17XNL
on ECM during Pb ANKA infection is independent of IL-
10 [50, 60]. A recent study demonstrated that Treg cells,
which are expanded by IL-2/anti-IL-2 complexes, suppress
the recruitment of pathogenic CD4+ and CD8+ T cells
to brains and protect mice from developing ECM during
Pb ANKA [61]. The IL-2/anti-IL-2 complexes enhanced
the levels of Foxp3 and CTLA-4 expression and increased
the levels of IL-10 production from Treg cells during Pb
ANKA infection. However, the suppression of ECM by Treg
cells was dependent on CTLA-4 but not on IL-10 [61]
(Figure 2(c)). The suppressive effect of coinfection with
nonlethal Py 17XNL on ECM during Pb ANKA infection was
not reversible by depleting antibodies against CD25+-bearing
CD4+ T cells or CTLA4+-bearing CD4+ T cells [60]. A key
factor that has a suppressive effect on ECM by coinfection
with nonlethal Py 17XNL has not yet been discovered.
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Figure 2: Role of anti-inflammatory responses during murine malaria infection. (a) Immune responses during lethal P. berghei NK65
infection. (b) Possible mechanism by which development of disease severity such as hepatic or cerebral pathology is suppressed by coinfection
with nonlethal murine malaria parasites. (c) Immune responses during lethal P. berghei ANKA infection. (d) Immune responses during P.
chabaudi AS infection. (a) and (c) A type of DC activated by lethal P. berghei NK65 or P. berghei ANKA might induce pathological Th1
and CTL. The pathological Th1 and CTL are involved in excessive inflammation and the development of severe pathology, such as hepatic
pathology (P. berghei NK65) or experimental cerebral malaria (ECM) (P. berghei ANKA). (b) A type of DC activated by nonlethal malaria
parasites before activation by lethal parasites might expand Tr1, but not pathological Th1, and might subsequently suppress severe disease. IL-
10, which might be produced by Tr1, inhibits proinflammatory cytokine production and expansion of pathological Th1 during coinfection.
Therefore, coinfected IL-10 deficient mice develop severe pathology, such as hepatic pathology or ECM. (d) In P. chabaudi AS infection,
IL-10 from Tr1 and Treg are associated with suppression of proinflammatory cytokine production and expansion of pathological Th1. A
deficiency of IL-10 or TGF-β contributes to development of ECM.
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Development of severe disease such as hepatic pathology
and cerebral pathology generally involves excessive inflam-
mation in murine malaria parasites. Little is known about
the differences between the developmental mechanisms of
hepatic pathology and cerebral pathology during Pb NK65
and Pb ANKA infection, respectively. However, IL-10 can
downregulate excessive inflammation during Pb NK65 or
Pb ANKA infection. It is associated with the suppression of
hepatic pathology and cerebral pathology. Results show that
IL-10 plays a protective role in the host during P. falciparum
infection.

6. A Different Type of DC Induced by Lethal and
Nonlethal Murine Malaria Infection

How are different subsets of CD4+ T cells, such as patho-
logical CD4+ T cells [62, 63], IL-10-producing CD4+ T
cells [42], and Treg cells [64], induced between lethal and
nonlethal murine malaria infection? The development of
CM is inhibited completely by the simultaneous presence of
nonlethal Py 17XNL [60], lethal Pb K173 [57], and nonlethal
Pb XAT [50]. However, protection from CM was not induced
in mice when they were infected with Py 17XNL on day
4 after Pb ANKA infection [60]. Similarly, coinfection with
Pb XAT on day 1 or day 3 after infection with Pb ANKA
failed to protect mice from cerebral malaria (Niikura et
al. unpublished data). In simultaneous infection with Pb
ANKA and Pb K173, suppression of ECM was associated
with the induction of cytokines such as IFN-γ, IL-10, and
IL-12 on day 1 after infection [57]. These findings suggest
that the presence of other parasites might modulate some
key factors/cells that are involved in innate immunity in early
infection with Pb ANKA. Actually, DCs are important for
initiating immune responses against malaria parasites. It is
possible that immune responses induced by DCs produce
protective and pathological effects, respectively, when mice
are infected with nonlethal and lethal parasites. Therefore,
DCs might contribute to the determination of the virulence
of malaria parasites. In coinfection, a type of DC activated
by nonlethal malaria parasites before activation by lethal
parasites might fail to expand pathological CD4+ T cells and
subsequently fail to suppress severe disease.

Wykes et al. [13] showed that although DCs from mice
infected with nonlethal Py 17XNL were fully functional,
DCs from mice infected with lethal Py YM were unable to
produce IL-12 or present antigens to T cells. Apparently,
lethal malaria causes a failure of DC function, resulting
in the suppression of Th1 immune responses (Figure 1).
Similar to lethal Py 17XL infected mice, it is possible that
mice infected with lethal Py YM induce IL-10-producing
CD4+ T cells. Although IL-10 might inhibit the DC function,
such as antigen presentation and release of proinflammatory
cytokines, little is known about whether IL-10 associates with
a different type of DC induced between lethal and nonlethal
murine malaria infection. Toll-like receptors (TLRs) play
an important role in the innate immune system against
pathogens [65]. Therefore, TLRs might be associated with
disease severity during malaria infection. During lethal Py

17XL infection, TLR9 signaling in DCs is known to be
crucial for the activation of Treg cells that suppress Th1
immune responses, causing high levels of parasitemia [64].
In contrast, MyD88, but not TLR signaling, has been shown
to be necessary for elimination of parasites in mice infected
with nonlethal Py 17XNL [66]. Accordingly, a different type
of DC induced between lethal and nonlethal murine malaria
infection might induce different subsets of CD4+ T cells, such
as IL-10-producing CD4+ T cells or Treg cells.

7. Is IL-10 Necessary for Host Protection
against Murine Malaria Parasites?

Although IL-10-deficient mice suppressed an increase of
parasitemia during coinfection with lethal and nonlethal
parasites, mice were unable to eliminate parasites completely
and eventually died [47, 50]. These results suggest that the
lethal strains of malaria parasites may modulate the induc-
tion of adaptive immunity independent of IL-10. Millington
et al. [67] demonstrated that Plasmodium infection inhibits
the induction of adaptive immunity to heterologous antigens
by modulating DC function. According to their paper,
hemozoin (HZ), rather than infected RBC membranes, was
a key factor involved in the suppression of murine DC
function. On the other hand, it has been shown that repeated
stimulation through TLR9, which is the receptor for HZ,
engenders tolerance to signaling through TLR4 [68].

In fact, HZ activates DCs through the TLR9-MyD88
pathway [69]. A recent study has demonstrated that par-
asite protein-DNA complex, but not HZ, plays a crucial
role in TLR9-mediated activation of DCs during infection
[70]. Stimulation through TLR9 might be associated with
development of severe hepatic pathology, because MyD88
pathway, which is activated by TLR9 stimulation, is known to
be involved in severe hepatic pathology caused by Pb NK65
[51]. Coban et al. [71] and Griffith et al. [72] reported that
the TLRs-MyD88 signaling pathway might play a critical role
in ECM during lethal Pb ANKA infection. It has been shown
that ECM is prevented by oral treatment with E6446, which
is a synthetic antagonist of nucleic acid-sensing TLRs [73].
In contrast, it is demonstrated that murine cerebral malaria
development is independent of Toll-like receptor signaling
[74, 75]. It remains controversial whether TLRs-MyD88
signaling pathway is associated with ECM development.

In summary, IL-10 is necessary for suppression of hepatic
pathology or ECM in the host although IL-10 entails
a risk of downregulation of protective immunity against
malaria parasites. CD4+ T cells of different kinds, such as
pathological CD4+ T cells, IL-10-producing CD4+ T cells, or
Treg cells, are induced during different kinds of Plasmodium
spp infection. To induce a more effective immune response
in host defense against Plasmodium spp, it is necessary to
elucidate the interaction of innate and acquired immune cells
such as DCs, αβ T cells, and γδ T cells.
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