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A novel E‑cadherin/SOX9 axis regulates 
cancer stem cells in multiple myeloma 
by activating Akt and MAPK pathways
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Abstract 

Cancer stem cells (CSCs) have been identified in multiple myeloma (MM) and are widely regarded as a key driver of 
MM initiation and progression. E-cadherin, in addition to its established role as a marker for epithelial-mesenchymal 
transition, also plays critical roles in controlling the aggressive behaviors of various tumor cells. Here, we show that 
depletion of E-cadherin in MM cells remarkably inhibited cell proliferation and cell cycle progression, in part through 
the decreased prosurvival CD138 and Bcl-2 and the inactivated Akt and MAPK pathways. CSC features, including the 
ability of the cells to form clonogenic colonies indicative of self-renewal and side population, were greatly suppressed 
upon the depletion of E-cadherin and subsequent loss of SOX9 stem-cell factor. We further provide evidence that 
SOX9 is a downstream target of E-cadherin-mediated CSC growth and self-renewal—ectopic re-expression of SOX9 in 
E-cadherin-depleted cells rescued its inhibitory effects on CSC-like properties and survival signaling. Collectively, our 
findings unveil a novel regulatory mechanism of MM CSCs via the E-cadherin/SOX9 axis, which could be important in 
understanding the long-term cell survival and outgrowth that leads to relapsed/refractory MM.
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To the editor,
Novel therapies for multiple myeloma (MM), such as 
proteasomal inhibitors, immunomodulatory drugs, 
and CAR-T cell therapy, have improved palliation and 
response rates, providing a longer disease-free period; 
however, MM inevitably progresses in the vast majority 
of patients [1]. Cancer stem cells (CSCs), also known as 
tumor initiating cells, are believed to be the root cause 
of tumor recurrence for most if not all malignancies, 
including MM [2]. Identification of molecular pathways 
that contribute to CSCs is essential to understanding how 
MM progression is regulated. E-cadherin (encoded by 

CDH1) is known to have a pivotal role in the regulation 
of embryonic and normal adult stem cell survival and 
self-renewal [3, 4]. In solid tumors, loss of E-cadherin 
has traditionally been viewed as a hallmark of the occur-
rence of epithelial-to-mesenchymal transition, linking to 
metastasis. The role of E-cadherin in solid tumor growth, 
however, remains controversial and appears to be cell 
type- and tumor stage-dependent [5, 6]. E-cadherin pro-
tein level is significantly higher in MM tissues compared 
to normal tissues [7], and its increased mRNA expres-
sion has been correlated with symptomatic MM [8] and 
plasma cell leukemia, an aggressive variant of MM (Addi-
tional file 2: Figure S1). We have previously reported the 
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decreased E-cadherin level in poorly disseminated MM 
cells mediated by hyper-O-GlcNAcylation [9].

CSC phenotypes include their self-renewal and pro-
liferative properties. To investigate the functional role 
of E-cadherin in regulating MM CSCs, we first estab-
lished E-cadherin-depleted cells in human MM-derived 
cell lines RPMI 8226 and NCI-H929 using the CRISPR/
Cas9 system (Additional file 2: Figure S2) and examined 
its effects on cell growth and cell cycle. Detailed methods 
can be found in Additional file  1.  Figure  1A − C shows 
that both E-cadherin-depleted cells were less prolifera-
tive than wild type (WT) control cells, corresponding 
to the increased CD138-negative subpopulation and 
decreased prosurvival Bcl-2, but not Mcl-1. Our find-
ings were consistent with a previous study reporting the 
prosurvival effect of CD138 in MM [10]. We also found 
that loss of E-cadherin caused either G0/G1 or G2/M 
arrest, depending on the cellular context, by controlling 
its key cell cycle regulators in each phase (Fig. 1D). The 
PI3K/Akt and MAPK pathways have been reported to 
regulate the proliferation and survival of MM cells [11]. 
Herein, we showed that E-cadherin activates Akt, p38, 
and p44/42 (ERK1/2), but not SAPK/JNK, via protein 
phosphorylation (Fig. 1E). Altogether, these results sup-
port the positive regulatory role of E-cadherin in MM 
cell growth and survival.

We hypothesized that E-cadherin may be involved in 
CSC self-renewal. To investigate, colony-forming abil-
ity, the potential of a single cell to indefinitely grow and 
survive [12], was evaluated by clonogenic assay. Fig-
ure 1F shows that depletion of E-cadherin resulted in a 
reduction in both the number and size of MM colonies 
when compared to WT cells (Additional file  2: Figure 

S3), which could be reactivated by the restoration of 
E-cadherin (Additional file  2: Figure S4). Additionally, 
we found that depletion of E-cadherin reduced the side 
population (SP) phenotype, a common feature of CSCs 
related to the ABCG2 multidrug efflux transporter 
(Fig.  1G and H; Additional file  2: Figure S5). Profiling 
of stemness-related genes, i.e., SOX2, SOX9, NANOG, 
and OCT4, pointed out that SOX9 could be a key regu-
lator of E-cadherin-mediated MM CSCs (Fig. 1I and J; 
Additional file 2: Figure S6). To first test whether SOX9 
is functionally linked to CSCs, SOX9 was depleted in 
RPMI 8226 cells using shRNA. Similar to E-cadherin, 
depletion of SOX9 reduced Akt and MAPK activity, col-
ony-forming capacity, and SP cells and its correspond-
ing ABCG2 when compared to WT cells (Fig.  2A − D; 
Additional file 2: Figures S7 and S8), indicating the crit-
ical role of SOX9 in MM CSCs. To further validate that 
SOX9 is downstream of E-cadherin, rescue experiments 
were conducted in which SOX9 plasmid was ectopically 
overexpressed in E-cadherin-depleted cells. Figure  2E 
and F shows that the reduced SOX9 and ABCG2 as well 
as the reduced Akt and MAPK signaling in E-cadherin 
depleted cells could be rescued by ectopic SOX9 (see 
also Additional file  2: Figures  S9 and S10). This SOX9 
restoration also reversed the inhibitory effects of E-cad-
herin depletion on the colony forming capacity and SP 
cells (Fig. 2G and H; Additional file 2: Figures S11 and 
S12), thus confirming that E-cadherin mediates MM 
CSCs via SOX9. We also found that SOX9 is, in turn, 
necessary for maintaining E-cadherin level (Additional 
file  2: Figure S13), indicating a positive feedback loop 
that controls MM CSCs.

Fig. 1  E-cadherin regulates cell growth and CSC-like phenotypes in human MM-derived cells. E-cadherin was depleted in RPMI 8226 and NCI-H929 
cells using the CRISPR/Cas9 system, designated as CDH1-KO RPMI 8226 and CDH1-KD NCI-H929 cells, respectively (Additional file 2: Figure S2). 
A Cell viability was evaluated by MTT assay to monitor cell proliferation at 24, 48, 72, and 96 h of culture. Data are mean ± SD (n = 3). **p < 0.01, 
***p < 0.001, ****p < 0.0001 versus WT control cells; two-tailed Student’s t-test. B Cell surface expression of CD138 was analyzed by flow cytometry. 
The proportion of CD138-positive (CD138+) and CD138-negative (CD138−) cells is shown. Data are mean ± SD (n = 3). ***p < 0.001, ****p < 0.0001 
versus WT cells; two-tailed Student’s t-test. C Western blot analysis of prosurvival Bcl-2 and Mcl-1 proteins. β-actin was used as a loading control. The 
significant decrease in Bcl-2, but not Mcl-1, level was detected in CDH1-KO RPMI 8226 and CDH1-KD NCI-H929 cells compared to WT cells (**p < 0.01; 
two-tailed Student’s t-test). D (upper) Cell cycle analysis based on DNA content was analyzed by flow cytometry using propidium iodide staining. 
(lower) Quantitative real-time PCR (RT-qPCR) analysis of mRNA expression of cell cycle regulator genes. GAPDH served as the internal control. 
Data are mean ± SD (n = 3). *p < 0.05, **p < 0.01, ****p < 0.0001 versus WT cells; two-tailed Student’s t-test. E Western blot analysis of Akt and MAPK 
family proteins. The significant decrease in phosphorylated (p)-Akt, p-p38, and p-p44/42 levels was detected in CDH1-KO RPMI 8226 and CDH1-KD 
NCI-H929 cells compared to WT cells (*p < 0.05; two-tailed Student’s t-test). F Representative micrographs showing MM colonies under clonogenic 
assay (see also Additional file 2: Figure S3 for quantitative analysis of colony number and size). Scale bar = 200 μm. G SP subpopulation analysis 
using flow cytometry based on Hoechst 33342 dye efflux. SP cells (box) were determined by their disappearance in the presence of fumitremorgin 
C (see also Additional file 2: Figure S5 for quantitative analysis). H Western blot analysis of ALDH1A1 and ABCG2. A significant decrease in ABCG2, 
but not ALDH1A1, level was detected in CDH1-KO RPMI 8226 and CDH1-KD NCI-H929 cells compared to WT cells (*p < 0.05; two-tailed Student’s 
t-test). I RT-qPCR analysis of mRNA expression of stemness-regulated genes. Data are mean ± SD (n = 3). ****p < 0.0001 versus WT cells; two-tailed 
Student’s t-test. J Western blot analysis of SOX9 level in CDH1-KO RPMI 8226 and CDH1-KD NCI-H929 cells (see also Additional file 2: Figure S6 for 
quantitative analysis)

(See figure on next page.)



Page 3 of 6Samart et al. Experimental Hematology & Oncology           (2022) 11:41 	

In summary, we revealed a novel regulatory mecha-
nism of MM CSCs via the E-cadherin/SOX9 axis 
(Fig.  2I), which could be important in understanding 
the long-term cell survival and outgrowth that leads 

to relapsed/refractory MM. Our findings provided a 
potential rationale for targeting E-cadherin/SOX9 axis, 
while in  vivo studies are warranted to further validate 
this hypothesis.
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