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Clear cell renal cell carcinoma (ccRCC) is characterized by metabolic dysregulation and
distinct immunological signatures. The interplay between metabolic and immune
processes in the tumor microenvironment (TME) causes the complexity and
heterogeneity of immunotherapy responses observed during ccRCC treatment. Herein,
we initially identified two distinct metabolic subtypes (C1 and C2 subtypes) and immune
subtypes (I1 and I2 subtypes) based on the occurrence of differentially expressed
metabolism-related prognostic genes and immune-related components. Notably, we
observed that immune regulators with upregulated expression actively participated in
multiple metabolic pathways. Therefore, we further delineated four immunometabolism-
based ccRCC subtypes (M1, M2, M3, and M4 subtypes) according to the results of the
above classification. Generally, we found that high metabolic activity could suppress
immune infiltration. Immunometabolism subtype classification was associated with
immunotherapy response, with patients possessing the immune-inflamed, metabolic-
desert subtype (M3 subtype) that benefits the most from immunotherapy. Moreover,
differences in the shifts in the immunometabolism subtype after immunotherapy were
observed in the responder and non-responder groups, with patients from the responder
group transferring to subtypes with immune-inflamed characteristics and less active
metabolic activity (M3 or M4 subtype). Immunometabolism subtypes could also serve as
biomarkers for predicting immunotherapy response. To decipher the genomic and
epigenomic features of the four subtypes, we analyzed multiomics data, including
miRNA expression, DNA methylation status, copy number variations occurrence, and
somatic mutation profiles. Patients with the M2 subtype possessed the highest VHL gene
mutation rates and were more likely to be sensitive to sunitinib therapy. Moreover, we
developed non-invasive radiomic models to reveal the status of immune activity and
metabolism. In addition, we constructed a radiomic prognostic score (PRS) for predicting
ccRCC survival based on the seven radiomic features. PRS was further demonstrated to
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be closely linked to immunometabolism subtype classification, immune score, and tumor
mutation burden. The prognostic value of the PRS and the association of the PRS with
immune activity and metabolism were validated in our cohort. Overall, our study
established four immunometabolism subtypes, thereby revealing the crosstalk between
immune and metabolic activities and providing new insights into personal
therapy selection.
Keywords: metabolism, immunotherapy, immune activity, radiomic analysis, muti-omics analysis
INTRODUCTION

Metabolic reprogramming and immune infiltration, which are
two hallmarks of cancer progression, interact with each other in
diverse ways in the tumor milieu (1–3). Prior studies confirmed
that tumor cells tended to outcompete T cells for glucose, which
would restrict the uptake of glucose in effector T cells, thereby
dampening their tumor clearance abilities (4, 5). However,
regulatory T cells have a distinct metabolic profile in the TME
and are involved in alternative metabolic pathways, such as the
lipid signaling pathway, to stabilize the supply of cellular energy
under glucose deficiency conditions (6). In addition, a high rate
of cholesterol esterification in the tumor was demonstrated to
compromise T-cell responses (7, 8). The above evidence
indicated that the perturbation of metabolism could influence
the status of immune cells and vice versa. Therefore, considering
the heterogeneity and complexity of the TME, combining
metabolic therapy with immunotherapy could enhance
therapeutic efficacy. A recent study pointed out that glycolysis-
low tumors were more responsive to CTLA-4 blockade,
suggesting that weakening metabolic competition could
improve the effectiveness of immunotherapy (9).

Clear cell renal cell carcinoma (ccRCC), the most prevalent
subtype of renal cell carcinoma, is considered an immunogenic
disease (10, 11). Accumulating evidence shows that ccRCC is
normally in an immunosuppressive state, which is characterized
by the high infiltration of regulatory T cells and myeloid cells
with suppressive activity (12, 13). Although immune checkpoint
inhibition (ICI) therapy is supposed to be effective in restoring
the antitumor immune response for ccRCC patient treatment,
only a minority of ccRCC patients can acquire long-lasting
benefits due to the heterogeneity of the TME (14). The
development of ccRCC was also shown to be associated with
metabolism, and many mutated genes were found to have roles
in metabolic pathways (15). The depletion of a gluconeogenic
enzyme—fructose-1,6-bisphosphatase 1 (FBP1)—promoted cell
proliferation and glycolysis, associating with worse prognosis of
ccRCC patients (16). Moreover, alterations in lipid metabolism
process were also involved in progression of ccRCC. The
overexpression of fatty acid synthase was associated with poor
prognosis of ccRCC patients (17). Different metabolism
signatures may cause prognosis heterogeneity in ccRCCs,
suggesting the possibility to classify ccRCCs from metabolic
perspective. To date, variable immune-related classification
methods based on gene signatures or immune components in
transcriptome studies showed prediction values in ccRCC
org 2
immunotherapy (18–20). However, the interplay of immune
activity with metabolism is crucial for the regulation of the
TME network. For example, tryptophan catabolism was
reported to be highly correlated with immune suppression in
renal cell carcinoma compared with other metabolic process
(21). Therefore, integrating immune activity and metabolism
into the classification system provides new insights into
discovering reliably predictive biomarkers for ICI therapy.

To date, comprehensive transcriptomic analysis that evaluates
the pattern of interaction occurring between metabolism and
immune activity in ccRCC remains rare. Here, to dissect the
complexity of the interaction between metabolism and immune
system in ccRCC, we conducted comprehensive transcriptomic
analysis and identified four subtypes with distinct immune and
metabolic characteristics. The exploration of the dynamic shift in
immunometabolism patterns after immunotherapy provides
new clues for the prediction of immunotherapy response.
Using multiomics data, we also deciphered the genetic and
epigenetic mechanisms that might lead to biological
discrepancies among the four subtypes. In addition, we
attempted to determine whether the preoperative imaging
features could reveal valuable information for the non-invasive
prediction of the immune and metabolic status of ccRCC.
MATERIALS AND METHODS

Data Acquisition and Preprocessing
Two transcriptomic datasets of ccRCC and matched normal
kidney tissues named TCGA-KIRC (The Cancer Genome Atlas,
Kidney Renal Clear Cell Carcinoma) (tumor sample, T=525;
normal sample, N=72) and GSE53757 (T=72, N=72) were
utilized to identify metabolism-related genes. Moreover,
GSE15641 (T=32, N=23) and GSE66272 (T=27, N=27) were
utilized as validation sets to evaluate the discriminative capacity
of candidate metabolism genes. Tumor samples with patient
survival information in TCGA-KIRC (n=513) and RECA-EU
cohort from International Cancer Genome Consortium (ICGC)
(n=92) were included in our study for the identification and
verification of ccRCC subtypes, respectively. Additionally, we
also collected transcriptomic data of responders and non-
responders to anti-PD-1 therapy, including bladder cancer
(IMvigor210, n=298), ccRCC [Braun et al. (22), n=16], and
melanoma (GSE91061, n=43) patients. Patients with missing
response status information were excluded. GSE64052,
containing five sunitinib-sensitive samples and four sunitinib-
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resistant samples, was included for correlation analysis.
All datasets utilized in our study are summarized in
Supplementary Table S1. For the microarray dataset
downloaded from Gene Expression Omnibus (GEO), the raw
CEL files were normalized independently using the robust
multiarray average method with the “affy” R package. All the
transcript data were transferred to HUGO Symbols, and the gene
expression data quantified as fragments per kilobase million
(FPKM) or read counts were converted to transcripts per
million (TPM). When necessary, the TPM value was
transformed into log2(TPM+1).

Multiomics data, including miRNA expression, copy number
variations (CNVs), somatic mutation, and DNA methylation
data, were downloaded from the TCGA database and UCSC
Xena website. Somatic mutation data were processed using
VarScan software (http://varscan.sourceforge.net/). The
“maftools” R package was implemented to analyze and
visualize the mutation annotation format (MAF) of somatic
variants. Tumor mutation burden (TMB) was calculated as the
number of variants divided by the length of exons (38 million)
for each sample.

Contrast-enhanced CT scans from treatment-naive ccRCC
patients were collected from the Cancer Imaging Archive (TCIA)
(n=133) and Zhongshan Hospital (n=45). Only images from the
arterial phase were implemented for the extraction of radiomic
features. Ethical approval was confirmed by the Zhongshan
Hospital Research Ethics Committee.

Identification of Metabolism-Related
ccRCC Subtypes
Genes enriched in the 186 metabolism-related Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways were
obtained from the Molecular Signature Database v7.1 (MSigDB).
Metabolism-related genes were identified after duplicate deletion
for subsequent consensus clustering. Before consensus
clustering, there was a three-step strategy for selecting
candidate genes. First, 940 genes from TCGA-KIRC and 864
genes from GSE53757 were identified. Second, the
abovementioned genes were used as separate input gene sets
for weighted gene coexpression network analysis (WGCNA)
using the “WGCNA” R package to determine which gene
module was most relevant to ccRCC or normal kidney tissue.
Meanwhile, the metabolism-related genes differentially expressed
(DE-MRGs) between ccRCC and normal kidney samples were
screened with a filtering criteria of a false discovery rate (FDR) q-
value <0.05. The genes overlapping at the intersection of the
“WGCNA-identified gene module from TCGA,” “WGCNA-
identified gene module from GEO,” “DE-MRGs from TCGA,”
and “DE-MRGs from GEO” were identified. Finally, univariate
Cox regression analysis was conducted to filter prognostic
candidate genes with p < 0.05 for clustering. We used
consensus clustering with the “ConsensusClusterPlus” R
package of iterations of 50 and a resampling rate of 0.8. The
optimal k-value was determined to obtain robust clusters. We
selected two novel multiomics data subtyping methods, namely,
Subtyping Multiomics using a Randomized Transformation
Frontiers in Immunology | www.frontiersin.org 3
(SMRT) (23) and Neighborhood-based Multi-Omics clustering
(NEMO) (24), to validate the classification results generated by
consensus clustering in TCGA-KIRC cohort.

Landscape of Immune Infiltration
in ccRCC
We utilized three methods, namely, single sample gene-set
enrichment analysis (ssGSEA), microenvironment cell
population-counter (MCP-counter), and CIBERSORT, to
estimate the absolute abundance of immune cells, stromal cells,
and immune functions based on the gene expression profile.
Using the gene sets including 782 genes for predicting the
abundance of 29 immune cell types (http://software.
broadinstitue.org/gsea/msigdb/index.jsp), a total of 29 immune
cell types and corresponding immune infiltration levels were
obtained for each sample after conducting the “Gene Set
Variation Analysis (GSVA)” R package. We used the
“MCPcounter” R package to confirm the robustness of ssGSEA
with the quantification of eight immune and two stromal cell
types. CIBERSORT was another computational method applied
in our study to calculate the components of macrophages M1
and macrophages M2. In addition, to obtain an overview of the
components of the tumor microenvironment, we applied the
ESTIMATE algorithm to calculate immune and stromal scores in
each tumor sample. Based on the results calculated with ssGSEA,
consensus clustering was applied for the identification of
immune clusters. SMRT and NEMO were also applied to
validate the classification results.

KEGG Pathway Enrichment Analysis and
Gene Set Variation Analysis
KEGG pathway enrichment analysis was performed to analyze
the biological functions of differentially expressed genes via the
“clusterProfiler” R package. An adjusted p-value <0.05 was set as
the cutoff value. Normalized enrichment scores were calculated
for metabolism-related KEGG pathways using the “GSVA”
R package. Differential analysis was implemented between
different clusters using the “limma” R package with an adjusted
p-value <0.05 considered differentially enriched pathways.

Radiomics Analysis
We excluded ccRCC samples with missing patient follow-up
information, arterial enhanced phase CT scan data, and poor
imaging quality. Consequently, 133 ccRCC samples from TCGA
database and 45 ccRCC samples from our institution were
enrolled in our study. The tumor masses were manually
segmented on the arterial phase of CT scans by two
experienced radiologists (C. Y. and C-WZ) with ITK-SNAP
software (Version 3.8). All segmentations were validated by a
senior radiologist (C.W.Z. with over 15 years of working
experience). Feature extraction was conducted on the uAI
Research Portal Platform, which was implemented by the
Python programming language (version 3.7.3, https://www.
python.org), and the “PyRadiomics” R package was embedded
into this platform. A total of 2,600 radiomic imaging features
were defined to reflect tumor characteristics. Radiomics
April 2022 | Volume 13 | Article 861328
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categories mainly included shape and size, first-order statistics,
gray-level co-occurrence matrix, wavelet features, etc. The
detailed radiomic features for all patients are presented in
Supplementary Table S2.

For feature selection, we first normalized radiomic features by
Z score for further analysis. To construct a prognostic radiomic
score (PRS) model for OS, univariate Cox regression was applied
for initial feature selection in TCGA-KIRC (discovery cohort).
The radiomic features with FDR <0.05 were included as the input
for least absolute shrinkage and selection operator (LASSO)
regression with the “glmnet” R package, and “Cox” was set as
the family in this algorithm. We used data from an external
cohort (Zhongshan cohort, n=45) as the validation cohort for
PRS. The LASSO regression method was also used for predicting
the metabolic and immune status for samples in TCGA, and
“binomial” was set as the family in this algorithm. A total of 133
patients were randomly assigned to the training or validation
cohort at a ratio of 7:3. Tenfold cross-validation was performed
to obtain the resulting features under the condition of the lambda
minimum. The coefficients for the final selected features were
used for calculating the PRS for each patient. The formula for
calculating the PRS is:

PRS =o
n

i=1
Coefi*Xi

where Coefi refers to the coefficient of each selected radiomic
feature, and Xi refers to the radiomic value after normalization.
Immunofluorescence
The slides were incubated with TIM-3 antibody (Abcam:
ab241332) and GlUT1 antibody (Abcam: ab115730) at 4℃
overnight. Then, the samples were incubated with appropriate
rabbit/mouse secondary antibodies (Yeason, Shanghai, China)
for 2 h. The nuclei were counterstained with 4′,6-diamidino-2-
phenylindole (DAPI) (Yeason, Shanghai, China). The positively
stained cells were visualized and counted under a Nikon
microscope (200× magnification).
Additional Bioinformatic and
Statistical Analyses
The survival analyses were performed in our study using the
“survminer” and “survival” R packages. The “surv_cutpoint”
function of the “survminer” R package was applied to determine
the best cutoff value on the basis of the maximal log-rank statistics.
Survival differences were compared by the log-rank test, and
survival curves were drawn by the Kaplan–Meier method. The
time-dependent receiver operating characteristic (ROC) curves
were plotted to compare the predictive value for survival among
different variables using the “timeROC” R package. R packages
and software mainly utilized for analyses in our study are
summarized in Supplementary Table S3. The Spearman
correlation test was used to evaluate the relationship between
two variables. Student’s t-test and Wilcoxon rank-sum test were
used to compare the data of two groups with normally distributed
and nonnormally distributed variables, respectively. ANOVA and
Frontiers in Immunology | www.frontiersin.org 4
Kruskal–Wallis tests were applied to compare the data of more
than two groups with normally distributed and non-normally
distributed variables, respectively. A two-tailed p-value <0.05 was
considered statistically significant.
RESULTS

Two Distinct Metabolism Clusters Were
Identified With DE-MRGS
A flow chart was plotted to describe the design of our study
(Figure 1). A total of 4,888 metabolism-related genes were
extracted from all metabolism pathways downloaded from
MSigDB. Next, we used the WGCNA algorithm to mine for
the hub genes in the tumorigenesis process of ccRCC from
TCGA-KIRC and GSE53757. For TCGA-KIRC, 525 tumor
samples and 75 normal samples were used to construct a scale-
free co-expression network. Four gene modules with different
colors were generated when the optimal soft threshold was
determined to be 3. Among them, the turquoise module with
521 hub genes had the highest correlation coefficient and a low
p-value (|Pearson Cor|=0.81, p<0.01) (Figures 2A, B). For the
GSE53757 dataset with 72 tumor samples and 72 normal
samples, we selected a power of 4 as a soft threshold and
obtained three gene modules. The turquoise module with 567
hub genes showed the highest correlation with sample type
(|Pearson Cor|=0.91, p<0.01) (Figures 2C, D). In addition, 286
and 455 metabolism-related genes differentially expressed
between tumor and normal samples were identified separately
in TCGA-KIRC and GSE53757, respectively. As a result, 138
genes overlapping at the intersection of these four gene modules
were obtained (Figure 2E). To further filter for the metabolism-
related genes with prognostic value, 56 genes were considered
ccRCC-specific DE-MRGS with univariate Cox regression
analysis (Supplementary Table S4). To evaluate the
discriminative ability of these 56 prognostic metabolism-
related genes for ccRCC, we conducted principle component
analyses (PCAs) in GSE15641 and GSE66272, and we distinctly
separated different sample categories (Figures 2F, G).

A total of 525 samples from TCGA-KIRC were classified
according to the expression profiles of these 56 DE-MRGS using
consensus clustering. The cumulative distribution function curves
of the consensus matrix indicated that when k=2, the interference
between subgroups was minimal, and the distribution was
significant (Figures 2H, I). To validate the stability of such
classification, we performed another independent analysis using
the RECA-EU cohort. Consistently, two distinct subtypes were still
the optimal choice for metabolism-correlated ccRCC classification
(Supplementary Figures S1A, B). To decipher the landscape of
the metabolic processes of the two clusters, we calculated GSVA
scores of different metabolic pathways with seven categories,
including amino acid, carbohydrate, drug metabolism, energy,
lipid, nucleotide, and other metabolism signatures. We found that
C2 had obviously higher metabolic activities than that of C1
for samples in both the TCGA-KIRC and RECA-EU cohorts,
which are presented in the heatmaps (Figure 2J and
April 2022 | Volume 13 | Article 861328
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Supplementary Figure S1C). We defined C1 as the metabolism-
excluded subtype and C2 as the metabolism-high subtype.
Notably, a significantly worse prognosis was observed in C2
than in C1 (Figure 2K; Supplementary Figure S1D), implying
the clinical value of metabolism-related classification.

Immune Regulation Interacts
With Metabolism
The dynamic change in the TME is the result of continuous
interactions among cancerous cells, non-cancerous cells, and
metabolites, which play a decisive role in tumor progression (25,
26). Here, we used the ESTIMATE algorithm to calculate the
immune, stromal, and ESTIMATE scores of metabolism clusters,
and significant differences were observed between C1 and C2.
Intriguingly, C2 showed lower scores than C1 (Figure 3A).
Moreover, 15 upregulated immune-related molecules in ccRCC
samples were enriched in multiple metabolism processes
(Figure 3B). The above evidence implied that it was of high
importance to explore the potential crosstalk pattern between
immune and metabolic activity.

To characterize the immune components in the TME of
ccRCC, ssGSEA, MCP-counter, and CIBERSORT algorithms
were applied to calculate the abundance of immune-related cell
types. Based on the ssGSEA results, we recognized two distinct
immune subtypes of the TCGA-KIRC cohort using consensus
clustering and validated its rationality in the RECA-EU cohort
(Figures 3C, D; Supplementary Figures S2A, B). According to
the discrepancy in the immune landscape exhibited between the
Frontiers in Immunology | www.frontiersin.org 5
two subtypes, we defined I1 as the immune-deserted subtype and
I2 as the immune-inflamed subtype (Figure 3E; Supplementary
Figure S2C), and I2 patients showed a favorable prognosis
(Figure 3F; Supplementary Figure S2D). Afterward, we
performed KEGG pathway analysis for the genes differentially
expressed between the two immune clusters. The results showed
that a total of 2,782 identified genes were enriched in varying
metabolic biological pathways, including glyoxylate and
dicarboxylate metabolism, tyrosine metabolism, propanoate
metabolism, and glycerophospholipid metabolism (Figure 3G).

Identification of
Immunometabolism Subtypes
Considering the synergistic effect of immune activity and
metabolism, we redefined immunometabolism clusters
according to the above immune and metabolism clustering
results. Since ccRCC could be classified into two clusters based
on immune or metabolism characteristics, four subtypes were
generated: the M1 subtype with immune- and metabolism-
deserted characteristics, the M2 subtype with immune-deserted
and metabolism-high characteristics, the M3 subtype with
immune-inflamed and metabolism-deserted characteristics, and
the M4 subtype with immune-inflamed and metabolism-high
characteristics. The classification scheme is presented in
Figure 4A. SMRT and NEMO clustering methods were
performed to validate the results of immune and metabolism
classifications generated by consensus clustering in TCGA-KIRC
cohort, respectively. Samples could be mainly classified into two
FIGURE 1 | The schematic diagram of the study process.
April 2022 | Volume 13 | Article 861328
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immune or metabolism subtypes (Cluster 1-1 and Cluster 1-2)
using SMRT (Supplementary Figures S3A, B). PCA plots also
showed that samples classified into two immune or metabolism
subtypes by NEMO could be separated clearly (Supplementary
Figures S3C, D). The subtypes identified by the three clustering
methods had significant overlapping rates (all p < 0.05,
Supplementary Figures S3E–G), suggesting the good
consistency between the three clustering methods.
Frontiers in Immunology | www.frontiersin.org 6
To investigate whether the four subtypes could reflect the
interaction of immune and metabolic processes, we drew
heatmaps reflecting the metabolic and immune landscapes in
the TCGA-KIRC cohort (Figures 4B, C) and compared the
GSVA score and immune infiltration level of each type
(Supplementary Table S5). We found that the M2 subtype
exhibited the highest metabolic activity, which was significantly
higher than that of the M4 subtype. Moreover, the M3 subtype
A C DB

E G HF

I J

K

FIGURE 2 | Two distinct metabolism subtypes are identified. (A) The weighted gene co-expression network analysis (WGCNA) is conducted with metabolism-related
genes in TCGA-KIRC. (B) Four gene modules are generated, and the turquoise module presents the highest correlation with sample type. (C) WGCNA is conducted
with metabolism-related genes in GSE53757. (D) Three gene modules are generated, and the turquoise module presents the highest correlation with sample type.
(E) One hundred thirty-eight overlapping genes in the intersection of the four gene modules are identified for further univariate Cox analysis. (F, G) Principle component
analyses (PCAs) are performed for another two datasets (GSE15641 and GSE36895), and 56 DE-MRGS can clearly separate tumor samples with normal samples.
(H, I) The cumulative distribution function curves of consensus matrix indicate that when k=2, the interference between subgroups is minimal. (J) Heatmap of the
seven categories of metabolism pathways for two subtypes (C1 and C2). (K) Survival analysis between two metabolism subtypes. p-value is given by log rank test.
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showed the lowest metabolic activity, which was significantly
lower than that of the M1 subtype. On the other hand, the M3
subtype had the highest level of immune infiltration, which was
significantly higher than that of the M4 subtype, and the M2
subtype had the lowest level of immune infiltration, which was
Frontiers in Immunology | www.frontiersin.org 7
significantly lower than that of the M1 subtype. The above
results were also demonstrated in the RECA-EU cohort
(Supplementary Figures S4A, B; Supplementary Table S5).
Significantly different immune scores were observed among the
four subtypes, with higher immune scores for M1 than M2
A B

C

E F

G

D

FIGURE 3 | Crosstalk between metabolism and immune regulations. (A) Comparison of immune score, stromal score, and estimate score between two
metabolism subtypes. p-value is given by Wilcoxon rank-sum test. **p < 0.01, ***p < 0.001. (B) The interplay between upregulated immune-related molecules and
metabolism pathways. The point represents that the upregulated immune-related molecules are significantly enriched in the relevant metabolism pathways. The size
of the point represents the value of −log10 (FDR). (C, D) The cumulative distribution function curves of consensus matrix indicate that when k=2, the interference
between subgroups is minimal. (E) Heatmap describes the abundance of immune components infiltration calculated by ssGSEA, MCP-counter, and CIBERSORT
algorithms in two immune subtypes (I1 and I2). (F) Survival analysis in I1 and I2 subtypes. p-value is given by log rank test. (G) Pathway analysis of differentially
expressed genes between two immune subtypes.
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(p=0.01) and higher immune scores for M3 than M4 (p<0.01)
(Figure 4D). Based on the above evidence, we envisioned that
high metabolic activity in the TME can suppress immune activity
to some extent, thereby promoting tumor development. The
prognostic value of immunometabolism subtype classification
was assessed in TCGA-KIRC, and patients of the four subtypes
displayed dramatic prognostic differences (log-rank test p<0.01,
Figure 4E). The same result was observed in the RECA-EU
cohort (log-rank test p<0.01, Supplementary Figure S4C).
Frontiers in Immunology | www.frontiersin.org 8
Notably, in the RECA-EU cohort, patients classified as M2 had
the worst survival outcome, which was significantly inferior to
that of M1 (log-rank test p=0.036). Furthermore, similar immune
and metabolism patterns of the four clusters in TCGA-KIRC
cohort generated by SMRT and NEMO clustering methods were
observed compared with consensus clustering (Supplementary
Figures S5A–D). Increasing evidence has demonstrated that if
tumor cells consume increasing amounts of glucose, then T cells
would be more metabolically restricted. Therefore, we estimated
A

C

D E

B

F

FIGURE 4 | Identification of four immunometabolism subtypes. (A) The diagram of immunometabolism classification strategy. (B, C) Heatmaps of metabolism- and
immune-related signatures in four immunometabolism subtypes (M1, M2, M3, and M4). p-value is calculated by ANOVA test. (D) Comparison of immune score and
stromal score in four subtypes. p-value is calculated by ANOVA test. (E) Comparison of survival outcomes among four subtypes. p-value is given by log rank test.
(F) Specific differentially expressed genes in M2 subtype compared with other subtypes involve in multiple immune relevant pathways.
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that the M2 subtype might display the most malignant
characteristics. We further explored which biological pathways
that the genes underlying the M2 subtype participated in.
Interestingly, M2-specific genes were mainly enriched in
immunological pathways (Figure 4F). Immunometabolism
Subtype Classification Correlates With Immunotherapy Efficacy

In the ccRCC cohort (Braun et al.) and bladder cancer anti-
PD-1 therapy cohort (IMvigor210), we classified patients into
four subtypes that showed consistent patterns of immune and
metabolic activities (Figures 5A, B; Supplementary Figures
S6A, B). The response rate of patients classified by the four
subtypes was determined. In the ccRCC cohort, the overall
response rate was significantly higher in patients with the M3
subtype (37.5%) than in those with the M4 subtype (25%)
(Figure 5C). Similarly, in the bladder cancer cohort, patients
classified with the M3 subtype (47.1%) had significantly higher
response rates than the other subtypes (Supplementary
Figure S6C).

TMB is the most prevalent biomarker for predicting
immunotherapy response. We attempted to investigate whether
Frontiers in Immunology | www.frontiersin.org 9
this immunometabolism classification system can be utilized as a
robust tool to predict the responses to immunotherapy compared
with that achieved using TMB. Next, we determined the cutoff
point of TMB as 17 using the “surv_cutpoint” function of the
“survminer” R package. For samples in the TMB <17 group or
TMB >17 group, similar results were observed, with prolonged OS
associated with M3 subtype classification and dismal OS associated
with M2 subtype classification (log-rank test, p=0.038 for TMB
<17, and log-rank test, p=0.022 for TMB <17, Figures 5D, E). This
TMB stratification survival analysis indicated that
immunometabolism classification had a stable and independent
capacity for predicting OS. Importantly, combining TMB status
with the classification of immunometabolism improved the
predictive accuracy of TMB and metabolism classification but
was non-inferior to that achieved using immune classification
(TMB vs. TMB + immunometabolism classification, p=0.030;
TMB vs. metabolism classification, p=0.025; TMB vs. immune
c l a s s ifica t ion , p=0 .783 , Figure 5F ) . Overa l l , the
immunometabolism classification system can complement TMB
as a predictor for immunotherapy response.
A B

C ED F

FIGURE 5 | Immunometabolism subtypes correlate with immunotherapy. (A, B) Heatmaps show the immune landscape and metabolism signatures of four
immunometabolism subtypes in ccRCC prior to anti-PD-1 therapy (Baun et al.). (C) Percentages of four immunometabolism subtypes in responders and non-
responders prior to anti-PD-1 therapy in ccRCC. (D, E) Stratification survival analysis of TMB <17 and TMB >17 across four subtypes in bladder cancer (IMvigor210
cohort). p-value is given by log-rank test. (F) Receiver operating characteristics of predicting the response of anti-PD-1 therapy in bladder cancer based on the TMB
and immunometabolism subtypes.
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The Dynamic Pattern of Changes
to the Immune Landscape
During Immunotherapy
It is crucial to understand the pattern of TME modulation that
occurs during immunotherapy since such dynamic changes can
reflect the mechanism of resistance to immunotherapy. We
analyzed the pretreatment and on-treatment transcriptomic
data of a melanoma patient cohort (GSE91061) receiving anti-
PD-1 therapy with 24 responders and 18 non-responders. All the
samples were classified into four subtypes. The M3 subtype
accounted for the largest proportion of patients before
treatment (50%) and during treatment (58.3%) in the
responder group, while the M2 subtype accounted for the
largest proportion of non-responders before treatment (27.8%)
and during treatment (38.9%). We observed that in the
responder group, samples that were classified into the M1 and
M2 subtypes before treatment evolved into active immune
groups (two of M1 evolved to M3, two of M1 evolved to M4,
and one of M2 evolved to M3, Figure 6A), while this
evolutionary trend was the opposite in the non-responder
group. M1 and M2 classifications mainly retained their
observed pretreatment prevalence during the treatment;
however, the M3 and M4 subtypes showed a tendency to
evolve to exhausted immune groups (two of M3 evolved to
M1, one of M3 evolved to M3, Figure 6B). The immune profiles
of patients in the non-responder group were characterized by
higher infiltration levels of immune-suppressive cells, such as
Th2 cells and Treg cells, lower expression of immune checkpoint
molecules and higher expression of two immunosuppressors
(VEGFA and TGFB1) than those of patients in the responder
group. The immune profiles of patients before treatment and
during treatment are displayed in heatmaps (Figures 6C, D).
Notably, during treatment, patients from the responder group
expressed higher levels of PDCD1 (PD-1), CTLA4, HAVCR2,
and TIGIT, implying the efficacy of immunotherapy. Meanwhile,
Th2 cells and Treg cells also had significantly lower infiltration
levels, while CD8+ T cells infiltrated more (Figure 6E). However,
no significant difference was observed in the immune profiles for
non-responders (Figure 6F). In general, our results implied that
the reason for immunotherapy resistance was rather complex
because the TME condition was dynamic and plastic. Therefore,
inducing a shift of the TME with other therapeutic approaches
for more favorable responses to immunotherapy is of high value.

Correlation of the Immunometabolism
Subtypes With miRNA Expression, DNA
Methylation, CNV, and Mutations
Genomic and epigenetic alterations were demonstrated to
contribute to the underlying biological differences among the
four subtypes (27, 28). Therefore, we conducted differential
analyses of miRNA expression and DNA methylation by
comparing tumor samples of each subtype. With the criteria of
log2|FC|>2 and FDR <0.05, a total of 160 significantly
differentially expressed miRNAs (20 downregulated and 140
upregulated) were identified for the M1 subtype, 139 for the
M2 subtype (51 downregulated and 88 upregulated), 121 for the
Frontiers in Immunology | www.frontiersin.org 10
M3 subtype (61 downregulated and 60 upregulated), and 95 for
the M4 subtype (46 downregulated and 49 upregulated). The
proportions of upregulated and downregulated miRNAs are
presented in the boxplot (Figure 7A).

Moreover, a total of 281 differentially expressed methylated
genes were identified for the M1 subtype, 2,014 for the M2
subtype, 5,350 for the M3 subtype, and 913 for the M4 subtype.
These results indicated that the M1 and M3 subtypes were more
likely to be epigenetically modified. KEGG pathway analysis was
performed for the M1 subtype, which had the highest number of
significantly differentially expressed miRNAs. We found that 20
significantly downregulated miRNAs were enriched in functions
related to the cell cytoskeleton and metabolism (Figure 7B), and
140 significantly upregulated miRNAs were enriched in multiple
cancer-related pathways (Figure 7C). Moreover, M3 showed the
highest level of methylation, and the differentially methylated
genes were enriched in cancer-related pathways and metabolism
pathways (Figure 7D).

The association of the pattern of CNV in tumorigenic and
immunoregulatory genes with four subtypes was explored. We
chose one type of copy number event (deletions or
amplifications) depending on which type of copy number
event occurred more frequently to calculate the odds ratio
that represented the enrichment for each subtype
(Figure 7E). We found that the M3 and M4 subtypes were
enriched with CD274 (PD-L1), PD-L2, and CTLA4 gene
amplifications, suggesting that their active responses to
immunotherapy were partly due to the increased expression
of immune checkpoint molecules. Additionally, several
metabolism-related genes, such as PDK1 and PKM, were
significantly amplified in the M2 subtype. These findings were
consistent with the immunometabolism characteristics of each
subtype, providing opportunities to explore new drugs
targeting crucial proteins involved in metabolic pathways.
Furthermore, the top 20 gene mutation frequencies among
the four subtypes were identified (Figure 7F). The loss of
VHL, which is the most commonly mutated gene in ccRCC,
can result in the upregulation of hypoxia-responsive genes,
which can induce tumorigenesis. We found that VHL was less
frequently mutated in the M1 subtype, which indicates the
probability of resistance to targeted therapy. Indeed, in further
correlation analysis of our four subtypes with the drug
sensitivity dataset, M1 subtype classification showed a
significant correlation with TKI resistance (p=0.04), whereas
M2 subtype classification was correlated with TKI sensitivity
(p=0.02) (Figure 7G).

Radiomic Profile Predicts Survival and
Reflects Status of the Immune
System and Metabolism
We utilized two independent datasets to evaluate the prognostic
value of the radiomic profile for ccRCC patients: the TCGA-
KIRC cohort as the discovery cohort (n=133) and the Zhongshan
cohort as the validation cohort (n=45). We first conducted
univariate Cox regression analysis for 2,600 radiomic features
in the TCGA-KIRC cohort, and 16 radiomic features were
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determined to be significantly associated with OS (FDR<0.05).
Then, the 16 radiomic features were further filtered and reduced
to 7 radiomic features using LASSO regression. The survival
information and the seven radiomic profiles for the two cohorts
are presented in Supplementary Table S6. A PRS was calculated
for each sample. Using the “surv_cutpoint” function of the
Frontiers in Immunology | www.frontiersin.org 11
“survminer” R package, we determined 0.121 to be the cutoff
PRS to stratify patients into two groups (high PRS, n=35; low
PRS, n=98). The OS difference was observed in the different risk
groups in the TCGA-KIRC cohort (log-rank test, p<0.01,
Figure 8A) and confirmed in the Zhongshan cohort, with 26
patients stratifying into the low PRS group and 19 patients
A B

C D

E F

FIGURE 6 | Dynamic change pattern of immunometabolism subtypes during the immunotherapy. (A, B) Sankey diagram shows the flow change of
immunometabolism subtypes of the responders (n=24) and non-responders (n=18) to anti-PD-1 therapy pretreatment and on-treatment. (C, D) Heatmaps show the
immune components and immune relevant molecules of patients pretreatment and on-treatment. (E, F) Boxplots compare the differences of immune components
pretreatment and on-treatment. p-value is given by Wilcoxon rank-sum test. *p < 0.05, **p < 0.01, ***p < 0.001.
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stratifying into the high PRS group (log-rank test, p=0.025,
Figure 8B). When investigating the biological characteristics of
patients classified into different PRS groups, we noted that a
higher PRS was inversely related to a lower immune score
(Figures 8C, D). In contrast, the PRS was positively associated
Frontiers in Immunology | www.frontiersin.org 12
with the TMB score (Figures 8E, F). In addition, we observed
that patients classified into the M2 subtype had a significantly
higher PRS than those of the M1, M3, and M4 subtypes
(Figure 8G), which was consistent with the finding that the
worst OS was observed in the patients with M2 subtype.
B CA

ED

G
F

FIGURE 7 | Genomic and epigenomic features of the immunometabolism subtypes. (A) Percentage of significantly down- and upregulated miRNAs in TCGA across
four subtypes. (B, C) Pathway analysis of target genes regulated by up- and downregulated miRNAs of M3 subtype. (D) Pathway analysis of M1-specific
hypermethylated genes. (E) Subtype-specific CNV (deletions or amplifications) enrichment is presented as odd ratios with FDR <0.05. The proportion of deletion
events and amplification events in the four subtypes are denoted on the right. (F) Waterfall of mutation status of the top 20 most mutated genes among the four
subtypes. The proportion of mutation rates of the corresponding genes in the four subtypes is denoted on the left. (G) Correlation analysis of immunometabolism
subtypes and patients who are sensitive or resistant to sunitinib targeted drug therapy.
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FIGURE 8 | Radiomics profile reveals the status of immune and metabolism. (A, B) Survival analysis of patients from different prognostic radiomic score (PRS)
groups in the TCGA-KIRC cohort (n=133) and Zhongshan cohort (n=45). (C, D) Scatter plot and boxplot show the correlation between PRS and immune score. For
scatter plot, p-value is given by the Spearman correlation analysis. For boxplot, p-value is given by Wilcoxon rank-sum test. (E, F) Scatter plot and boxplot showing
the correlation between PRS and TMB. For scatter plot, p-value is given by the Spearman correlation analysis. For boxplot, p-value is given by Wilcoxon rank-sum
test. (G) The association between PRS and four immunometabolism subtypes. p-value is given by Kruskal–Wallis test. (H, I) Results of area under the curve (AUC)
for the 10 radiomic features predicting immune status in the discovery cohort (TCGA-KIRC cohort, n=91) and validation cohort (TCGA-KIRC cohort, n=42).
(J, K) Results of AUC for the 11 radiomic features predicting immune status in the discovery cohort (TCGA-KIRC cohort, n=91) and validation cohort (TCGA-KIRC
cohort, n=42). (L) Representative images of the immunofluorescence staining with TIM-3 (red), CD8 (green), DAPI (blue), and Merge (double positive) on ccRCC
tissues and their paired normal tissues from high and low PRS groups. Scans are imaged at 200 magnification. (M) The percentage of TIM-3 expressed on CD8+ T
cells is higher in high PRS group (n=15) than low PRS group (n=15). p-value is given by Student’s t-test. (N) Representative images of the immunofluorescence
staining with GLUT1 (red), DAPI (blue), and Merge on ccRCC tissues and their paired normal tissues from high and low PRS groups. Scans are imaged at 200
magnification. (O) The percentage of the expression of GLUT1 is more in high PRS group (n=15) than low PRS group (n=15). p-value is given by Student’s t-test.
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Con s i d e r i n g t h a t t h e PRS wa s a s s o c i a t e d w i t h
immunometabolism subtype classification, we further explored
the predictive value of radiomic profiles for immune and
metabolism status. For immune status prediction, 10 radiomic
features were selected by LASSO regression (Supplementary
Table S7). The prediction model achieved areas under the
curve (AUCs) of 0.759 and 0.805 for the discovery and
validation cohorts, respectively (Figures 8H, I). Moreover, the
predict ion model comprised 11 radiomic features
(Supplementary Table S8), and classification by metabolism
status obtained AUCs of 0.689 and 0.743 for the discovery and
validation cohorts, respectively (Figures 8J, K).

Additionally, to confirm the relationship of PRS with immune
and metabolic status, we examined the expression of TIM-
3+CD8+ T cells and GLUT1+ cells from tumors and paired
normal tissues from patients in the high PRS group (n=15)
and low PRS group (n=15). The number of TIM-3+CD8+ T cells
was higher in the high PRS group (p=0.001, Figures 8L, M).
Patients from the high PRS group also expressed significantly
higher levels of GLUT1 than those of their counterparts
(p=0.043, Figures 8N, O). These results confirmed that
patients with a high PRS tended to have suppressive immune
activity and active metabolic activity.
DISCUSSION

In this study, we aimed to explore the synergistic effect of the
immune response and metabolism in ccRCC progression to
determine whether this effect contributes to the classification of
ccRCC. We first separately identified two immune- and
metabolism-related classifications of ccRCC utilizing the
consensus clustering method. Then, based on the results of the
initial classifications, we redefined four subtypes of ccRCC,
namely, M1, M2, M3, and M4, which could reflect the interplay
between immunity and metabolism. Generally, we found that a
high metabolic state in the TME could decrease immune cell
infiltration. Importantly, this combined classification was
significantly correlated with patient OS. Patients with the M2
subtype harbored an inflamed metabolic state, possessed reduced
immune activity, and exhibited the worst OS, while patients with
the M3 subtype had the exact opposite features of those of the M2
subtype and exhibited the best OS.

We explored the genetic aberrations and epigenetic
mechanisms underlying the heterogeneity of these four
subtypes. Notably, the M2 subtype classification, which
exhibited relatively higher frequencies of VHL mutations, was
also associated with sensitivity to sunitinib therapy, but this
fraction of patients with immune-excluded characteristics tended
to be less responsive to immunotherapy in our study. Recently,
investigations have demonstrated that the combination of ICI
therapy and VEGF TKI therapy can increase the response rate
and overall survival of ccRCC patients (29, 30). Interestingly,
there was a finding suggesting that targeting the VEGF pathway
could suppress the influx of suppressive immune cells into the
TME (31–33). This finding indicated that VEGF TKI therapy
Frontiers in Immunology | www.frontiersin.org 14
served as an advantageous combination with ICI therapy. Our
data suggested that copy number changes might also have an
effect on the immunotherapy response. CD274 (PD-L1) and
PDCD1LG2 (PD-L2) gene amplifications were enriched in the
M3 and M4 subtypes, suggesting a higher expression of immune
checkpoint molecules and better efficacy of ICI therapy for the
treatment of patients with M3 and M4 subtypes than for patients
with the other two subtypes. Concordant with the above results, a
similar trend was also demonstrated in melanoma and bladder
cancer ICI therapy datasets. Further clinical trials are required to
test the efficacy of the combination of ICI therapy and targeted
therapy for patients with the M2 subtype.

ICI therapy can reprogram the tumor immune
microenvironment in ccRCC patients by upregulating the
expression level of the coinhibitory receptors and effector
molecules of cytotoxic T cells (34). In addition, the findings of
several studies indicated that ICI therapy can have the potential to
influence the cross-communication between tumors and T cells.
The inhibition of the PD-1-PD-L1 axis in tumor cells can dampen
aerobic glycolysis via suppression of the PI3K–AKT–mTOR
pathway (35–37). As a result, the function of TILs would be
restored with the increase in available glucose. Similarly, in our
study, we observed that there were no evident changes in the
immune landscape in the ICI-resistant group before and after
therapy. However, for the responsive group, the TME of ccRCC
patients after therapy was characterized by significantly more
effector T cells and fewer suppressive T cells. Samples from the
responder group tended to transfer to subtypes with immune-
inflamed characteristics and less active metabolic activity. These
findings indicated that immunity and metabolism, the two key
elements influencing the TME, were independently linked with
each other. Moreover, since accumulating evidence has
demonstrated that targeting metabolic pathways in tumors with
inflamed metabolism could convert the resistance to
immunotherapy (38–40), we speculated that patients with the
M2 subtype might gain more benefit from ICI therapy
accompanied by metabolism-targeted therapy. Nonetheless, our
analysis was based on bulk sequence data, which cannot reflect
specific cell-type patterns. The proportion of activated CD8+ T
cells was strongly associated with the prognosis of ccRCC patients
in multiple studies (41, 42). Bi et al. (34) found that macrophages
of ccRCC patients shifted toward proinflammatory states but also
exhibited upregulated expression of immunosuppressive markers
during immunotherapy. In the future, single-cell sequencing
combined with multiomics approaches will provide deeper
insights into the reprogramming of immune- and metabolism-
related processes during immunotherapy.

Currently, the status of the tumor microenvironment can be
evaluated only once on histological specimens after surgery, and
the assessment accuracy might be limited by the heterogeneity of
biopsy. Previous studies have discovered that radiomic features,
reflecting subtle homogeneity or heterogeneity utilizing the gray-
level run length matrix, are associated with the expression of
TILs (43, 44). Radiomic analysis also achieved satisfactory
performance for the prediction of clinical outcomes of
immunotherapy patients across multiple cancers (45–47).
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Here, to non-invasively evaluate the immune and metabolic
status of ccRCC patients, we built prediction models that
demonstrated satisfactory performances. Furthermore, we also
developed PRS and validated its prognostic value in our center.
Intriguingly, patients with the M3 subtype had the highest PRS
and the worst prognosis, which indicated that the PRS could
reflect the combined effect of immunity and metabolism to some
extent. Our study illustrated the link between imaging features
and TME status, which can provide clinicians with meaningful
biological information for optimizing treatment strategies.
However, further evaluation with a large clinical sample size is
warranted to validate our results.

In general, we classified ccRCC patients into four subtypes
based on the synergistic effect of immune activity and
metabolism. A high metabolic status, especially regarding fatty
acid metabolism and glycolysis, suppresses immune cell
infiltration, and these processes have a strong association with
TILs. We unveiled the molecular differences underlying patients
with the four subtypes from both genetic and epigenetic
perspectives. We also illustrated the dynamic changes in the
immune landscape before and after immunotherapy. In addition,
radiomic analysis was demonstrated to have predictive value for
immune and metabolic status. These results could provide
guidance for ccRCC classification and improve precision
diagnosis and treatment of ccRCC patients.
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Supplementary Figure 1 | Two distinct metabolism subtypes are validated in
RECA-EU cohort. (a, b) The CDF curves of consensus matrix indicates that when
k=2, the interference between subgroups is minimal. (c) Heatmap of the seven
categories of metabolism pathways for two subtypes (C1 and C2).(d) Survival
analysis between two metabolism subtypes. P value is given by log rank test.

Supplementary Figure 2 | Two distinct immune subtypes are validated in RECA-
EU cohort. (a, b) The CDF curves of consensus matrix indicates that when k=2, the
interference between subgroups is minimal. (c) Heatmap of the aboundance of
immune components infiltration for two subtypes (I1 and I2). (d) Survival analysis
between two immune subtypes. P value is given by log rank test.

Supplementary Figure 3 | Immune and metabolism classification results in
TCGA-KIRC cohort generated by SMRT and NEMO clustering method show good
consistency with consensus clustering. (a, b) PCA plots show that samples can be
mainly classified into two immune and metabolism subtypes by SMRT clustering
method. (c, d) PCA plots show that two immune and metabolism subtypes can be
separated clearly using NEMO clustering method. (e-g) Sankey diagram shows
that the three clustering methods, consensus clustering, SMRT and NEMO have
significant overlapping samples in immune subtypes (e), metabolism subtypes (f)
and immunometabolism subtypes (g).

Supplementary Figure 4 | Validation of four immunometabolism subtypes in
RECA-EU cohort. (a, b) Heatmaps of metabolism and immune related signatures in
four immunometabolism subtypes (M1, M2, M3 and M4). P value is calculated by
ANOVA test. (c) Comparison of survival outcomes among four subtypes. P value is
given by log rank test.

Supplementary Figure 5 | The immune and metabolism landscapes of the four
immunometabolism clusters in TCGA-KIRC cohort generated by SMRT and NEMO
clustering methods. (a, b) Heatmaps of metabolism and immune related signatures
in four immunometabolism subtypes (M1, M2, M3 and M4) generated by SMRT
clustering method. P value is calculated by ANOVA test. (c, d) Heatmaps of
metabolism and immune related signatures in four immunometabolism subtypes
(M1, M2, M3 and M4) generated by NEMO clustering method. P value is calculated
by ANOVA test.

Supplementary Figure 6 | Immunometabolism subtypes of bladder cancer
correlate with immunotherapy. (a, b) Heatmap shows the immune landscape and
metabolism signatures of four immunometabolism subtypes in bladder cancer prior
to anti-PD-1 therapy (IMvigor210 cohort). (c) Percentages of four
immunometabolism subtypes in responders and nonresponders prior to anti-PD-1
therapy in bladder cancer.
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