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ABSTRACT
Oncology is becoming increasingly personalised through 
advancements in precision in diagnostics and therapeutics, 
with more and more data available on both ends to create 
individualised plans. The depth and breadth of data 
are outpacing our natural ability to interpret it. Artificial 
intelligence (AI) provides a solution to ingest and digest 
this data deluge to improve detection, prediction and skill 
development. In this review, we provide multidisciplinary 
perspectives on oncology applications touched by AI—
imaging, pathology, patient triage, radiotherapy, genomics- 
driven therapy and surgery—and integration with existing 
tools—natural language processing, digital twins and 
clinical informatics.

INTRODUCTION
In recent years, modern medical machine 
learning (ML) and artificial intelligence 
(AI) have become actualised in the clinic, 
with hospitals and clinics around the globe 
using AI assistance for a wide range of clin-
ical applications such as diabetic retinopathy 
screening,1 stroke detection2 and predicting 
hospital readmissions.3

AI promises to be a gamechanger in 
oncology as well, yet oncology is no stranger 
to moonshot promises. Soon after the initi-
ation of the human genome project around 
the turn of the century, several promising 
laboratory- developed tests that purported to 
diagnose or personalise therapy in ovarian 
and lung cancer were developed and subse-
quently debunked.4 Despite these well- 
documented early setbacks,5 continued 
refinement of multigene assays has resulted 
in their integration into the standard of care 
in certain contexts, notably in breast and 
prostate cancer.6–8

Many of the hard lessons learnt from 
entrusting decision- making to multigene 
laboratory tests remain, with both familiar 
and new questions regarding generalisability, 
imbalance and missing data and real- world 
applications.4 Oncology is a multidisciplinary 
practice with imperfect information flow 

between subspecialties. Our primary aim in 
this narrative review is to address this limita-
tion by discussing ongoing and emerging 
oncology AI efforts from the perspective of 
practitioner researchers in clinical infor-
matics (CI), computer science, medical 
oncology, medical physics, pathology, radi-
ation oncology, radiology and surgery. For 
more details on AI and ML algorithms, we 
refer readers to prior reviews.9–12 For a more 
in- depth discussion about data sharing, ethics 
and validation, we refer readers to prior 
work.13

CURRENT APPLICATIONS OF AI IN ONCOLOGY
Radiological imaging
Cancer imaging, especially for screening and 
early detection, presents the archetype for 
integrating deep learning and AI algorithms 
into clinical practice. In theory, these algo-
rithms should be able to identify patterns 
within medical images imperceptible to the 
human eye and be able to help identify areas 
that may represent malignant findings. Exam-
ples of ongoing efforts for early cancer detec-
tion on medical imaging using AI include 
mammography screening, CT lung cancer 
screening and early detection on prostate 
MRI.

Early breast cancer detection
The most studied area for AI and cancer 
imaging is the use of AI algorithms for 
earlier breast cancer detection on both 
two- dimensional and three- dimensional 
mammography. The DREAM Digital 
Mammography Challenge, the large- 
crowdsourced effort in deep learning algo-
rithm development for medical imaging 
interpretation, launched the development 
of multiple competing commercial AI algo-
rithms.14 Thus far, early cohort studies suggest 
that AI improves overall accuracy when used 
as an adjunct tool by radiologists interpreting 
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mammograms.15 A few studies suggest that AI as a stand-
alone tool may be equivalent to human interpretative 
accuracy for breast cancer screening.16 Of note, there is 
a paucity of data demonstrating that there is improved 
accuracy and outcomes from commercially available, 
Food and Drug Administration (FDA)- approved AI algo-
rithms for mammography in large, diverse patient popu-
lations.17 Initial interim results from a prospective trial in 
Sweden comparing AI- supported screening versus stan-
dard double reading suggests that AI- supported screening 
leads to similar cancer detection rates.18 Currently, many 
commercially available algorithms remain unreimbursed 
given the lack of prospective, clinical effectiveness data.

Tumour characterisation
AI algorithms are being developed to aid in the auto-
mated characterisation of intratumoral heterogeneity, 
potentially allowing for more precise monitoring of 
disease progression and treatment efficacy.19 Traditional 
tumour segmentation correlates quantitative imaging 
features with biological data, including genetic data 
and molecular signatures. AI can remove the manually 
laborious work of supervised tumour segmentation, 
providing the benefits of unsupervised biologic charac-
terisation of tumours. With deep learning and radiomic 
evaluation of tumour morphology and heterogeneity, 
more precise monitoring of treatment response of solid 
tumours can be determined through serial imaging (eg, 
CT scan, MRI, positron emission tomography (PET)/CT 
scan) that surpasses current oversimplified criteria such 
as the Response Evaluation Criteria in Solid Tumors that 
relies solely on size changes.20 Such efforts in AI- driven 
advanced imaging treatment response evaluation hold 
promise for more precise and personalised treatment 
decision- making for multiple cancer types, including 
cancer of the lung,21 22 liver,23 pancreas24 25 and head and 
neck,26–28 as well as for metastatic cancer.29

Pathology
The field of oncologic pathology has been transformed 
with the introduction of whole slide image (WSI) scan-
ners. By digitising entire glass slides, this major techno-
logical advancement has enabled the application of AI 
and other advanced computational methods to whole 
tissue specimens in a manner not possible via traditional 
light microscopy.30

Feature-based extraction
The emerging field of pathomics is a leading example 
of WSI applications. Pathomics is a high- throughput 
approach to digital tissue phenotyping, where compu-
tational methods are employed to transcribe otherwise 
unstructured imaging data (ie, pixel- level WSI informa-
tion) into structured imaging features and actionable 
knowledge.31 Analogous to radiomics—where quantita-
tive features are calculated from radiology images—path-
omics is based on the extraction and analysis of quantitative 
features derived from digitised tissue samples.31

The pathomic process typically starts with deep 
learning algorithms that detect and segment different 
tissue compartments (eg, tumour, stroma, etc) and/or 
cell types (eg, lymphocytes, cancer cells, etc), from which 
quantitative features are extracted. These features collec-
tively describe unique patterns, which can serve as digital 
fingerprints of the tumour microenvironment and may 
capture imaging characteristics that are either difficult 
or impossible to characterise by humans. For example, 
morphological features can describe the size, shape and 
orientation of individual nuclei; topological features 
can provide measures of the spatial tissue architecture 
and interaction between different cell types; and texture 
features can quantify spatially encoded pixel intensity 
patterns of chromatin. Illustrating examples in oncology 
range from pathomic- based prognostic signatures for 
gastric cancer,32 bladder cancer,33 renal cell carcinoma,34 
oropharyngeal cancer35 and breast cancer36 to predictors 
of microsatellite instability in colorectal cancer37 and 
mutational status of BRAF- mutated melanomas.38

Deep learning representations
The advantage of hand- crafted feature engineering is that 
features are easily interpretable. However, they are limited 
by human intuition. In contrast, deep learning provides 
an alternative form of pathomic feature extraction, where 
features are learnt from imaging filters in an unsupervised 
fashion. While deep pathomic features are difficult to 
interpret, they can go beyond human intuition. Although 
deep learning is often thought of as a complete classi-
fier,39–41 it is primarily a kind of image representation.42 
As stated above, deep learning is a particularly powerful 
tool for pixel- level object detection and segmentation 
(which is often the first step of a pathomics problem). 
Illustrating examples in oncology include segmentation 
of epithelial tissue in prostate cancer,43 cellular detection 
and classification in colon cancer44 and bone marrow,45 
counting tumour infiltrating lymphocytes46 and immune 
cell composition47 and segmentation of nuclei in cervical 
tissue for squamous epithelium cervical intraepithelial 
neoplasia grading.48

Patient triage
The dual tasks of prognostication and triage can drive 
goals of care discussion or referrals to palliative care and 
hospice, yet remain challenging for oncologists, who tend 
to overestimate patients’ survival.49 50 Several groups have 
performed prospective trials based on data- driven triage 
frameworks which we discuss here (table 1).51

Predicting unplanned hospital visits
Hong et al at Duke University aimed to triage patients 
undergoing radiation therapy by predicting acute care 
visits—emergency department or hospital admissions—to 
improve outcomes and decrease costs. After developing 
a gradient tree boosting (GTB) model using tabular 
electronic health record (EHR) data,52 they performed 
a randomised controlled trial for patients at high risk 
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of acute care visits to show that two times per week visits 
during radiation (compared with standard one time per 
week clinic visits) decrease such visits from 22% to 12%.53

Predicting survival
Parikh et al at the University of Pennsylvania aimed to 
predict which patients with metastatic cancer were at high 
risk of 180- day mortality to trigger timely serious illness 
conversations (SIC). After fixing the event rate (the 
proportion of patients flagged as high risk) to 2% to avoid 
alert fatigue, they developed a model with approximately 
50% positive predictive value (precision).54 After running 
a silent trial (ie, without alerting clinicians) of their GTB 
model confirming their prior results (table 2),55 the 
authors followed up with an interventional randomised 
stepped- wedge cluster trial.56 The clusters received either 
a behavioural nudge (weekly emails including up to six 
high- risk patients) or usual care. In the subset of high- risk 
encounters, nudges increased SIC from 3.6% to 15.2%, 

more than tripling the increase seen in all encounters. Of 
note, the model sensitivity was approximately 25%, but 
event rate can be tuned to allow more high- risk predic-
tions at the cost of higher risk of alert fatigue due to more 
false positives.57

Gensheimer et al at Stanford used clinical notes in 
addition to EHR, inpatient billing and registry data 
to train a Cox proportional hazards model to predict 
overall survival for metastatic solid tumours.58 Text was 
modelled through a bag of words approach by tallying 
the top 100 000 one to two words phrases. In a subsequent 
study, life expectancy estimation was compared between 
this text- driven model, oncologists and a baseline perfor-
mance status- based model, with the natural language 
processing (NLP)- driven model shown to be superior.59 
In a quality improvement interventional trial, the rate 
of advance care planning in clinics that received weekly 
emails of high- risk patients (predicted survival<2 years) 

Table 1 Examples of prospective AI- driven clinical trials in oncology

Trial name/
dates Trial design

Patient 
population

Clinical 
objective

Clinical action or 
arms Model objective

Model 
methods

SHIELD- RT53 
(2019)

Randomised, 
controlled, 
quality 
improvement

Patients 
undergoing 
radiation

Decrease acute 
care visits

Two times per week 
versus standard 
weekly clinical visit

Predict >10% risk 
of acute care visit

Gradient 
boosted trees

University of 
Pennsylvania, 
Manz et al55 56 
(2019)

Prospective 
silent→phase III 
cluster wedge

New encounters 
in outpatient 
clinics

Increase 
serious illness 
conversations

Weekly email of 
high- risk patients 
with day of text 
message versus 
usual care

Predict 6- month 
mortality

Gradient 
boosted trees

Stanford, 
Gensheimer et 
al60 (2020–2021)

Quality 
improvement, 
controlled

Patients in four 
clinics: two 
control, two 
experimental

Increase 
advance care 
planning

Weekly emails with 
patients predicted 
to survive<2 years

Predict time- 
dependent 
survival

Cox 
proportional 
hazards with 
tabular and text 
data

MASAI18 (2021–
2022)

Randomised, 
controlled, 
non- inferiority 
screening 
accuracy study

Women eligible 
for routine 
mammography 
screening

Improve 
screening 
outcomes, 
including lower 
interval cancer 
rate

AI- supported 
screening versus 
standard double 
reading without AI

Identify cancers 
on mammogram 
images

Proprietary 
deep 
convolutional 
neural network

AI, artificial intelligence.

Table 2 Confusion matrix summarising performance of the prospective silent trial of the Penn gradient boosted tree model to 
predict patients at high risk of death within 180 days16

Total patients (24 582) Predict survival>180 days (23 963) Predict survival≤180 days (619*) Event rate 2.5%

Survived ≤180 days (1022) 742 false negatives 280 true positives Sensitivity 27.4%

Survived >180 days (23 560) 23 221 true negatives 339 false positives Specificity 98.6%

NPV 96.9% PPV 45.2%

Anderson et al reported total patients, the number of patients who survived ≤180 days and who survived >180 days, NPV, PPV and sensitivity. 
The other metrics were derived with possible rounding errors.
*The ‘predict survival≤180 days’ events were fixed at 619/24 582=2.5% event rate.
NPV, negative predictive value; PPV, positive predictive value.
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increased to 35% compared with 3% in a control cohort 
of clinics.60 See the ‘Large language models’ section for 
further developments in NLP.

Radiation oncology
Organ at risk segmentation
In radiation oncology, AI- assisted autosegmentation of 
tumour and normal organ contours has made major 
advancements from the early era of intensity analysis and 
shape modelling to the modern techniques using deep 
learning.61 An early randomised trial by Walker et al at MD 
Anderson demonstrated that resident physicians using 
autosegmentation assistance had time savings compared 
with manual segmentation.62 Autosegmentation is also 
critical to facilitate online adaptive radiotherapy where 
real- time treatment modification occurs to account for 
daily changes in setup, anatomy or density.63 Proprietary 
online adaptive radiotherapy platforms incorporate 
AI- driven autosegmentation, deformable registration 
and treatment planning64 with ongoing trials in several 
disease sites, including a randomised trial in lung cancer 
(table 3).65

Treatment de-escalation
In head and neck cancer, radiation with or without 
concurrent systemic therapy is a standard of care for 
curative intent treatment, though not without significant 
toxicity due to sensitive adjacent organs. Standard radia-
tion fields may include neck regions that are not grossly 
involved due to concern they may be harbouring subclin-
ical disease. Chen et al at UT Southwestern sought to use 
computer vision to pinpoint which nodes were involved 
and only target these to decrease the toxicity of elec-
tive nodal radiation. They developed and prospectively 
validated a hybrid radiomics and convolutional neural 
network (CNN) model to predict neck node involvement 
in INRT- AIR de- escalation trial that performed involved 

node radiation (INRT) with promising early results 
showing no solitary elective nodal failure.66 Building on 
INRT- AIR, Sher et al are using INRT with or without near 
marginless daily adaptation in the DARTBOARD trial 
(table 3).67

The presence of extranodal extension (ENE) in neck 
nodes portends more aggressive cancer, though it is very 
challenging to detect on imaging.68 Kann et al developed 
and validated a deep CNN model to predict pathologic 
ENE on CT imaging69 and used ECOG- ACRIN E3311 data 
in a quality improvement study to suggest better ability to 
predict pathologic ENE compared with head and neck 
radiologists.70

Genomics-driven precision oncology
Several categories of precision oncology using clinicog-
enomic data are emerging, ranging from improving prog-
nostication to biomarker selection to drug development. 
Although still mainly in the research stage, there are 
several areas where AI may improve outcomes through 
refining treatment selection.

Prognostic and predictive tools through clinicogenomic data 
modelling
Complex clinicogenomic data can be synthesised to 
improve assessments of natural history and predict 
therapy benefits. For example, a predictive model that 
integrates molecular data with traditional clinicopatho-
logic features can provide more nuanced stratification of 
leukaemic transformation than the Revised International 
Prognostic Scoring System.71 Clinicogenomic signatures 
can also predict benefit from adjuvant chemotherapy in 
patients with gastric cancer,72 and individual liver metas-
tases with HER2- amplified metastatic colorectal cancer 
treated with dual HER2- targeted therapy with potential 
for detecting non- responding lesions.73

Table 3 Examples of prospective AI- driven clinical trials for radiotherapy planning

Trial name/
dates Trial design

Patient 
population

Clinical 
objective

Clinical action or 
arms Model objective Model methods

INRT- AIR66 
(2019–2022)

Phase II Patients with 
oropharynx, 
larynx 
squamous cell 
carcinoma

Risk of 
solitary 
elective nodal 
recurrence

Involved nodal 
radiation to 
suspicious nodes

Predict individual 
node positivity 
risk

Hybrid radiomics and 
three- dimensional 
CNN

DARTBOARD67 
(2022–)

Phase II 
randomised

Same as INRT- 
AIR

Decrease 
xerostomia

INRT±daily ART 
(near marginless)

CBCT 
autosegmentation 
via proprietary 
CNN 
architecture64

Same as INRT- 
AIR±AI- driven 
ART deformable 
registration and 
planning64

ARTIA- Lung65 
(2022–)

Randomised Patients with 
stages IIIA and 
IIIB NSCLC

Decrease 
composite 
acute grade 
3+toxicity

ART versus 
standard IMRT 
radiotherapy

Same as 
DARTBOARD

AI- driven ART 
deformable 
registration and 
planning64

AI, artificial intelligence; AIR, AI- based Radiomics; ART, adaptive radiotherapy; CBCT, cone- beam CT; CNN, convolutional neural network; 
IMRT, intensity modulated radiotherapy; INRT, involved nodal radiotherapy; NSCLC, non- small cell lung cancer.
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One emerging trend is to generate complex signa-
tures predicting therapy utility by merging multimodal 
data.74 Multimodal models can predict response to 
immune checkpoint inhibitors (ICI) more precisely in 
patients with lung cancer, through combining mutational 
burdens, radiomic features and PD- L1 immunohisto-
chemistry assay.75 In patients with castration- resistant 
prostate cancer, genomics and transcriptomics data 
have been combined using ML to predict a response to 
androgen receptor antagonists.76

Biomarker selection with non-destructive virtual assays
AI methods can derive surrogate biomarkers for targeting 
the molecular alterations of clinical significance in tumour 
tissues.77 This is helpful when universal testing is not 
possible or too costly, or in rare variants where a specific 
biomarker may not be available. Using non- destructive 
‘virtual assays’ also minimises serial confirmatory assays, 
thus preserving biopsy tissues and resulting in better 
turnaround time. Several studies have demonstrated 
the potential of using digital pathology and radiomics in 
such applications. As an example, screening of mismatch 
repair status on H&E- stained pathology slides and other 
imaging methods without immunohistochemistry has 
shown promising results in practice.78–80 This has signif-
icant practical implications in identifying ICI response in 
a small number of patients with a microsatellite unstable 
phenotype without universal testing. Applying radioge-
nomic assessment on CT images can identify non- small 
cell lung cancer (NSCLC) harbouring EGFR mutations 
based on texture features from pretreatment CT and 
PET/CT images, suggesting the potential to screen for 
precise actionable molecular alterations without needing 
invasive biopsy.81 Radiogenomic analysis has demon-
strated a link between CT imaging and radiation- induced 
changes in cell- free DNA obtained via liquid biopsy of 
locally advanced lung cancers.82 83

Structured insights for drug development through systematic 
repurposing
AI can assist in drug development by performing high- 
dimensional database analysis to screen for candi-
date drugs and regimens for trial development. In the 
secondary analysis of the SHIVA01 trial cohort, AI- assisted 
prioritisation of targeted agents was achieved through 
tumour molecular profiling.84 Deep learning on a phar-
macogenomics database such as Genomic of Drug Sensi-
tivity in Cancer can predict drug response and patients' 
survival by examining gene expression pathways85 to asso-
ciate disease control with molecular profiles. In a retro-
spective analysis, the NetBio framework has shown better 
prediction of treatment response to ICI in select cancers 
compared with traditional biomarkers.86

Surgery
In surgery, exploring AI’s ability to guide surgical decision- 
making has been of great interest. Surgical decision- 
making can lean heavily on visual cues and images in 

addition to a surgeon’s understanding of the patient’s 
clinical picture. For surgical applications, AI could take a 
virtual form or provide direct physical support (including 
smart operating rooms, nanorobots or patient- assistance 
systems). Regardless of the form, three fields have emerged 
as the main application of ML in surgery: surgical skills 
assessment, supporting intraoperative decision- making 
and surgical outcomes prediction.

Assessment of surgical skills
AI has been applied to laparoscopic videos and trained to 
assist in anatomy identification, segmenting live surgical 
images as high- risk areas versus low risk areas to minimise 
adverse events from misinterpretation of anatomy.87 AI 
algorithms can recognise the operative steps of a laparo-
scopic sleeve gastrectomy obtained from surgical videos 
with 85.6% accuracy.88 When additional data was captured 
involving instrument handling, surgeon eye tracking and 
motion perturbations, AI has also been used to predict 
surgeon skill level, procedure length and potentially 
patient outcomes.88 In fact, experienced surgeons can be 
differentiated from beginners within the first 10 s, a task 
with 90% accuracy.89 This has very practical relevance, 
as currently, assessment of surgical quality largely relies 
on surgical case volumes, without granular objective data 
from intraoperative data.

Intraoperative decision-making
The application of AI in assisting intraoperative decision- 
making has been of great interest. In surgical oncology, 
the assessment of margins is critical to achieving optimal 
oncological outcomes. At the same time, the aim of 
modern cancer surgery is to spare healthy tissue as much 
as possible to minimise side effects and improve long- 
term quality of life. With the application of ML and 
various enhanced imaging systems including Raman 
spectroscopy, there is the potential for real- time intra-
operative support while in the operating room.90 AI has 
also been used to determine optimal margins for cancer 
resection, such as in hepatic metastasectomy.91 These 
techniques are ripe for further evaluation as part of clin-
ical trials.

Outcomes prediction
In predicting outcomes in surgical oncology, radiomics 
has been applied to predict response after neoadjuvant 
therapy and to select patients for surgery, for example, 
according to quantitative features associated with micro-
invasion,92 or to distinguish high- risk versus low- risk 
precancerous lesions.93 ML has also been used to predict 
major complications after cancer surgery94 and to identify 
patients who are safe to be discharged 2 days following 
major gastrointestinal cancer surgery.95

These represent the main themes of AI application 
within surgery. With ongoing technological advances, 
surgery will move towards a smart operating room and 
more precise perioperative decision- making.
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EMERGING TOOLS
Large language models (LLM)
NLP has been applied to detect real- world cancer 
outcomes such as metastatic progression from radiology 
reports, pathology reports and clinical notes.96–101 As 
discussed above, Gensheimer et al have incorporated 
NLP into clinical triage.58 NLP systems for clinical trial 
matching are in test deployment at large healthcare 
networks.102

Since the late 2010s, advanced NLP models called 
LLM have leveraged transformer- based architectures 
with massive datasets (on the order of terabytes of text) 
to make significant breakthroughs in language under-
standing. While not specifically trained on biomedical or 
clinical text, LLMs such as Generative Pre- trained Trans-
former 4 (GPT- 4) are capable of encoding clinical knowl-
edge, as evidenced by their remarkable performance 
on medical licensing examinations and challenge prob-
lems,103–105 as well as to highly specialised topics such as 
medical physics.106 Researchers are now experimenting 
with fine- tuning pretrained models to focus specifically 
on medical applications, as seen in Med- PaLM 2 for ques-
tion/answering, RadOnc- GPT for oncology- specific tasks 
and LLMs for clinical trial matching.102 107 108

In some cases, models are even trained from scratch 
using solely medical datasets to optimise their perfor-
mance in the healthcare context. A prime example of 
domain- specific NLP utilisation is the Clinical Bidirec-
tional Encoder Representations from Transformers (Clin-
icalBERT) model, which was trained on a large corpus of 
deidentified intensive care unit notes and fine- tuned to 
predict short term readmission.109

The technological leaps provided by LLM have led to 
high- profile healthcare collaborations. Recent collabo-
rations include between Epic Systems and Microsoft to 
integrate GPT- 4 by drafting of patient communication 
responses and providing data visualisation recommenda-
tions and between Mayo Clinic and Google Cloud, which 
builds on a partnership formed in 2019.

Research in this area has grown rapidly with several 
research groups training their own BERT- type and GPT- 
type models on their own datasets for various applications, 
and we recommend keeping a close eye on this space.

3.1.2. Challenges of NLP in healthcare
Despite showing strong performance on benchmark 
tasks, significant risks still remain for the use of LLM 
in healthcare and oncology. One prominent concern 
is the presence of bias within these models, which may 
inadvertently perpetuate or exacerbate existing health-
care disparities. Additionally, LLM are known to experi-
ence ‘hallucinations,’ generating plausible sounding yet 
incorrect or unrelated information, which could poten-
tially lead to detrimental clinical decisions. Furthermore, 
these models may still exhibit inaccurate yet plausible 
reasoning, thereby making it difficult to catch errors 
and omissions. It is crucial to address these challenges 
and ensure these technologies are used responsibly, with 

human oversight remaining integral to decision- making 
processes.

Digital twins (DTs)
A DT is a virtual replica of a physical system which is not 
only created to mirror the real- world system but is also 
capable of analysis and prediction. DTs continuously 
monitor patients in real time, integrating data from wear-
able devices, sensors and electronic health records and 
thus is complemented by other technologies, including 
transfer learning, the Internet of Things, edge computing 
and cloud computing.110 DTs are being explored in 
oncology as a promising approach to enhance cancer care 
and may be used in various aspects of oncology including 
drug discovery and personalised treatment planning.111

Drug discovery
DTs have demonstrated the potential to streamline 
pharmaceutical processes and generate realistic input–
output predictions for biochemical reactions. Through 
in silico techniques, several drugs have been identified 
and successfully brought to market for various diseases, 
including anticancer agent raltitrexed.112 In silico trials 
are currently being investigated, initially focusing on 
synthetic control arms and eventually expanding to 
predict clinical intervention. Both the US FDA and the 
European Medicines Agency have taken steps to support 
the integration of in silico approaches into control arms. 
For instance, a synthetic control arm consisting of 68 
patients was used to extend the coverage of targeted 
therapy for NSCLC specifically alectinib, across 20 Euro-
pean countries.113 Synthetic controls have also played a 
role in expanding the indication of palbociclib, a kinase 
inhibitor, to include men with HR- positive HER2- negative 
advanced or metastatic breast cancer, as well as facili-
tating accelerated approval for blinatumomab which 
treats acute lymphoblastic leukaemia.114 In a phase I trial, 
existing quantitative systems pharmacology model of 
the anti- CD20/CD3 T- cell engaging bispecific antibody, 
mosunetuzumab, were used to incorporate different 
dosing regimens and patient heterogeneity within the 
trial.115

Treatment planning and prognosis monitoring
DTs may be created to personalise treatment planning 
as they enable the simulation and optimisation of treat-
ments by integrating patient- specific genomics, imaging 
and clinical information. The utilisation of NLP for large- 
scale labelling of CT reports presents an opportunity to 
advance the development of DTs in oncology. In a recent 
study, NLP was used to perform consecutive multireport 
prediction of metastases, enabling highly detailed repre-
sentations that effectively model a cancer patient’s disease 
progression over time.116 These approaches facilitate the 
generation of a comprehensive database consisting of 
patterns of disease spread, facilitating early detection 
and prediction of an individual patient’s progression. In 
another study, DTs of patients were generated, and clinical 
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trials were simulated to anticipate the optimal salvage 
therapy following progressive disease while on pembroli-
zumab.117 For spine metastases, DT was used to simulate 
vertebroplasty and its impact on mechanical stability of 
the vertebra.118 Finally, so called ‘virtual imaging trials’ 
aim to simulate the entire radiological imaging process 
using realistic digital phantoms, simulated image acqui-
sition and reconstruction and AI- driven readers/compu-
tational observer models to improve the precision and 
accuracy of imaging systems and downstream biomarkers 
on DTs.119 Further research, validation and clinical trials 
are needed to fully establish the effectiveness and inte-
gration of DTs into routine clinical practice in oncology.

Clinical informatics
There are several resources that can help non- AI expert 
clinicians in the interpretation and ethical applica-
tion of AI tools in the clinic120 121 and the applications 
within specific disease sites, both during and after clinical 
training.

Education
In the USA, the clinical subspecialty of CI was recognised 
by the American Board of Medical Specialties (ABMS) in 
2011 and the first physicians were board certified in CI 
in 2013.122 CI subspecialty fellowships are open to physi-
cians from any ABMS specialty and allow fellows to spend 
2 years dedicated to studying and practicing CI. NIH 
National Library of Medicine informatics fellowships can 
also provide physicians with opportunities to gain experi-
ence in programming and application of AI tools in clin-
ical practice. There are other pathways123 and less formal 
educational resources, including master’s degrees or 
certificate programmes, American Medical Informatics 
Association 10×10 programs and massive open online 
courses on ML such as those on Coursera by Andrew Ng.

Research infrastructure and community
Sharing of data and conference resources in oncology 
are increasing, even outside of data access statements in 
publications. Federated learning can facilitate AI from 
much larger datasets while protecting data privacy by 
decentralising raw data, which has the potential to speed 
up validation of models. Work continues to try to stan-
dardise oncology data elements—mCODE, a collabo-
ration between ASCO, CancerLinQ and MITRE—and 
interoperability—FHIR by HL7. The National Cancer 
Institute (NCI) is a major organiser of cancer datasets 
like the Cancer Research Data Commons, which includes 
The Cancer Genome Atlas, and the NCI Data Catalog 
and NCI Cancer Imaging Archive. Academic groups are 
building free software packages and platforms such as 
MultiAssayExperiment and CURATE.AI.124 AI- driven data 
fusion techniques that intelligently combine data from 
these different source domains (eg, clinical, imaging, 
omics, etc) can integrate knowledge to provide insight 
that is greater than the sum of the parts.125 More than a 
dozen technology companies are building platforms and 
software as a service (SaaS) tools to try to facilitate preci-
sion oncology and data analysis, including ConcertAI, 
Onc.Ai, Azra AI, ArteraAI and PreciseDx. It is imperative 
that oncologists become comfortable with critiquing, 
interpreting and applying these tools in clinical practice 
as well as research.

CONCLUSION
Much like oncologists 10–15 years ago would have been 
hard pressed to predict the paradigm shifts provided by 
advances in targeted therapy, immunotherapy, stereo-
tactic radiation therapy, minimally invasive surgery, digital 
pathology and theranostics, it seems we are at or nearing 
an inflection point for AI in medicine given the amount 

Table 4 Summary of illustrative AI applications across domains of oncology described in this review

Radiological 
imaging Pathology Patient triage

Radiation 
oncology

Genomic- driven 
oncology Surgery

Detection Cancer 
screening 
(randomised), 
radiogenomics

Tissue 
compartments, 
subcellular 
morphology, 
mutation 
status, tissue 
segmentation

Patients at high 
risk of mortality 
(randomised)

Organ 
segmentation, 
nodal 
extracapsular 
extension

Virtual biomarker, 
mutation detection

Anatomy 
segmentation; 
operative steps; 
surgical skill

Prediction Tumour 
progression, 
treatment 
response

Overall survival 
(randomised), 
hospital 
admission 
(randomised)

Treatment 
de- escalation 
(prospective)

Systemic therapy 
benefit, drug 
screening

Optimal margins; 
patient selection; 
complications; 
discharge planning

Skill 
development

Adjunct second 
reader

Segmentation 
aid

Skill assessment

Applications with randomised or prospective data are noted.
AI, artificial intelligence.
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of investment by hospitals, companies and governments. 
Table 4 summarises AI applications across fields of 
oncology described in this review. We see common themes 
for AI used in disease detection, outcome prediction and 
education across specialties, and over the last few years, 
prospective and randomised evidence is accumulating in 
the domains of patient triage and radiological imaging. 
The primary limitation of AI in oncology has been a lack 
of validation. In the past several years, we are seeing more 
prospective trials and randomised trials, though these 
still remain largely single institutional. As higher levels of 
evidence lead to improved outcomes, we expect further 
coverage for AI tools by payors. Further advancements in 
these fields supported by the rise of NLP, DTs and CI will 
pave the way for the actualisation of AI in oncology in the 
next 5–10 years.
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